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Abstract

A stochastic model of a dynamic marker array in which markers could disappear,
duplicate, and move relative to its original position is constructed to reflect on the
nature of long DNA sequences. The sequence changes of deletions, duplications, and
displacements follow the stochastic rules: (i) the original distribution of the marker
array {..., X—2, X_1, X0, X1, X2, ...} is a Poisson process on the real line; (ii) each
marker is replicated / times; replication or loss of marker points occur independently;
(iii) each replicated point is independently and randomly displaced by an amount Y
relative to its original position, with the Y displacements sampled from a continuous
density g(y). Limiting distributions for the maximal and minimal statistics of the r-scan
lengths (collection of distances between r + 1 successive markers) for the /-shift model
are derived with the aid of the Chen—Stein method and properties of Poisson processes.
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1. Introduction

The motivation for the /-fold shift model analyzed in this paper stems from the dynamic
and heterogenous nature of long DNA sequences. Genomic local and global compositional
heterogeneity occurs on many scales. Examples of DNA heterogeneity include isochore
compartments (regions dominated by either G+C or A+T nucleotides as determined by density-
gradient centrifugation especially in mammalian species) (Bernardi et al. (1985), (1988));
mobile elements (DNA sequences that move around the genome such as Alu elements in
human, 7y sequences in yeast, and IS segments in Escherichia coli (Berg and Howe (1989));
characteristic satellite centrometric tandem repeats (such as the 171-units of human alpha
satellite DNA); characteristic telomeric sequences (at the chromosomal termini such as the
TGTGGG tandem repeats in humans) (Willard and Waye (1987); Blackburn (1991)); CpG
islands (human DNA sequences that occur generally upstream of genes and are abundant with
unmethylated CG dinucleotides) (Bird (1986)); repetitive extragenic palindromes (REPs) found
in the bacterial genomes of Escherichia coli and Salmonella typhimurium; recombinational hot
spots (such as chi elements GCTGGTGG in Escherichia coli) (Krawiec and Riley (1990), Gilson
et al. (1991)); almost universal under-representation of the dinucleotide TA; suppression of
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the dinucleotide CG in vertebrate species (Josse ef al. (1961)); the rarity of the tetranucleotide
CTAG in several proteobacterial and archaeal genomes (Burge ef al. (1992), Reinert and
Schbath (1998)). GNN periodicity in manmalian coding sequences (Ficket (1982)). Thus,
genome organization is complex and variegated.

This paper develops a theoretical framework for ascertaining regions of clustering or overdis-
persion in a marker array (e.g. genes, oligonucletides, transposable elements, and nucleosomes)
along a DNA sequence following long-term mutation events such as sequence deletions,
duplications, displacements, and rearrangements. To this purpose we consider a Poisson point
process model, where each marker is independently replicated a random number of times and
the replicas are randomly displaced. The maximal and minimal r-scan lengths (r-scans consist
of all distances between r + 1 consecutive points of the marker array) are investigated to identify
special inhomogeneous regions. We use multidimensional inhomogeneous Poisson processes in
conjunction with the Chen—Stein methodology in characterizing extremal 7-scans. Moreover,
the Kingman mapping theorem (Kingman (1993, Chapter 5)) concerned with transformed
Poisson processes in multidimensional spaces is used to achieve essential estimates.

The biological model discussed in this paper describes a stochastic version to these kinds of
biological changes and obeys the following rules.

1. The original distribution of the marker array, (..., X2, X_1, Xo, X1, X2, ...),isapoint
process.

2. Each marker is independently replicated / times. Replications or loss of marker points
occur independently.

3. Each replicated point is independently displaced by an amount ¥ (—oc0 < ¥ < 00)
relative to its original position, with the Y displacements sampled from the density g(y),
—00 <y < 00.

From the altered process, the r-scan statistics (see Dembo and Karlin (1992)), are the
collection of the interval lengths between all » 4+ 1 successive marker points. The over-
dispersion and cluster regions of the marker array correspond to the regions containing the
maximal and minimal r-scan lengths, respectively. The objective of this paper is to characterize
the asymptotic distributions of the maximal and minimal r-scan lengths of the shift process.
For previous literature and applications of r-scan statistics in molecular genetic analysis , see
Karlin and Macken (1991), Dembo and Karlin (1992), Karlin and Brendel (1992), Karlin and
Cardon (1994), Karlin ef al. (1996), and Gerstein (1997). For studies of clustering in other
domains with extensive bibliography, see Naus (1979), (1982) and the recent books of Barbour
etal. (1992) and Glaz et al. (2001).

We will concentrate on the case in which A (the original ancestor marker array) is distributed
as a homogeneous Poisson process of parameter 1. Let Hgl) denote the shift model constructed
from a Poisson(1) process involving an /-fold replication and an independent displacement
sampled from the density g applied to each replicated point. Thus, the H(ll) array consists of
the points

NV =(zF =X, +v5i=0,+1,42,... . k=1,2,....1}.

The asymptotic distributions of the extremal r-scan lengths descendant from the marker array
1'[(1[) will be deduced from the /-dimensional inhomogeneous Poisson process I} which has the
intensity fi(z1,...,21) = ffooo g(z1—s) - g(z;—s) ds. To clarify the ideas and constructions,
the case in which / = 2 will be elaborated.
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The analysis (lemmas and proofs) of the case in which / > 2 is omitted here, but is available
online at http://math.stanford.edu/~karlin/ through the supplemental information link under
the publications heading. Consider / = 2 duplications, producing

X_1 Xo X1 X5
AR X_l b XO 9 X1 9 X2 9
The displaced array is

€;=X4+ﬂg G&;&+%><H:Xﬁ1§
NZ2, =Xx+72 ) \ZE=X0+Y; ) \Zi =X, +Y})°
where all {Y} are independent and identically distributed samples from the density g(y). We
assume that ffooo lulg(u)du < oo and so [ [ |u — v|g(u)g(v)dudv < oo. It is convenient

to introduce the two-dimensional process (X; + Yil, X + Yl.z), designated IT%, which is an
inhomogeneous Poisson process with the intensity rate f>(z1, z2) = ffooo g(z1—s)g(zp—s)ds.

Theorem 1. (Asymptotic maximal r-scan for the 2-fold shift model.) Let ng) be the 2-fold
shift process. Assume that the shift length density g (s) satisfies the condition [ |s|g(s)ds < oo.
Then, for any fixed integer r = 2p + 1, where p is a nonnegative integer; the kth longest r-scan
length of 1'[52) in (0,1), M, i, possesses the asymptotic distribution (t — 00)

—1 %M
tgn;oPr{M,k<1nt+{ 5 Jln]nt—l—x} Ze

where |w] is the integer part of w and

Cexpl—(r + [ [%5 lu — vlg(wg(v) du dv)}
a Lor — 1)/2]! '

Theorem 2. (Asymptotic minimal r-scan for the 2-fold shift model.) Let 1'[(12) be the 2-fold
shift process. Assume that the shift density g is continuous. Then the kth smallest r-scan length
of Hﬁz) in (0, 1), m; k, possesses the asymptotic distribution

—Dl
tl_l)m Pr{m,k > \/7} Z

R 220,00
N+ 1—2))!

with

=@+ 1x
j=0
1.1. The [-fold shift model

For each marker duplicated / times and each replicate randomly displaced independently as
before, we construct a corresponding /-dimensional inhomogeneous Poisson process I} with
rate parameter

fizt, -y 2) =/ g(z1—s)---g(z;y — s)ds.

