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Abstract

A stochastic model of a dynamic marker array in which markers could disappear,
duplicate, and move relative to its original position is constructed to reflect on the
nature of long DNA sequences. The sequence changes of deletions, duplications, and
displacements follow the stochastic rules: (i) the original distribution of the marker
array {. . . , X−2, X−1, X0, X1, X2, . . . } is a Poisson process on the real line; (ii) each
marker is replicated l times; replication or loss of marker points occur independently;
(iii) each replicated point is independently and randomly displaced by an amount Y

relative to its original position, with the Y displacements sampled from a continuous
density g(y). Limiting distributions for the maximal and minimal statistics of the r-scan
lengths (collection of distances between r + 1 successive markers) for the l-shift model
are derived with the aid of the Chen–Stein method and properties of Poisson processes.
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tion
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1. Introduction

The motivation for the l-fold shift model analyzed in this paper stems from the dynamic
and heterogenous nature of long DNA sequences. Genomic local and global compositional
heterogeneity occurs on many scales. Examples of DNA heterogeneity include isochore
compartments (regions dominated by either G+C or A+T nucleotides as determined by density-
gradient centrifugation especially in mammalian species) (Bernardi et al. (1985), (1988));
mobile elements (DNA sequences that move around the genome such as Alu elements in
human, Ty sequences in yeast, and IS segments in Escherichia coli (Berg and Howe (1989));
characteristic satellite centrometric tandem repeats (such as the 171-units of human alpha
satellite DNA); characteristic telomeric sequences (at the chromosomal termini such as the
TGTGGG tandem repeats in humans) (Willard and Waye (1987); Blackburn (1991)); CpG
islands (human DNA sequences that occur generally upstream of genes and are abundant with
unmethylated CG dinucleotides) (Bird (1986)); repetitive extragenic palindromes (REPs) found
in the bacterial genomes of Escherichia coli and Salmonella typhimurium; recombinational hot
spots (such as chi elements GCTGGTGG in Escherichia coli) (Krawiec and Riley (1990), Gilson
et al. (1991)); almost universal under-representation of the dinucleotide TA; suppression of

Received 11 April 2006; revision received 21 June 2007.
∗ Postal address: Department of Mathematics, Stanford University, Stanford, CA 94305, USA.
∗∗ Email address: Karlin@math.stanford.edu

799

https://doi.org/10.1239/aap/1189518639 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518639


800 C. CHEN AND S. KARLIN

the dinucleotide CG in vertebrate species (Josse et al. (1961)); the rarity of the tetranucleotide
CTAG in several proteobacterial and archaeal genomes (Burge et al. (1992), Reinert and
Schbath (1998)). GNN periodicity in manmalian coding sequences (Ficket (1982)). Thus,
genome organization is complex and variegated.

This paper develops a theoretical framework for ascertaining regions of clustering or overdis-
persion in a marker array (e.g. genes, oligonucletides, transposable elements, and nucleosomes)
along a DNA sequence following long-term mutation events such as sequence deletions,
duplications, displacements, and rearrangements. To this purpose we consider a Poisson point
process model, where each marker is independently replicated a random number of times and
the replicas are randomly displaced. The maximal and minimal r-scan lengths (r-scans consist
of all distances between r+1 consecutive points of the marker array) are investigated to identify
special inhomogeneous regions. We use multidimensional inhomogeneous Poisson processes in
conjunction with the Chen–Stein methodology in characterizing extremal r-scans. Moreover,
the Kingman mapping theorem (Kingman (1993, Chapter 5)) concerned with transformed
Poisson processes in multidimensional spaces is used to achieve essential estimates.

The biological model discussed in this paper describes a stochastic version to these kinds of
biological changes and obeys the following rules.

1. The original distribution of the marker array, (. . . , X−2, X−1, X0, X1, X2, . . . ), is a point
process.

2. Each marker is independently replicated l times. Replications or loss of marker points
occur independently.

3. Each replicated point is independently displaced by an amount Y (−∞ < Y < ∞)
relative to its original position, with the Y displacements sampled from the density g(y),
−∞ < y < ∞.

