LETTER TO THE EDITOR

Defining the Boundaries of the Late-Glacial Isotope Episodes

Deciphering the details of the climatic record for the interval 15,000 to 9000 14C yr B.P. has assumed great importance in the quest to understand glacial cycles (Broecker and Denton, 1989). The reason is that evidence for abrupt changes has emerged. In the northern Atlantic basin, two abrupt warmings (one at about 12,700 and the other at about 10,000 14C yr B.P.) and one abrupt cooling (at about 10,800 14C yr B.P.) are recorded in the oxygen isotope and dust record from Greenland ice (Dansgaard and Oeschger, 1989), in the oxygen isotope and foraminifera record from northern Atlantic sediment (Ruddiman and McIntyre, 1981; Duplessy et al., 1981; Bard et al., 1987; Broecker et al., 1988), and in the oxygen isotope (Siegenthaler et al., 1984), beetle (Atkinson et al., 1987), and pollen (Welten, 1982; Ammann and Lotter, 1989) records from European lakes and bogs. The second of these warmings has recently been found in the hydrogen isotope record for European pine trees (Becker et al., 1991). Fairbanks (1989) has accumulated evidence from Barbados corals for abrupt rises in sea level several hundred years after each of these two warmings. While the strongest imprints of these changes are found in records from the northern Atlantic basin, evidence for lesser impacts appears in records from distant points on the planet (Lorius et al., 1979; Chinzei et al., 1987; Keigwin and Jones, 1990; Kudrass et al., 1991). The task of the next decade or so will be to establish detailed records for this time interval at many places on the globe.

The point of this note is to suggest a remedy for what I consider to be a confusing situation with regard to nomenclature applied to one part of this time interval, i.e., that between the first of the northern Atlantic basin’s abrupt warmings (i.e., at ca. 12,700 14C yr ago) and the cooling event marking the onset of the Younger Dryas event (ca. 10,800 14C yr B.P.). For historical palynological reasons (Hartz, 1902; Iversen, 1942, 1954; Firbas, 1949, 1952; Van der Hammen, 1951), this interval commonly has been divided into three subintervals: the Bølling (warm), the Older Dryas (cold), and the Allerød (warm). However, evidence for the Older Dryas is absent (or not identified) in most records, leaving only a single warm episode (the Bølling and Allerød). A pollen record from Swiss Lake Rotsee reveals a transition from birch (during Bølling) to pine (during Allerød), while the oxygen isotope record shows no clear break separating these two warm episodes (Fig. 1).

In accord with earlier suggestions by Pennington and Bonny (1970), Birks (1973, p. 382–384), Pennington (1977), Coope and Pennington (1977), Gray and Lowe (1977), and Berglund (1979), I propose that in isotope records this interval be treated as a single entity, the Bølling–Allerød (BOA), and that the boundaries marking the onset and ending of the BOA interval be defined by the midpoints of the stable isotope (oxygen or deuterium) shifts marking the abrupt warming at about 12,700 14C yr B.P. and the abrupt cooling at about 10,800 14C yr B.P. (Fig. 1). Similarly, I would define the Younger Dryas (YD) interval as extending from the midpoint of the stable isotope (oxygen or deuterium) shifts marking the abrupt warming at about 12,700 14C yr B.P. and the abrupt cooling at about 10,800 14C yr B.P. (Fig. 1). Similarly, I would define the Younger Dryas (YD) interval as extending from the midpoint of the stable isotope cooling that marks its onset to the midpoint of the isotope warming that marks its termination. I opt for the isotopic record because isotopes constitute the only signal common to the Greenland ice core, north-
ern Atlantic sediment, and European lake records, and because the isotope signal is likely to have been synchronous over the northern Atlantic basin. While several reviewers of this paper suggested that the beginning or end of the isotope change be used rather than the midpoint, I feel strongly that less ambiguity will arise in the identification of the midpoints than the endpoints. I hasten to admit that the assumption of synchronous isotopic shifts across the northern Atlantic basin has not been proven. However, the rapidity of these transitions (several decades), the similarity in the shapes of the Greenland Dye 3 and Gerzensee, Switzerland oxygen isotopic records, and the similarity in the radiocarbon dates for the faunal and floral equivalents to these transitions certainly suggest regional synchrony.

A combination of fossil evidence and radiocarbon dating will serve as a means of extending these boundaries to deposits in the northern Atlantic basin for which stable isotope records are not available. However, both the abrupt warming at about 12,700 yr B.P. and that at about 10,000 yr B.P. unfortunately occur during radiocarbon age plateau (Fig. 1), making radiocarbon-based correlations somewhat ambiguous.

The divergence between the 230Th and 14C age scales found for Barbados coral (Bard et al., 1990) provides a strong incentive to tighten up the definition of these boundaries. Several groups are currently
attempting to make accurate counts of annual layers in lake sediments covering the period of deglaciation (Pazdur et al., 1987; Zolitschka, 1989; Lotter, 1991). These groups are also obtaining radiocarbon ages for terrestrial macrofossils contained in the sediment. Similar checks may be possible from radiocarbon dating (of CO₂) and couplet counting in the new Greenland ice cores (GISP II and GRIP). These studies will be more meaningful if the annual layer counts can be referenced to one or more of the boundaries defined here. Rumor has it that an acidity peak equivalent to the Laacher See Tephra (14C age ca. 11,000 yr B.P.) has been found by the Danes in the Greenland ice cores (Sigfuss Johnson, personal communication, 1990). If this correlation is verified, then the LST horizon will prove ideal as the zero year reference in annual layer counting.

Finally following Watson and Wright (1980) and Birks (1982), I suggest that use of chronozones for this interval (Mangerud et al., 1974) be eliminated. While at the time of their introduction they served a useful purpose, currently they add more confusion than light.

In making these suggestions, I realize that I am treading on ground considered sacred by many stratigraphers. Fortunately, I have not proposed new terminology nor have I designated new boundaries. Rather, I am proposing that we formalize definitions most people have already been using.

REFERENCES

Berglund, B. E. (1979). The deglaciation of Southern Sweden 13,500-10,000 B.P., Boreas 8, 89-118.

Hartz, N. (1902). Bidrag til Danmarks senglacial

Wallace S. Broecker

Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964