—00
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For1l <v </, let

Sy(z) = {(x1, ..., x7): where the vth coordinate satisfies 0 < x, < z},
S, (z) = the complement of S, (z),
Ty(2) = NY_,8j (@) Moy Sj(2).

We will establish the existence of the following limits

cvzlimfu- fitxt, ..., x)dxy---dx; forl <v<l-—1,
T,(z)

—> 0

clzlim[z—[... fl(xl,...,xl)dxl-udxl:|.
e Ti(2)

Theorem 3. (Asymptotic maximal r-scan length of the /-fold shift model.) Let l'[ﬁl) be the
l-fold shift process. Suppose that ffooo Is|g(s)ds < oo andr = Ip + 1, for p a nonnegative

integer. Then the kth maximal r-scan length from I'I(ll) in (0, 1), Mt(l,z, possesses the asymptotic

distribution
r—1 k=l )»{1)
. 0 — — —Aay 9
tl_l)rgoPr{Mt’kflnt—kL ] Jlnlnt—{-x}—Ze i
j=
with

wmeol (£ ()e-a)}/|7

Theorem 4. (Asymptotic minimal r-scan length of the /-fold shift model.) Let HY) be the
-fold shift process. Suppose that the shift density g is continuous. Then the kth minimal r-scan
length from I'I(ll) in (0, 1), ml(l,l possesses the asymptotic distribution

[x - (@)’
3 (l) rf —_ 70}
;l—lfgopr{m’* Vi } =2.c it

j=0

apy=(r+Dx Y (ﬁ((i)fu(o,...,oyv/iv!)

i1,i2,....ijeZt “v=1
Zi:1Viu=r+l

for f400,...,0) = [ [g(s)]%ds.

with

2. The Chen-Stein method and transformed Poisson processes

We review first the Chen—Stein method (Chen (1975)), which provides the basic tool to
determine the error bound between a sum of (dependent) Bernoulli random variables and its
asymptotic Poisson law. In this paper we adopt the formulation of the Chen—Stein method from
Arratia et al. (1989).
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Theorem 5. (Chen—Stein method.) Let {Z;} be Bernoulli (p;) random variables and W =
Y icq Zi, where Q is a finite or countable index set. Let P denote the Poisson(}) random

variable and let d(U, V') denote the total variation distance between the discrete distributions
ofUand V:

d(U, V) =sup(Pr{U € A} — Pr{V € A}) (where A is any measurable set)
A

1 o
= 5Z|Pr{u =k} — Pr{V = k}|.
k=0
Then N Y
1 —e” 2
dW, ) < (u1 + up) +u min(l,—),
A 1 2 2 3 \/X
where

=Y pi. wy=7y Y pipj

ieQ ieQ jeB; )
w=Y Y EZZ])  us=Y ElEZ |{Z;};gs] - pill.
i€Q jeB;. j#i ieQ

and {8} is an appropriate family of subsets indexed by Q.

Theorems 6 and 7 are fundamental for inhomogeneous Poisson processes; see, e.g. Kingman
(1993, Chapter 5).

Theorem 6. Let I1 be a Poisson process on a space S with rate measure . Suppose that, with
each point X of T, we associate a random variable my (the mark of X ) taking values in some
metric space M. The distribution of myx may depend on X but not on other points of 1, and
my for different X are independent.

The pair (X, myx) can be regarded as a random point X™* in the product space S x M.
Then, the ensemble of points X* generate a Poisson process TTI* = {(X, mx)}xen on the direct
product space S x M with rate measure u* given by

w*(C) = // wu(dx) py (dm), ()
(x,m)eC

where py(dm) is the conditional distribution of m given x.

To adapt Theorem 6 to the 2-fold shift model, we determine my = (mi,mz) = (X +
Y}(, X+Y )2(), with the displacements Y )1( and Y)% arising as independent, real valued, random
variables sampled from the density g(y). Then py(dm) applied in (2) is py(dm) = g(m; —
x)g(my — x) dm dmy. The Poisson process IT* has the rate measure u* on R x R2 calculated

as
wi(C) = /// g(my — x)g(my — x)dm; dmy dx
(x,my,mp)eC

for any measurable set C on R>.

Theorem 7. (Mapping theorem.) Let I1 be a Poisson process with a finite mean rate measure
W on the space S, and let A: S — T be a measurable mapping such that the induced measure
of w transferred to T is atomless. Then Y1 = A(T1) is a Poisson process on T and has rate
measure L = s A7

https://doi.org/10.1239/aap/1189518639 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1189518639

804 C. CHEN AND S. KARLIN

In the 2-fold shift model, A in Theorem 7 is specified as the projection of R? to R? such that
A: (x,my,mp) — (m1, my), and therefore the induced process

M= A(X. X+ YL X+ YD ={(X+ Y}, X+73)

is a two-dimensional Poisson process with the rate measure f>(z1,22) = [ Oooo g(z1 — )

X g(zp — s)ds. We assume that the displacement distribution density g has finite mean.
Then f, possesses the following three properties.

1. Symmetry: f2(z1, 22) = f2(z2, 21)-
2. Invariance under equal translation: f>(z1 + a, 22 + a) = f2(z1, z2) for all real a.

3. f2(z,0) (or f2(0, 7)) is a continous, symmetric density function of z such that

/ |z] f2(z,0)dz = / / lu — v|gu)g()dudv < oo.

To construct the relevant one-dimensional shift process I1 (2), we project the two-dimensional
Poisson process H; separately to its zj-axis and to its zp-axis and concatenate the two one-
dimensional point processes yielding the one-dimensional process

2
M = (X + Y ULX + YD ard xaryens: *

Theorems 6 and 7 will enable us to study the distributional properties of the two-dimensional
Poisson process IT5 and, subsequently, to calculate the distribution of the one-dimensional shift

process ng). For example, consider an interval (a, b), for a < b. The two events

{no one-dimensional Hiz) point occurs in an interval (a, b)}
and
{no two-dimensional IT} point occurs in a region of {(a, b) x (—o0, c0)}U
{(—00, 00) x (a,b)}}

are equivalent. The following notations indicate the regions in IT} associated with the interval
(a, b) in ng). Let °\’ denote set subtraction and
A(Cl, b) = {(as b) X (_OO, OO) U (_OO, OO) X (Cl, b)}v
Ai(a,b) ={(a,b) x (a,b)}, and Az(a,b) = A(a,b)\ Ai(a,b); 4
see Figure 1.

Each point of IT3 in Aj(a, b) corresponds to two points of HEZ) in (a, b) (precluding the
points along the diagonal), whereas each point of IT5 in A>(a, b) generates a single point of

ng) in (a, b). Let V(C) equal the integration of f>(z1, z2) over a set C. Since the rate density
f2(z1, 22) of H; is invariant along the diagonal, it is clear that

V(Ai(a,b)) =V(A1(0,b —a)) and V(Az(a,b)) =V(A2(0,b—a)).

Actually, I"Iiz) is a stationary point process on the line.
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(a,b (b, b) (b,a (b, b) (a,b (b, b)

(a,a (b, a) (a,a (a, b) (a,a (b, a)

(@) (b) (©)
FIGURE 1: The stripped regions correspond to (a) A(a, b), (b) A1 (a, b),and (c) A2z (a, b).

3. Estimates required for the multiple shift model

In this section we provide the estimates required to prove Theorems 1-4. The detailed proof
for each estimate is presented in Section 5 of this paper. The analysis of the r-scan statistics for
the observed marker array Hiz) in (3) is based on the counts of associated Bernoulli variables
((6) and (7), below, over the time horizon (0, 7)). To study the maximum r-scan length, we
partition (0, #) with a small spacing A, = 1/t and place a window of width

-1
bt=1nt+{rTJlnlnt+x (@)

at each position jA;, j =0,1,2,.... Now, let

1 if there is a single marker of I"I(lz) in ((j — 1)A¢, jA;), and
Zf (by) = less than r markers in the window of (jA;, jA; + by), (6)
0 otherwise.