From the altered process, the r-scan statistics (see Dembo and Karlin (1992)), are the
collection of the interval lengths between all r + 1 successive marker points. The over-
dispersion and cluster regions of the marker array correspond to the regions containing the
maximal and minimal r-scan lengths, respectively. The objective of this paper is to characterize
the asymptotic distributions of the maximal and minimal r-scan lengths of the shift process.
For previous literature and applications of r-scan statistics in molecular genetic analysis , see
Karlin and Macken (1991), Dembo and Karlin (1992), Karlin and Brendel (1992), Karlin and
Cardon (1994), Karlin et al. (1996), and Gerstein (1997). For studies of clustering in other
domains with extensive bibliography, see Naus (1979), (1982) and the recent books of Barbour
et al. (1992) and Glaz et al. (2001).

We will concentrate on the case in which A (the original ancestor marker array) is distributed
as a homogeneous Poisson process of parameter 1. Let �

(l)
1 denote the shift model constructed

from a Poisson(1) process involving an l-fold replication and an independent displacement
sampled from the density g applied to each replicated point. Thus, the �

(l)
1 array consists of

the points

�
(l)
1 = {Zk

i = Xi + Y k
i ; i = 0, ±1, ±2, . . . , k = 1, 2, . . . , l}.

The asymptotic distributions of the extremal r-scan lengths descendant from the marker array
�

(l)
1 will be deduced from the l-dimensional inhomogeneous Poisson process �∗

l which has the
intensity fl(z1, . . . , zl) = ∫ ∞

−∞ g(z1−s) · · · g(zl −s) ds. To clarify the ideas and constructions,
the case in which l = 2 will be elaborated.
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The analysis (lemmas and proofs) of the case in which l > 2 is omitted here, but is available
online at http://math.stanford.edu/∼karlin/ through the supplemental information link under
the publications heading. Consider l = 2 duplications, producing

. . . ,

(
X−1
X−1

)
,

(
X0
X0

)
,

(
X1
X1

)
,

(
X2
X2

)
, . . . .

The displaced array is

. . . ,

(
Z1−1 = X−1 + Y 1−1
Z2−1 = X−1 + Y 2−1

)
,

(
Z1

0 = X0 + Y 1
0

Z2
0 = X0 + Y 2

0

)
,

(
Z1

1 = X1 + Y 1
1

Z2
1 = X1 + Y 2

1

)
, . . . ,

where all {Y } are independent and identically distributed samples from the density g(y). We
assume that

∫ ∞
−∞ |u|g(u) du < ∞ and so

∫ ∫ |u − v|g(u)g(v) du dv < ∞. It is convenient
to introduce the two-dimensional process (Xi + Y 1

i , Xi + Y 2
i ), designated �∗

2, which is an
inhomogeneous Poisson process with the intensity rate f2(z1, z2) = ∫ ∞

−∞ g(z1−s)g(z2−s) ds.

Theorem 1. (Asymptotic maximal r-scan for the 2-fold shift model.) Let �
(2)
1 be the 2-fold

shift process. Assume that the shift length density g(s) satisfies the condition
∫ |s|g(s) ds < ∞.

Then, for any fixed integer r = 2p +1, where p is a nonnegative integer, the kth longest r-scan
length of �

(2)
1 in (0, t), Mt,k , possesses the asymptotic distribution (t → ∞)

lim
t→∞ Pr

{
Mt,k ≤ ln t +

⌊
r − 1

2

⌋
ln ln t + x

}
=

k−1∑
j=0

e−λ λj

j ! ,

where �w� is the integer part of w and

λ = exp{−(x + ∫ ∞
−∞

∫ ∞
−∞ |u − v|g(u)g(v) du dv)}

�(r − 1)/2�! .

Theorem 2. (Asymptotic minimal r-scan for the 2-fold shift model.) Let �
(2)
1 be the 2-fold

shift process. Assume that the shift density g is continuous. Then the kth smallest r-scan length
of �

(2)
1 in (0, t), mt,k , possesses the asymptotic distribution

lim
t→∞ Pr

{
mt,k ≥ r

√
x

t

}
=

k−1∑
j=0

e−α αj

j ! ,

with

α = (r + 1)x

�(r+1)/2�∑
j=0

2r+1−2j [f2(0, 0)]j
j !(r + 1 − 2j)! .