Then Z;“ (by) = 1 signifies the existence of an r-scan interval of length exceeding b;, where its
interval begins about jA;. We define n," (b,) = Zﬁiah’)/ Al Zj.' (b,) and prove that n;" (b;) is a
good approximation of N ,+ (b;), the count of r-scan intervals in (0, ) that exceed b;. Theorem 5
can be applied to derive the asymptotic Poisson law for n;" (b;).

The distribution of the minimum r-scan length is studied in a similar manner by partitioning

(0, 1) with a spacing of 8, = 1/¢* and by putting a window of extent a; = /x/7 at each discrete
position j&;, j =0, 1,2,.... A Bernoulli random variable is specified at each position j§;:

1 if there is a single marker of 1'[52) in ((j — 1)d¢, jd;), and
Z;(a,) = at least r markers in (j&;, (j — 1)4; + a;), @)
0 otherwise.

When Zj_ (a;) = 1, there is an r-scan interval of length less than @, with its initial marker

about jé;. Letn, (a;) = Zb(iga’)/m Z7; (a;) and let N;” (a,) be the count of r-scan intervals in

(0, ¢) that do not exceed a;. Then n; (a;) is a candidate to represent N, (a;) such that n, (a;)
converges to N, (a,) in probability as t — oo. The asymptotic Poisson law of n, (a;) can be
ascertained by Theorem 5.

Before calculating probabilities of events of the process I'I(lz), we describe concisely the
method. Since IT} is a two-dimensional Poisson process, realizations in disjoint areas are

https://doi.org/10.1239/aap/1189518639 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1189518639

806 C. CHEN AND S. KARLIN

independent. But points occurring in disjoint intervals of the one-dimensional l'[(z), say, (a, b)
and (c, d), have some overlap through the rectangle areas {(a, b) x (¢, d)} and {(c, d) x (a, b)} of
IT3, in which each point could project to two one-dimensional points in the intervals (a, b) and
(c, d) each. For convenience, we use the notation A(a, b), A1(a, b), and A>(a, b) (see Figure 1)
to represent regions of IT; relevant to an interval (a, b) in ng). We define B((a, b) x (¢, d)) =
{{(a,b) x (c,d)} U {(c,d) x (a, b)}}, which is the area relative to both intervals (a, b) and
(c,d). We use || || to indicate the count of points in regions of both one-dimensional or two-
dimensional and higher dimensional; e.g. [|C|| and [|(a, b)|| are the count of points of I3 in

area C and the count of points of I"I(lz) in the interval (a, b), respectively.

In this section we state the upper bounds of errors when applying the Chen—Stein method to
the shift processes. The proofs are given in Section 5. Lemmas 1 and 2, below, are necessary
to calculate the values of {E[Zj.' (b)1}j>0, the expectations of the Bernoulli random variables
of maximal r-scan lengths.

Lemma 1. Assume that [ |s|g(s) ds < oo. Then, for each nonnegative integer k and z — 0,

Pr{There are at most k points of 1‘[52) in (0, 2)}
(z — ma)tk/2!

=exp{—(z + mZ)}le(k)(l +o(1)),
where o(1) converges to 0 as z — 00, and
00 [ 1 k is even
= — dud 00; Lk)y=1{" ’ 8
"2 /—oo /;oo |u U|g(u)g(v) Hev= 2( ) 1 + ZWZQ, k is odd. ( )

Lemma 2. Assumethatf Islg(s)ds < coandr =2p+1,p =0,1,2,.... Then, for A, =t~!
andb; =Int+ [(r —1)/2] Inlnt + x,

E[Z?' (by)] = Pr{there is a single point of ng) in (0, A;) and at most
(r — 1) points of 1 in (A, Ay + b))

_ Arexp{—(x +my)}
T tlr—=1D)/2)!

The following two lemmas are required for the study of the maximal r-scan distribution.
Lemma 3 is necessary to evaluate the probability of the event {n;|r (by) # N,+ (by)}. Lemma 4 is
required for the calculation of the error bound of u; in (1) with the neighborhood sets $B; ;> 1)
specified as B; = {j: |j —i| < [2b;/A+]} when invoking the Chen—Stein method applied
to the Bernoulli sum of ;" (b,) = Zb(igb’)/ Ba Zf (bs). Here, and throughout the paper, we
consider only the index i, j such that 1A, jA, are within the interval (0, ).

(14 o(1)).

Lemma 3. The following estimates assure convergence in probability of nf(bt) to N,Jr (by).

AZ
Pr{[|(0, ADI = 2, [[(Ar, ¢ + )|l <7 — 1} < 0<Tt>’ )

A2
Pr{ {10, A)I = 1110, b)ll = r, 1100, Ar + b))l = r + 1} < 0<7’) (10)
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Lemma 4. The following estimate is necessary for evaluating the parameter uy in (1) when
the Chen—Stein method is applied to n?‘(b,) by setting Ay = 1/t. We obtain

Inln¢ Az b A21 1 t[(rfl)/ZJ
Z E[Z;_(bt)zj—(bt)]fznAn 0( ’)+2_’0< ;(ntlny) )

P p tint Ay t(nt)?
Lo (11
A, ra

Lemmas 5, 6, and 7 are important for the proof of the asymptotic Poisson law when applying
the Chen—Stein method to the Bernoulli sum Zm an)/5:] Z: (a;). Lemma 5 provides the
asymptotic value of E[Z; (a;)]. Lemma 6 gives estimates relevant to the convergence of
n; (a;) to N; (a;) in probability. Lemma 7 provides an upper bound of u in (1) when applying
the Chen—Stein method to n; (a;).

Lemma 5. Assume that the shift density g is continuous, then, for §; = t_2, ar = /x/t, and
t — 00,
E[Z| (a)] = Pr{l|(0, )| = 1, ||, an)|| = r}

_r+ Déx (mw 21721 (£3(0, 0)

‘ S+ 1—2)) >(1+0(1))'

j=0

Lemma 6. The probability bounds of the events {||(0, 8;)|| > 2,1|(6,a:)|| = r — 1} and
{110, )11 = L, 10, anll < r + 1, (0, ar + &:)|| = r + 1} are respectively

Pr{[[(0, )11 = 2, |8, a)ll = r — 1} < O(8D), (12)

Pr{[|(0, 811 = 1, 10, a)l| < r + 1L, [|(0, ar + 8)I| = r + 1} < O(S]). (13)

Lemma 7. The following estimate is necessary for evaluating the parameter uy of Theorem 5
when the Chen—Stein method is applied to n, (a;). For2 <i < |a;/8;] + 1,

E[Z{ (a)Z; (a)] = O(8:éray). (14)

With the preparations above, we are ready to validate the limiting theorems of the extremal
r-scan lengths of the 2-fold shift model.

4. Theorems for extremal r-scan lengths

4.1. Extremal distribution of maximum and minimum r-scans

The asymptotic distribution of the kth largest r-scan length generated from the 2-fold
shift model arises from the sum of Bernoulli random variables associated with the set of
discrete times {jA;},j = 1,...,[(t —bs)/A¢], for the choices of A; = 1 and b, =
Int + [(r — 1)/2] Inlnt + x. Explicitly, for 1 < j < [ (¢t — b;)/A; ], we define the following
Bernoulli random variables:

L af |[(( = DA jADI = Tand [[(jAs, jAr + bl <,

Ztw) =
J (r) 0 otherwise.

ZL(t b))/ A

We claim that the Bernoulli sum #; Ty = ‘] Zj.' (by) is a good approximation to

the count N,Jr (by) of the number of r-scan intervals in (0, ¢) based on the points of I"I(lz) whose
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r-scans exceed b,. Let {X, ;};>1 be the ordered points of ng) in (0, t) and set X; o = O for
definiteness. Then {R;; = X; ;—14+r — X:,i—1}i>1 are the successive r-scan segments along the
line. Let {M; 1, M; 2, M, 3, ...} be the order statistics for {R; ;};>1 in decreasing order. That

is, M; 1 is the largest r-scan length of 1-[52) in (0, ¢) and M, j is the kth largest r-scan length.
The duality relation guarantees that

{M;x < b} = {N;+(bt) <k-1}. (15)

If [|s|g(s)ds < ocoandr = 2p+ 1, for some nonnegative integer p, we will prove that the
Bernoulli sum, n;r(b,), possesses the following two properties.
Property 1. lim;_, o, Pr{n;"(b;) # N;¥ (b;)} = 0.
Property 2. nj' (by) is asymptotically Poisson(A) with
exp(—(x + m2))
L(r —1)/2]!

With Properties 1 and 2, Theorem 1 can be proved as follows.

for by as defined in (5) and my as defined in (8).

Proof of Theorem 1. The duality relation, (15), gives
lim Pr{M,; < b} = lim Pr{N," (b)) <k — 1}
11— 00 11— 00

= tlim Pr{n[+ (by) <k —1} (from Property 1)
—00
k—1 N )\‘]
= E e - (from Property 2),
; J:
j=0

as described in Theorem 1. We now prove Properties 1 and 2.

Proof of Property 1. Under the condition of at least r points of ng) in (¢ — b;, t), a count
Z}" (b;) = 1 will not show an r-segment extending over the position . ZT(b;) = 1 signifies
a count of an r-scan segment in (0, #) with a single point in ((j — 1)4;, jA,) and with length
exceeding b,. Therefore, {||(t — b;, 1)|| > r} C {n;"(b;) < N;"(b,)}, which implies that

{nf (b)) > N (b))} S {1t — by, D)|| <7 — 1} (16)
Thus,
Pr{n}t (b;) > N;" (b))} < Pr{||(t — b, 1)|] <r — 1} (according to (16))
_ (by — mp)L—D/2]
= exp{—(b; +m2)} = D/l (1+o(1))

1
=0 <;) (by Lemma 1 and substituting

by =Int+ |(r — 1)/2]Inlnt + x). (17)

Conversely, the event {N;“(bt) > n,Jr(b,)} occurs only if there exists a j,1 < j <
L(t — bs)/ A+ ], such that one of the following two cases hold.

Case 1. [[((j — DA, jA)N = 2and ||(j A, jA + D)l =7 — 1.
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Case 2. |[((j — DA, jA)I = Land [|(jA, (j — DA +b)ll =7 — Land [|(Ar, jA +
b)ll = r.
For Case 1, Z}" (by) = 0 and there is at least one r-scan segment starting within the interval

((j — DAy, jA;) with length exceeding b;. Case 2 occurs when Z;." (b;) = 0 and there is an
r-scan interval with its initial marker within the interval ((j — 1)4;, jA,) and its last marker
within the interval ((j — 1)A; + by, jA; + by) and its length exceeds b;.

As shown in (9) and (10), we have the following estimates:

A? A?
Pr{Case 1 occurs for index j} = O <Tl>, Pr{Case 2 occurs for index j} = O(Tt>

Thus,
Pr{n}" (b;) < N, (b,)} = Pr{Case 1 or Case 2 occurs for some index j}

L(t—=b0)/ M)
< Z Pr{Case 1 occurs for index j}
j=1
L(t=b0)/ D]
+ Z Pr{Case 2 occurs for index j}
j=1

(&)o(5)o(2)e(F)
= — O\ — )| +0{— |O| —
AV t AV t
= 0(;) (by (9) and (10)). (13)
Therefore, by (17) and (18), we have

1
Pr{N"(b;) # n" (b))} = Pr{N;"(by) < nf (b))} + Pr{N; (b)) > nf (b))} = 0<?>-

This completes the proof of Property 1.

Proof of Property 2. Assuming that [ |s|g(s) ds < coandr = 2p+1, for some nonnegative
integer p, we apply the Chen—Stein method to verify the asymptotic Poisson law of n, (b;) =

Z}Z}b’)/ fal Z;L (b;). Following the result of Lemma 2 and the stationarity of 1'%, we have

Arexp{—(x +ma)}

+ _ + _
BIZ} ()] = BIZ{ (0] = = 75 (o). (19)
Therefore,
A = Elnf (b)] = L’ — le EIZ{ ()] = A(1 +o(1)) for k= W (20)
t - .

To demonstrate the Poisson approximation, we construct an index neighborhood subset
B for each j, B8; = {i: i — j| < [2b;/A;]}. According to the Chen—Stein protocol
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(see Barbour et al. (1992)), the upper bound for the total variational distance between n;"(b,)
and a Poisson random variable Po(}) is

d(n; (b)), Po(L)) < d(n;f (b)), Po(r)) + d(Po();), Po(A))
l—e M
< (u1 + uz)(}L—6> 4+ uzmin(l, /A;) 4+ [A — A,
t

where

L(t=bs)/ L] L(t=bs)/ At ]
w= Yy Y EBIZIGIEIZF(B)l,  wa= ). > EIZfG)Z (o),
j=1  ieB; j=l  ieBj,i#j
LE—=b1) /O]

and uz=2 Y E[zj*(bt)]d«z Z(by) ‘ ZH b = 1), > Zf(b,)).

j=1 i¢B; i¢B;

Estimates of u1, up, and u3 are assessed by evaluation of corresponding areas of the two-
dimensional process I15. We use Lemma 2 and Lemma 4 to provide the following estimates:

La=b0)/By)
Z Z E[Z] (b)]ELZ; (b)]

j=1  ieB;

< 2<t n ) <2Abt > (E[Zf_(bt)])2 (by stationarity)
t
o

TAYIYRS _exp{—(x + my)}
(&)(52) (o900 - SEETERE)

<
Il

L(t—=bs)/ ]
wy= Y Y EIZIB)ZF b))
j=I1 i€Bj,i#j
L2by)/ A ]+1
§2A—t Z E[Z] (b)) Z} (b)] (by stationarity)
i=2
Unlnz/A.|+1 Lbr/Ar]+1
{ > EIZf oz wol+ Y. EBIZTb)Z (b))
i=2 Unlnt/A |42
[2bs /A ]+1
+ Y E[zﬁ(b»zf(b,)]}

Lbr /D) +2

t (Inlnt A2 b, (A*(nlnp)—D/2 2b, (A2
<2— ol — ol —t— |+ o=+ 11
- Al< A (tlnt> + A; ( t(nt)? >+ A <t2 (see (11))

(lnlnt (lnlnt)(r_l)/2)
+ .