1.1. The l-fold shift model

For each marker duplicated l times and each replicate randomly displaced independently as
before, we construct a corresponding l-dimensional inhomogeneous Poisson process �∗

l with
rate parameter

fl(z1, . . . , zl) =
∫ ∞

−∞
g(z1 − s) · · · g(zl − s) ds.
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For 1 ≤ ν ≤ l, let

Sν(z) = {(x1, . . . , xl) : where the νth coordinate satisfies 0 ≤ xν ≤ z},
Sν(z) = the complement of Sν(z),

Tν(z) = ∩ν
j=1Sj (z) ∩l

j=ν+1 Sj (z).

We will establish the existence of the following limits

cν = lim
z→∞

∫
· · ·

∫
Tν(z)

fl(x1, . . . , xl) dx1 · · · dxl for 1 ≤ ν ≤ l − 1,

cl = lim
z→∞

[
z −

∫
. . .

∫
Tl(z)

fl(x1, . . . , xl) dx1 · · · dxl

]
.

Theorem 3. (Asymptotic maximal r-scan length of the l-fold shift model.) Let �
(l)
1 be the

l-fold shift process. Suppose that
∫ ∞
−∞ |s|g(s) ds < ∞ and r = lp + 1, for p a nonnegative

integer. Then the kth maximal r-scan length from �
(l)
1 in (0, t), M

(l)
t,k , possesses the asymptotic

distribution

lim
t→∞ Pr

{
M

(l)
t,k ≤ ln t +

⌊
r − 1

l

⌋
ln ln t + x

}
=

k−1∑
j=0

e−λ(l)
λ

j

(l)

j ! ,

with

λ(l) = exp

{
−

(
x +

l−1∑
ν=1

(
l

ν

)
cν − cl

)}/⌊
r − 1

l

⌋
!.

Theorem 4. (Asymptotic minimal r-scan length of the l-fold shift model.) Let �
(l)
1 be the

l-fold shift process. Suppose that the shift density g is continuous. Then the kth minimal r-scan
length from �

(l)
1 in (0, t), m

(l)
t,k , possesses the asymptotic distribution

lim
t→∞ Pr

{
m

(l)
t,k ≥ r

√
x

t

}
=

k−1∑
j=0

e−α(l)
(α(l))

j

j ! ,

with

α(l) = (r + 1)x
∑

i1,i2,...,il∈Z
+∑l

ν=1 νiν=r+1

( l∏
ν=1

((
l

ν

)
fν(0, . . . , 0

)iν
/

iν !
)

for fd(0, . . . , 0) = ∫ ∞
−∞[g(s)]d ds.

2. The Chen–Stein method and transformed Poisson processes

We review first the Chen–Stein method (Chen (1975)), which provides the basic tool to
determine the error bound between a sum of (dependent) Bernoulli random variables and its
asymptotic Poisson law. In this paper we adopt the formulation of the Chen–Stein method from
Arratia et al. (1989).
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Theorem 5. (Chen–Stein method.) Let {Zi} be Bernoulli (pi) random variables and W =∑
i∈� Zi , where � is a finite or countable index set. Let P λ denote the Poisson(λ) random

variable and let d(U, V ) denote the total variation distance between the discrete distributions
of U and V :

d(U, V ) = sup
A

(Pr{U ∈ A} − Pr{V ∈ A}) (where A is any measurable set)

= 1

2

∞∑
k=0

| Pr{U = k} − Pr{V = k}|.

Then

d(W, Pλ) ≤ (u1 + u2)
1 − e−λ

λ
+ u3 min

(
1,

√
2√
λ

)
,

where

λ =
∑
i∈�

pi, u1 =
∑
i∈�

∑
j∈Bi

pipj ,

u2 =
∑
i∈�

∑
j∈Bi ,j �=i

E[ZiZj ], u3 =
∑
i∈�

E[| E[Zi | {Zj }j �∈Bi
] − pi |],

(1)

and {Bi} is an appropriate family of subsets indexed by �.

Theorems 6 and 7 are fundamental for inhomogeneous Poisson processes; see, e.g. Kingman
(1993, Chapter 5).