Int Int

=2—
A
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To study the convergence property of u3, for j < |2b,/A],let E; 1 and E » be sets in R?
determined as

. . , 2b,
Ejy = {((1 —D)Ar jA A+ By x ((1 . LXJ>A,, oo)}
t
. 2b, . .
Ejr= {((1 -1+ {XJ)A” OO> X ((j — DA, A +bz)}.
t

And, for |2b,/A;] < j < [(t—b;)/¢],let Ej 1 and E | 5 be determined as above and let £ 3
and E; 4 be determined as

. . . 2b;
Ej3= {((] — DA, jA +by) X <0, (] -1- lzJ)A)},
t
. 2b, . .
Ej,4 = {(0’ <J -1- {IJ)AI) x ((J— DA, jA, +bt)}~
t

Then the random variables Zj+ and {Zf}{,-g 8,) interact through these regions. Conditioning on
the event that thereisnopointin £ UE; UE; 3UE | 4 (thatis | E; {UE; ;UE; 3UE | 4 ||= 0),
the random variables Zf and {Zi+ }ig¢s;) are independent. A direct calculation shows that

V(Ej2) =V(Ej1) = // folx, y)dxdy
(x,y)EE

JD+by 00
_ f far, y)dy dx
(=DA J(G=1412b: /0 ) A

JDi+by

)
| £0,y — x)dy dv
(G=DAy JG=1+12b /A ]) A

and since f5 is nonnegative and (y — x, 00) C (b; — 24, 00)

JAi+by  poo
< / / f2(0,v)dvdx
(=D Jb =24,

_ /b (Br + b)) /20, v) d

(=20

o
< / (BA; +v) f2(0,v)dv (since v > by — 2A; and
b

=20
30;4+v > A+ by).
Similarly,
o0 o0
V(E;3) = V(Ej4) < /2 BB S0, 0 do < / (0,0 b
13 t

Since fooo vf2(0, v) dv is finite, V(E; 1), V(Ej2), V(E}3), and V(E; 4) all converge to 0 as
t — o0.
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Under the event &: {II3 N {E;,1 UEj2 UE;3UE;s} = ), Z] (b)) and 3,45, Z;" (b))
are independent, i.e. (3, ¢B Zf(bt) | &) and (Zf(bt) | &) are independent. Therefore,

d((z ZF (bo) ‘ ZF by =1 ‘ 8) (Z Z; (by) ‘ 8))

i¢B; i¢B;

= d(((z Zt () ‘ 8) ‘ (ZF ) =1 8)), (Z Z5 (br) ‘ 8))
i¢Bj i¢Bj

=0.

Let &€ denote the complementary event of &. We then have

d((Z Z by ‘ Zi by = 1), > Z?(bt)>

i¢Bj i¢Bj

< d((z Zi) | 25 =1 ‘ 8), (Z ZF(by) s)) Pr{6}
i¢B; i¢B;
+d((z Zrb) | Z2F o =1 ’ 8“), (Z ZF(by) 8°)) Pr{€°}
i¢B; ' i¢B;
< Pr{€°)

= Pr{l‘[§ N{E1UEyU E3 U E4} # O}
=1—exp(=V(E;1UEj2UE;j3UE];4))

— 0.

This proves the convergence of u3 to 0. Therefore, the Poisson approximation of n;" (b;)
is proved. It has been proved in (20) that lim;_, o, A; = A. Therefore, we have the Poisson
distribution with parameter A for n,Jr(b,) withb; =Int+ | (r — 1)/2] InInz+x. This completes
the proof.

4.2. Asymtotic minimum r-scan distribution

For the asymptotic distribution of the minimum r-scan length of n? , we set the partition
length 6; = t~2 and a; = J/x/t. The associated Bernoulli random variables, for 1 < j <

L(t —a;)/d:], are

Z7(a;) = 1 lf”((J_I)SI’J(SI)HZ1and||(]8”(]_1)8t+at)||21‘,
i 0 otherwise.

We form the sum n, (a;) = L.(i_a’)/‘w Z- (a;), and define N, (a;) as the count of r-scan
t ]_] Jj t

intervals which do not exceed a; in the interval (0, ¢) generated from the points of ng).

If the shift density g is continuous, the asymptotic distribution of the kth smallest r-scan
length of the 2-fold shift model will be based on the following two properties.

Property 3. lim;_, o, Pr{N; (a;) # n; (a;)} = 0.
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Property 4. n; (a;) is distributed asymptotically Poisson with parameter

T 220,00

—(+1
@=0+Dx S+ 1—2))!

From Properties 3 and 4, Theorem 2 can be proved as follows.

Proof of Theorem 2. The duality relation shows that Pr{m; x > a;} = Pr{N; (a;) < k—1}.

Also,
lim Pr{N; (a;) <k — 1} = lim Pr{n; (a;) < k — 1} (from Property 3)
t—00 1—00
k—1 j
o
= E e_o‘T (from Property 4).
=
Therefore,

k—1 ;
J
lim Prim i > a} = Y e %
1—00 ¢ J!
j=0
as described in Theorem 2.

Proof of Property 3. The event of Z~ (a;) = 1 indicates the existence of an r-scan interval
with its initial marker in ((j — 1)&;, j&;) and its length less than a;. Therefore, we have
N; (a;) = n; (a;). Thus, Pr{N; (a;) # n; (a;)} = Pr{N; (a;) > n; (a;)}. The event of
{N,; (a;) > n; (a;)} will occur only if there existsa j, 1 < j < | (¢ — a;)/é;], such that one of
the following two events occur.

Case 3. [[((j — D, joo)ll = 2 and ||(jd, jé +a)ll = r — 1.
Cased. |[((j — Dé:, jooll =V and ||(jé;, (j — D) +an)ll <rand ||(jd, jé; +a)ll = r.

Case 3 occurs when Z' (a;) = 0and there is an r-scan segment which qualifies for length less
than a; and with its first two markers very close together and occurring in ((j — 1)d;, j&;). Here
Z7- (a;) = 1 indicates the existence of an r-scan interval with the first point in the subinterval
((j — 1)8;, jb;)) and the r-scan length less than a;. The probability difference is bounded by

Pr{Z; (a;) =0, [I((j = D, jé)ll = L, 1(jés. jér +ar)|| = r} = Pr{Case 4}.

As shown in (12) and (13), the estimates of Pr{Case 3 occurs for index j} < 0(8?) and
Pr{Case 4 occurs for index j} < 0(8,2) prevail. Therefore,

Pr{N; (a;) # n; (a1)}
= Pr{N; (ar) > n; (a1)}

t—a
< Pr{Case 3 occurs for some index j, 1 < j < { l“

&

t —
+ Pr{Case 4 occurs for some index j, 1 < j < { 5 il J }
t
[(t—as)/é] [(t—ar)/6:]
< Z Pr{Case 3 occurs for index j} + Z Pr{Case 4 occurs for index j}

j=1 j=1
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o[ LYo +oL)oes?
(5) *?) (5—) ®?)

=o0@¢ Y.

IA

This completes the proof.

Proof of Property 4. We will apply the Chen—Stein method to the Bernoulli sum n; (a;) =

ZJL.(;TQ’)/ o2 Z; (ay) fora; = /x/t and §; = t72. According to Lemma 5 and the stationary

property of H(z), we have

G (L(rﬂ)m 20,0

ELZ} (@] = EIZ; (a)] = (r + D& FICES Y )(1 +o(1)).