Theorem 6. Let � be a Poisson process on a space S with rate measure µ. Suppose that, with
each point X of �, we associate a random variable mX (the mark of X) taking values in some
metric space M . The distribution of mX may depend on X but not on other points of �, and
mX for different X are independent.

The pair (X, mX) can be regarded as a random point X∗ in the product space S × M .
Then, the ensemble of points X∗ generate a Poisson process �∗ = {(X, mX)}X∈� on the direct
product space S × M with rate measure µ∗ given by

µ∗(C) =
∫ ∫

(x,m)∈C

µ(dx)px(dm), (2)

where px(dm) is the conditional distribution of m given x.

To adapt Theorem 6 to the 2-fold shift model, we determine mX ≡ (m1, m2) = (X +
Y 1

X, X + Y 2
X), with the displacements Y 1

X and Y 2
X arising as independent, real valued, random

variables sampled from the density g(y). Then px(dm) applied in (2) is px(dm) = g(m1 −
x)g(m2 − x) dm1 dm2. The Poisson process �∗ has the rate measure µ∗ on R × R

2 calculated
as

µ∗(C) =
∫ ∫ ∫

(x,m1,m2)∈C

g(m1 − x)g(m2 − x) dm1 dm2 dx

for any measurable set C on R
3.

Theorem 7. (Mapping theorem.) Let � be a Poisson process with a finite mean rate measure
µ on the space S, and let � : S → T be a measurable mapping such that the induced measure
of µ transferred to T is atomless. Then �̃ = �(�) is a Poisson process on T and has rate
measure µ̃ = µ ∗ �−1.
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In the 2-fold shift model, � in Theorem 7 is specified as the projection of R
3 to R

2 such that
� : (x, m1, m2) → (m1, m2), and therefore the induced process

�∗
2 = �({X, X + Y 1

X, X + Y 2
X}) = {(X + Y 1

X, X + Y 2
X)}

is a two-dimensional Poisson process with the rate measure f2(z1, z2) = ∫ ∞
−∞ g(z1 − s)

× g(z2 − s) ds. We assume that the displacement distribution density g has finite mean.
Then f2 possesses the following three properties.

1. Symmetry: f2(z1, z2) = f2(z2, z1).

2. Invariance under equal translation: f2(z1 + a, z2 + a) = f2(z1, z2) for all real a.

3. f2(z, 0) (or f2(0, z)) is a continous, symmetric density function of z such that∫ ∞

−∞
|z|f2(z, 0) dz =

∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv < ∞.

To construct the relevant one-dimensional shift process �
(2)
1 , we project the two-dimensional

Poisson process �∗
2 separately to its z1-axis and to its z2-axis and concatenate the two one-

dimensional point processes yielding the one-dimensional process

�
(2)
1 = {{X + Y 1

X} ∪ {X + Y 2
X}}(X+Y 1

X,X+Y 2
X)∈�∗

2
. (3)

Theorems 6 and 7 will enable us to study the distributional properties of the two-dimensional
Poisson process �∗

2 and, subsequently, to calculate the distribution of the one-dimensional shift

process �
(2)
1 . For example, consider an interval (a, b), for a < b. The two events

{no one-dimensional �
(2)
1 point occurs in an interval (a, b)}

and

{no two-dimensional �∗
2 point occurs in a region of {(a, b) × (−∞, ∞)}∪

{(−∞, ∞) × (a, b)}}
are equivalent. The following notations indicate the regions in �∗

2 associated with the interval

(a, b) in �
(2)
1 . Let ‘\’ denote set subtraction and

A(a, b) = {(a, b) × (−∞, ∞) ∪ (−∞, ∞) × (a, b)},
A1(a, b) = {(a, b) × (a, b)}, and A2(a, b) = A(a, b) \ A1(a, b); (4)

see Figure 1.
Each point of �∗

2 in A1(a, b) corresponds to two points of �
(2)
1 in (a, b) (precluding the

points along the diagonal), whereas each point of �∗
2 in A2(a, b) generates a single point of

�
(2)
1 in (a, b). Let V (C) equal the integration of f2(z1, z2) over a set C. Since the rate density

f2(z1, z2) of �∗
2 is invariant along the diagonal, it is clear that

V (A1(a, b)) = V (A1(0, b − a)) and V (A2(a, b)) = V (A2(0, b − a)).