Therefore,
[(t—a) /8]

o == E[n; (a1)] = E|: Z Zj(at):|
j=1
Lt —/x70) /8]
= ) ElZj@]

j=1

_ (81) EIZ (@)]1(1 +o(1)
t

=a(l +o(1))

for L(r+1)/2]
r_l’_ . .
212201 £,(0, 0)1
= 1 . 21
o=+ Dx ,Z_o rt+1-2)]! D

To validate the Poisson approximation of 7, (a;), we construct the set of neighborhoods
{dD;} for each j as D; = {i: |i — j| < la;/d;]}. Then, according to the Chen-Stein protocol
(see Theorem 5), the upper bound for the total variational distance between the Bernoulli sum
n; (a;) and the Poisson Po(«) random variable is as follows:

d(n; (ar), Po(@)) < d(n; (a;), Po(a)) + d(Po(a;), Po(a))
- l—e™™ . ~1/2
< (v1 +v2) B +v3min(1l, e, '7) + o — oy,
t

where
L(t—ar)/é]

n= Y Y EZ IR @)
j=1 i€D;
L(t—ar)/é:]

vm= Y > E[Z @)Z (a)]. and
L(t—ar)/5:]

=2 ) E[Z,-<a,)]d(<2 Z; (ar)

j=1 i¢D;

Z5 (@) = 1), > Zi(at)).

igD;
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Detailed estimates of vy, v, and v3 are calculated by evaluating appropriate events of the
two-dimensional Poisson process IT;. We use Lemmas 5, 6, and 7 to provide the following
estimates:

L(t—ar)/d:]
>y E[Z; (an]E[Z; (a)]

j=1 i€D;

<
=
I

t
< 2(8_> (;ﬁ) (E[Zf(a,)])2 (by the stationary property of ng))
t t

t 8\
= 2<(S_> (%) <a7’) (1 4+o0(1)) (byLemma 5, with « as defined in (21))
t t

= 0@,
Le=¥x/1)/8]

v = Y EIZ;@)Z] (a)]
€D, i#]
< ( )( )0(52 t~1)  (by (14) in Lemma 7)

oany.

To verify the convergence of v3 to 0, let E il E 7.2 E j,3» and E j,4 be sets in R2 determined as
follows. For j < |a;/é:],

Ejn={(( = D8, (G — D& +a) x ((j — D8 +ar, 00)},

Ejr»={((j — Dé + ar, 00) x (j = Dé, (j — D3 + ar)}.
For j > la;/8;] + 1, let Ej,l and Ej,z be as above, and let

Ej3=1{(( = D8, (G — D& +a) x (0, (j — Dé; —an},
Eja=1{0,G =D& —a;) x (j — DS, (j — Dd; +an}.

Direct calculation shows that
V(uj‘zlﬁj,i>=//4 _ flx,y)dedy
Uisi Ei

(j—1d;+a; (j—1d;+a; 00
/ / fale. y) dxdy +/ f falx. y)dx dy
(J —00

Jj—1é; (=13
(J—1)é;4+a; (j—Déi+a;r poo

// f2<x,y>dxdy+/ / Fax, y)dr dy
(j—=1)8; (J—=Dé; —00

=4a, (see the detailed proof of (22) in Section 5).
For each j, U;‘zl E(i,i is the region of A(Zj_ @anNn Uigo,; A(Z; (ar)). Therefore, under the

occurrence of the event of & : I3 ﬂ{E, 1UE"] ZUE"] qUE] 4} = 2, Z; (ar) and sz:o Z (ar)
are determined by the reahzatlons of disjoint regions in the two- d1ment10na1 Poisson process,
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and are therefore independent. Thatis, (3, ¢0; Z; (ar) | I3 ) and (Zj_ (ar) | I3 ) are independent.
Therefore, the variation distance
‘)

d((Z Z (ar) ’ Z7 (@) =1 ‘ é), ( >z (@)

igDj i¢D;

= d((( > 7 (ar) ‘ 8) ‘ (Z; (@) =1 é)), (Z Z: (ar) ’ e))
i¢D; €D

=0.

Let &° denote the complement of &. We have

d((z Z: (ar) ‘ Z (a) = l), Z Zi_(at)>

i¢D; i¢D;
< d((Z Z (ar) ’ Zi(a) =1 ‘ é), (Z Z (ar) ‘ é))Pr{é}
i¢D; igD;
+d<<2 Z7 (@) | Z5 () = 1 ’ éC), (Z Z (ar) ‘ éC>>Pr{é°}

i¢D;
< Pr{€°}
<Pr{ITl} N{E; U E, U E3 U E4) # @)
=1 —exp(—=V (U, Ej.))
=4a,(1 +o(1));

igD;

and it follows that

Le—=¥x/0)/81]

v3 =2 Z E[Z; (at)]d<< Z Z;(al)

j=1 i¢D;
La=x]1)/8]
52( > E[Z;<at>])4at(1+o<1)>
j=1
= 8aa; (1 + o(1))

-0

Z; (ar) = 1>, > Zl.(a,)>

i¢D;

as lim;, oo oy = o and lim;, oo a; = 0. Therefore, the Poisson law with parameter « for
n, (a;) is established.

5. Details of estimates
In this section the proof of the estimates of Section 3 will be elaborated.

Proof of Lemma 1. Some simple maniputations give

/0/ f2<x,y>dxdy=/0'/ (f g(x—s)g(y—s)dx)dsdy=z, (22)
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and similarly for [ [ f2(x, y) dxdy = z. Since

Z Z
v<A1<o,z>)=/0 /0 Falx, y) dxdy

= 2/(; /0 fr(x —y,0)dydx (since fo(x,y) = f>(y, x) and

Salx,y) = falx —y,0))
=2fzfx fa(s,0)ds dx
0 JO

zzfzfzfz(s,mdxdx
0 Js

=2 [ =960

0

:z—2/ sfz(s,O)ds+2/ (s —2) fa(s,0)ds
0 z

22—/ |s|f2(s,0)ds+2/ (s —2)f2(s,0)ds

—0o0

:Z_/ / |u—v|g(u)g(v)dudv+2/ (s —2) f2(s, 0) ds,
o0 d—00 z
we have

o < Z o0
2z = / / Sa(x, y)dxdy + / / fo(x,y)dxdy (from (22))
—o00 JO 0 J—oo
= V(A2(0,2)) +2V(A1(0,z)) (from the defintions of A; and A, in Figure 1).

Therefore, where f |s|g(s)ds < oo, we have

Zl_i)ngo(z = V(A1(0,2)) = / f lu —vlg(u)g(v) dudv, (23)
Zlgglo V(A2(0,2)) = 2/00 /OO lu — v|gw)g(v)du dv. 24)

Now, we have

Pr{there are at most k points of I1® in (0, z)}
Lk/2]

= > Pr{ll41(0, 2l = j; 114200, )| < k — 2}
j=0

and since A;(0, z) and A>(0, z) are disjoint regions, and I3 is a two-dimensional Poisson
process, we have

_L%Z:J 0oy VATV yi0m) kf:j [V (420, )1
= e Te T

j=0 i=0
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V(A1(0, 2))]/2
_ eV VL lL(k/2ZJ)')] e VAM20.9) 1 (k) (for (k) as defined in (8))

Lk/2) -1 : =y .
_ [V(A1(0,2)) _ [V(A2(0,2)]
V(A1(0,2)) V(A2(0,2))
+ ZO e 100,z i e 2(0,z (; - >
Lk/2]
= exp{—(V(A1(0, 2)) + V(A2(0, 2)))} [V(AIL(]?/’ZZJ)')] I (k)

+ smaller-order terms of z, and using (23) and (24)

=exp{—<z+/ / |u—v|g(u)g(v)dudv>}

[z — /%0 [ 0 lu — vIg(u)g(v) du dv] ¥/
x k2!
x D(k)(1 4 o(1)). (25)

Proof of Lemma 2. Lemma 2 is proved by evaluating the requisite events of the two-dimen-
sional Poisson process IT5. Observe that

Pr{l|(Ar, Ay + D)l < r} = Pr{[[(0, &y + D) || < r}
= Pr{[[(Ar, Ar + b))l = 1, [1€0, &r + b)) > 1}

,

= > Pr{ll0, A = k: [(Ar, &+ b)) < 7 — k)
k=1

= Pr{|0, Al = 1: (A, A+ bl <7 — 1}

.
+ ZPI{II(O, ADN =k [[(Ar, Ay + D)l = r — ki
k=2

Therefore,
Pr{[|(0, Al = 1; (A, &r + D) < ¥ — 1}
= Pr{||(&s, & + b))l <7} —Pr{]|(0, Ay + by)|| <7}

.
- ZPF{II(O, AN =k (A, Ay + D)l <7 — k}
k=2

applying (25) forz = b; = Int + [(r — 1)/2] Inlnt + x and z = A; + by, and also knowing
that Pr{[|(0, A)Il = k; (A, A + b))l < r =k} < O(AH)O(exp(=b)b " "H/2), we
obtain

_ Apexp{=( + [T [T lu — vIgw)g(v) du dv)) (
a L(r —1)/2]'t

1+ o(1)),

o(l) > 0ast — oo.
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Proof of Lemma 3. First we consider the following two-dimensional disjoint sets:

Ci ={(=00,0) x (0, A} U{(0, &) x (=00, 0)},

C2 = {(Ar + by, 00) x (0, AD}U{(0, Ar) x (Ar + by, 00)},
C3 = {(Ar, &y + D) x (0, A U{(0, &p) x (A, A + Do)},
Cs ={(0, &y) x (0, Ap)}.

819

(26)

Consider the sets A(A;, by + A;), A1(As, by + Ay), and Ar(As, by + /) as defined in
Figure 1 by setting a = A; and b = b; + A, . It should be noted that C3 is a subset of

Ar (A, by + A;). Based on (22), we have

A 00 o8] Ay,
V(C1) + V(C2) + V(C3) +2V(Cy) = /o / f2(x, y)dxdy +/ A fa(x, y)dxdy
—00 —00
=2/;. 27
Also,
Ar pA
V(Cy) = /0 [ pwnacay
o0
= £2(0,0)A7(1 +0(1)) with £2(0,0) = / g%(n) dn, (28)
—00
and
Ny As+b; ay) At +by
V(Cy) = 2/ / fo(x, ) dr dy = 2/ / f20x — ,0) dx dy.
0 iy} 0 Ay,
Since, for each fixed y, 0 < y < Ay,
bt At+bt At+bt
f(x,0)dx < / Hx—y,0dx < / fr(x,0)dx,
Ap Ay 0
we conclude, after integrating over y from 0 to A,, that
by Ar+b;
27 f2(x,0)dx < V(C3) < 2A:/ f2(x,0)dx,
A 0
which can be rewritten as
by A Dy+by
At< fa(x,0)dx — fr(x,0) dx) < V(C3) < At/ fr(x,0)dx,
—b; EAYS —(A¢+by)
and therefore,
V(C3) = A (1 + 0(1)). (29)
Owing to (27)-(29), we have
V(ICLUCy) =24, — V(C3) =2V (Cy) = A (1 4+ 0(1)). 30)
According to (23) and (24), in the proof of Lemma 1, with z = b;, as t — oo,
o0 o0
V(A1(Ar, by + Ay) = by — f f lu —v|g(u)g(v) dudv + o(1). (3D
—00 J -0
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Consider {C; }?zl as defined in (26) and A1(A;, Ay + by) and A2 (4, A + by) as defined
in Figure 1. The probability of the event {||(0, A,)|| = 2, [[(As, & + by)|| < r — 1} can be
bounded as follows.

Pr{[|(0, ADII = 2, [I(As, A + b)) <7 — 1}
= Pr{||C1 U C2 U C3|| + 2||Cal| = 2; 2||A1(Ar, Ay + Do)
+11A2(Dg, A+ BN < 7 — 1)

Lr=1)/2]
= Z Pr{[|C1 U C2 U G3| + 2[|Cal| = 2; [|A1(Ar, Ar + b)) | = s
j=0
[[A2(Ar, D + b)) <7 — 1 —=2j}
Lr—1)/2]
< Z Pr{||C1 U C2 U G3]| + 2[|Cal| = 25 [|A1(Ar, A + b)) = j},
j=0

since Cy, Cy, C3, C4, and A1 (A, A; + by) are all disjoint regions, we have the bound
< (Pr{l|C1 U CL U 3| = 2} + Pr{||C4]| = 1})
L(r—1)/2]
x ( D Pr{llAIA, A+ by = j}>,
j=0

and, according to the Poisson law and evaluations of V (C1 U C, U C3), V(Cy), and V(A1(4y,
A; + by)) in (28)—(31), we obtain

pLe=D/2]
- 0(A,2)0<e—bf’—)
L(r —1)/2]
(%)
=o(—=).
t

The probability of the event {|[(0, A;)|| = 1, ]|(0, b)|| < r, ||(0, A +by)|| = r + 1} can be
bounded as follows.

Pr{[(0, A)I = 1, [[(0, b)I| < 1, [1(0, Ar + D) = r + 1}
< Pr{[|(0, 2D = 1, [I(Ar, D) <7 = 1, [[(by, &y + by)|| = 1},
since A1(4A, by) is disjoint from both A(0, A;) and A(by, by + A;), we have the bound

-1
= Pr{l[(0, 2D = 1, [I(br, A + Do)l = l}Pr{IlAl(Az,bz)ll =< VTJ}

= (Pr{[1(0, Ap[l = 1} = Pr{[|(0, Al = L, [[(bs, Ay + by)|| = O})

x Pr{nAl(A,,b,)n < {%“

then, according to the Poisson law, we obtain

L(r — 1)/2])!
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=0(L)O0E™ ™)
_ 0o (A_z)
t
This completes the proof.

Proof of Lemma 4. Ifr = 2p+1 and p is anonnegative integer, we will verify the estimates,
(35), (36), and (37), below, of E[Z;r(b,)Zi+ (by)], j # i, which is involved in the calculation
of the error parameter u, of the Chen—Stein method in (1), where the neighborhood subset B;
is specified as

befpoeae[2])
e[l 222 v-n-| )

= () + D + (D). (32)

For the case in which p = 0 (1-scan case), we have, for | < |i — j| < |b;/A¢],
E[Z}L(bz)Z;r(bz)] = E[Zf“(bz)Zith(bz)]
= Pr{]|(0, &)l = 1, (A, A + D) =0,
(G — DAL G —j+DA) =1,
(@ —j+ DA, (G —j+ DA+ by)|| =0} (directly from the defini-
tions of Z;r and Zi+),
(33)

since ||[(( — j)As, (i — j + DAY| = 1 and ||[(As, Ar + by)|| = O are disjoint events for

1 <|i — j| < |b:/A;] the last equation equals 0.
For |b;/A;] +1 < |j —i| < |2b;/ 1], we have

E[Z] (b)Z] (b)] = EIZ{ b)Z;" ;. (b)]
= Pr{|[(0, &)l = L |I(Ar, &r + b)) = 0,
(G = DAL G —j+ DAl =1,
(G = Jj+ DA, —Jj+ DA+ byl =0}
Because of the disjoint nature of Aj(a, b) to other regions of A(c, d) in the two-dimensional
space when (a, b) and (c, d) are nonoverlapping intervals of the line, we have

< Pr{l|(0, A = L, |I(GG — DAL G — j+ DA =1,}
x Pr{||A1 (A, B+ by)]] = 0}

X Pr{||A1((i — j + DA, (i — j+ DA+ b)) =0,)
00 0E™)

A2
< 0<t_2) (34)
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To sum up, from (33) and (34) we obtain, when p =0 (r = 1),

2

b A Int
Z E[Zi-i_(bt)zj_(bt)] = ZA—ZO<t—2t> < 0([_3>

JEBi,j#i

For the case in which p > 1 (r > 3), the bounds of (I), (IT), and (IIT) in (32) are evaluated next.
For(M)in(32)and 1 < |i — j| < [Inlnt/A;],

E[Z] (b)) Z] (b)) = EIZ] (b) Z"
< Pr{||0, 2|1 = L [|(G = DA G = j+ DAl =1,
(D, A +b)\ (G = DAL=+ DA <7 =2}

= Pr{|[€0, 2Dl = L I(G = DAL (= j+ DA =1}

i+l (by)] (by the stationary property of I"I(lz))

-2
X Pr{llAl(Az, A+ b)) \NA(G = AL G =+ DA = VT“

pL=2/21!
= 0(Ho|er ——
' L(r —2)/2]!