Actually, �
(2)
1 is a stationary point process on the line.
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(a, a) (b, a)

(a, b) (b, b)

• •

• •

(a)

(a, a) (a, b)

(b, a) (b, b)

• •

• •

(b)

(a, a) (b, a)

(a, b) (b, b)

• •

• •

(c)
Figure 1: The stripped regions correspond to (a) A(a, b), (b) A1(a, b), and (c) A2(a, b).

3. Estimates required for the multiple shift model

In this section we provide the estimates required to prove Theorems 1–4. The detailed proof
for each estimate is presented in Section 5 of this paper. The analysis of the r-scan statistics for
the observed marker array �

(2)
1 in (3) is based on the counts of associated Bernoulli variables

((6) and (7), below, over the time horizon (0, t)). To study the maximum r-scan length, we
partition (0, t) with a small spacing �t = 1/t and place a window of width

bt = ln t +
⌊

r − 1

2

⌋
ln ln t + x (5)

at each position j�t , j = 0, 1, 2, . . . . Now, let

Z+
j (bt ) =

⎧⎪⎨
⎪⎩

1 if there is a single marker of �
(2)
1 in ((j − 1)�t , j�t ), and

less than r markers in the window of (j�t , j�t + bt ),

0 otherwise.

(6)

Then Z+
j (bt ) = 1 signifies the existence of an r-scan interval of length exceeding bt , where its

interval begins about j�t . We define n+
t (bt ) = ∑�(t−bt )/�t �

j=0 Z+
j (bt ) and prove that n+

t (bt ) is a

good approximation of N+
t (bt ), the count of r-scan intervals in (0, t) that exceed bt . Theorem 5

can be applied to derive the asymptotic Poisson law for n+
t (bt ).

The distribution of the minimum r-scan length is studied in a similar manner by partitioning
(0, t) with a spacing of δt = 1/t2 and by putting a window of extent at = r

√
x/t at each discrete

position jδt , j = 0, 1, 2, . . . . A Bernoulli random variable is specified at each position jδt :

Z−
j (at ) =

⎧⎪⎨
⎪⎩

1 if there is a single marker of �
(2)
1 in ((j − 1)δt , jδt ), and

at least r markers in (jδt , (j − 1)δt + at ),

0 otherwise.

(7)

When Z−
j (at ) = 1, there is an r-scan interval of length less than at with its initial marker

about jδt . Let n−
t (at ) = ∑�(t−at )/δt �

j=0 Z−
j (at ) and let N−

t (at ) be the count of r-scan intervals in

(0, t) that do not exceed at . Then n−
t (at ) is a candidate to represent N−

t (at ) such that n−
t (at )

converges to N−
t (at ) in probability as t → ∞. The asymptotic Poisson law of n−

t (at ) can be
ascertained by Theorem 5.

Before calculating probabilities of events of the process �
(2)
1 , we describe concisely the

method. Since �∗
2 is a two-dimensional Poisson process, realizations in disjoint areas are
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independent. But points occurring in disjoint intervals of the one-dimensional �
(2)
1 , say, (a, b)

and (c, d), have some overlap through the rectangle areas {(a, b)×(c, d)} and {(c, d)×(a, b)} of
�∗

2, in which each point could project to two one-dimensional points in the intervals (a, b) and
(c, d) each. For convenience, we use the notation A(a, b), A1(a, b), and A2(a, b) (see Figure 1)
to represent regions of �∗

2 relevant to an interval (a, b) in �
(2)
1 . We define B((a, b)× (c, d)) =

{{(a, b) × (c, d)} ∪ {(c, d) × (a, b)}}, which is the area relative to both intervals (a, b) and
(c, d). We use || || to indicate the count of points in regions of both one-dimensional or two-
dimensional and higher dimensional; e.g. ||C|| and ||(a, b)|| are the count of points of �∗

2 in

area C and the count of points of �
(2)
1 in the interval (a, b), respectively.

In this section we state the upper bounds of errors when applying the Chen–Stein method to
the shift processes. The proofs are given in Section 5. Lemmas 1 and 2, below, are necessary
to calculate the values of {E[Z+

j (bt )]}j≥0, the expectations of the Bernoulli random variables
of maximal r-scan lengths.