A
=0<tlm>. (35)

For (I in (32) and [Inln#/A, | + 1 < |i — j| < [bi/O),

E[Z] (b)) Z;F (b)) = EIZ] (b)) Z]" ;1 (b)]
< Pr{[|(0, AD[I = 1, |[(G = DAL G — j+ DAl =1,
(A A+ D)\ (G — DAL G = j+DA)I <r =2,
(A + b, Ny + b +Inlng)|| <r — 1}
< Pr{[|(0, A = 1, |[(G = DAL G — j+ DA = 1)
X Pr{{[|A1(Ar, Ar +b) N A — AL G — j+ DA <7 —2}
X Pr{||A1 (At + by, &Ny + by +Inlnt)|| <r — 1}

— 2 —b:ﬁ —lnlnzw
_o A2(InIn7)L0=D7/2 .
B < t(In1)2 ) 6)

For (IIT) in (32) and |b;/A;] +1 <i — j < |2b;//A+], using an argument similar to the one
used above for the case in which p = 0, we have

E[Z] (b)Z] (b)) = EIZ{ (b)) Z] ;,(by)]
= Pr{ll(0, 201l = L, [[(Ar, &+ )l < 7 = 1,
(G = DAL G = j+ DAl =1,
(G = j+ DA G = j+ DA+ bl <7 —1)
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= Pr{|[(0, A)[I = L [I(G = DAL G =+ DA)II =1}
x Pr{||A1(A, Ar + D) <7 — 1}
X Pr{l[]At(G —j+ DAL G = j+ DA+ b))l <7 —1)

5 L th(V—l)/2J L btl(r—l)/2j

- O(A’)O(e Lo — 1)/21!)0<e L — 1)/2J!>
A7

-0 <—2> (37)
t

Therefore, from (35), (36), and (37) we have, for p > 1,

Y. EIZFb)Zfbo]l= > EIZ} () Z] (b)]
jeB;. j#i 1<|j—il<[InInt/A]
+ > EIZ] (b)Z] (b))
Unlnz/Af<|j—il<Lbi/Af)
+ > E[Z (b)) Z] (b))

Lbr/De]<li—jl=2b1/ D]

<2 Inlnt | n? o b, AZ(Inlnp)le=D/2)
At tint Al‘ t(ln t)z

2b, A2
2| =L o = ).
w22 )e(%)

Proof of Lemma 5. For y — 0,

This completes the proof.

Pr{[[(0, VI = 7+ 1}
Lr+1)/2]

= Z Pr{|[A1 (0, Il = j, 14200, )l = r +1 =2/}
j=0

+Pr{||A1<0, Wl = {%J + 1},

then by substituting V(A1(0,y)) = f2(0, 0)y2(1 + o(1)) (o(1) — 0 as y — 0), and
V(A2(0, y)) =2y — V(A1(0, y)), we obtain

Lr+1)/2] 2y j r+1-2j
(f2(0, 0)y=)/ (2y) /
= ]E:O {CXP(—{fZ(O, 0))’2})TGXP (—ZY)m}

0, 0)y2)Le+D/2)+1
+ exp{— f2(0, 0)y?} (fif(r _:);))/ZJ T + smaller-order terms of y

3 {L(r‘l’zl)/zJ f2(070)J 2r+l—2j
I e JjU o+ 1=2))!

} y" 1 + smaller-order terms of y. (38)
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Also,

Pr{[[(0, a) | = r + 1} = Pr{li(6;, an) || = r + 1}
= Pr{[[(0,a)ll = r + L, |61, a) |l = r}

r—1
= Pr{l[(0, 8) 1 = 1, I(8;, a)ll = r} +ZPY{|I(0, Sl =r+1—Jj. 16, a)ll = j}
j=0
= Pr{l1(0, 8) 1l = 1, 16, a) |l = r} + Pr{[[(0, 8l = 2, [|(8;, an)|| = r}
r—1
+ ZPr{II(O, S =r+1—j, 106, a)ll = j}
Jj=0

Therefore,

Pr{[|(0, é)Il = 1, (3¢, an) |l = r}
= Pr{[[(0, a)ll = r + 1} = Pr{l[(8;, a) || = r + 1}
r—1

— Pr{l[(0, 81l = 2, 161, a) |l = r} — ZPI{II(O, Sl zr+1 =4, 16 adll = j},
Jj=0

then, using (38) for y = a; = J/x/t and §; = 1/#2, and knowing that Pr{||(0, §)| >
201G all =1} + 3o Pr{l (0. 8)1l = r + 1 = j, |61, ap)ll = j} = 0 (87), we obtain

4 D Y 1227 10, 0y

T —2)!
t s Jlr+1-=2j)!

(1+o(1)). 39)

This completes the proof of Lemma 5.

For the analysis of the minimum r-scan length, Lemmas 6 and 7 provide the necessary
estimates under the continuity assumption of the density g. Lemma 6 gives the results relevant
to Property 1, describing the convergence in probability of n; (a;) to N; (a;). Lemma 7 is
required as an error bound of u; in (1) when applying the Chen—Stein method to n; (a;).

Proof of Lemma 6. The estimates (12) and (13) give the bounds of events

{11€0, 811 = 2, 1[(8;, a)|l = r — 1} and
{1100, )1 = 1L, 110, a) || < r + L |10, ar + 8[| = r + 1},

respectively. Asdiscussed in Property 1, their value contributes to the estimate of the probability
of the event {n; (a;) # N; (a;)},
Pr{[|(0, ) = 2, (|61, a)l| = r — 1}
= Pr{[|(0, 5) | = 2}
= Pr{|[A1(0, 8)] = 1} + Pr{|[A1 (0, )1 = 0, [|A1(0, 81| = 2}
=0(%).
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and this proves the bound in (12). Paraphrasing the argument above, we can also prove the
bound in (13),
Pr{l|(0, 8)11 = 1, [10, a)l| < r + 1, {10, a; + 8| = r + 1}

= Pr{|[(0, 8Dl = 1, [I(&;, aDll < r, |[(ar, a; + 80| = 1}
< Pr{|[(0, 8)I| = 1, ll(as, a; + 81| = 1}
= 0(?).
Proof of Lemma 7. Paraphrasing the argument of (39), for 2 <i < |a;/6;] + 1, we have

E[Z, (a)Z; (a1)]

= Pr{[1(0, )| = 1, [[(8;, a)|| = r|[((G — D)3y, id)|| = 1, [|@8s, (i — 1)&; +an)l| = r}
Pr{l|(0, 8)11 = 1, [I(G = 1)d;, i)l = 1, [|@6, (0 — Dé; +an)ll = r}
= 0(8:8:a;).

IA

This proves the bound in (14).
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