Lemma 1. Assume that
∫ |s|g(s) ds < ∞. Then, for each nonnegative integer k and z → ∞,

Pr{There are at most k points of �
(2)
1 in (0, z)}

= exp{−(z + m2)} (z − m2)
�k/2�

�k/2�! I2(k)(1 + o(1)),

where o(1) converges to 0 as z → ∞, and

m2 =
∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv < ∞; I2(k) =

{
1, k is even,

1 + 2m2, k is odd.
(8)

Lemma 2. Assume that
∫ |s|g(s) ds < ∞ and r = 2p+1, p = 0, 1, 2, . . .. Then, for �t = t−1

and bt = ln t + �(r − 1)/2� ln ln t + x,

E[Z+
1 (bt )] = Pr{there is a single point of �

(2)
1 in (0, �t ) and at most

(r − 1) points of �
(2)
1 in (�t , �t + bt )}

= �t exp{−(x + m2)}
t�(r − 1)/2�! (1 + o(1)).

The following two lemmas are required for the study of the maximal r-scan distribution.
Lemma 3 is necessary to evaluate the probability of the event {n+

t (bt ) �= N+
t (bt )}. Lemma 4 is

required for the calculation of the error bound of u2 in (1) with the neighborhood sets Bi {i≥1}
specified as Bi = {j : |j − i| < �2bt/�t�} when invoking the Chen–Stein method applied
to the Bernoulli sum of n+

t (bt ) = ∑�(t−bt )/�t �
j=0 Z+

j (bt ). Here, and throughout the paper, we
consider only the index i, j such that i�t , j�t are within the interval (0, t).

Lemma 3. The following estimates assure convergence in probability of n+
t (bt ) to N+

t (bt ).

Pr{||(0, �t )|| ≥ 2, ||(�t , �t + bt )|| ≤ r − 1} ≤ O

(�2
t

t

)
, (9)

Pr{ ||(0, �t )|| = 1, ||(0, bt )|| ≤ r, ||(0, �t + bt )|| ≥ r + 1} ≤ O

(�2
t

t

)
. (10)
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Lemma 4. The following estimate is necessary for evaluating the parameter u2 in (1) when
the Chen–Stein method is applied to n+

t (bt ) by setting �t = 1/t . We obtain

∑
j∈Bi, j �=i

E[Z+
i (bt )Z

+
j (bt )] ≤ 2

ln ln t

�t

O

( �2
t

t ln t

)
+ 2

bt

�t

O

(�2
t (ln t ln t)�(r−1)/2�

t (ln t)2

)

+ 2
2bt

�t

O

(�2
t

t2

)
. (11)

Lemmas 5, 6, and 7 are important for the proof of the asymptotic Poisson law when applying
the Chen–Stein method to the Bernoulli sum

∑�(t−at )/δt �
i=1 Z−

i (at ). Lemma 5 provides the
asymptotic value of E[Z−

i (at )]. Lemma 6 gives estimates relevant to the convergence of
n−

t (at ) to N−
t (at ) in probability. Lemma 7 provides an upper bound of u2 in (1) when applying

the Chen–Stein method to n−
t (at ).

Lemma 5. Assume that the shift density g is continuous, then, for δt = t−2, at = r
√

x/t , and
t → ∞,

E[Z−
1 (at )] ≡ Pr{||(0, δt )|| = 1, ||(δt , at )|| ≥ r}

= (r + 1)δtx

t

(�(r+1)/2�∑
j=0

2r+1−2j (f2(0, 0))j

j ! (r + 1 − 2j)!
)

(1 + o(1)).

Lemma 6. The probability bounds of the events {||(0, δt )|| ≥ 2, ||(δt , at )|| ≥ r − 1} and
{||(0, δt )|| = 1, ||(0, at )|| < r + 1, ||(0, at + δt )|| ≥ r + 1} are respectively

Pr{||(0, δt )|| ≥ 2, ||(δt , at )|| ≥ r − 1} ≤ O(δ2
t ), (12)

Pr{||(0, δt )|| = 1, ||(0, at )|| < r + 1, ||(0, at + δt )|| ≥ r + 1} ≤ O(δ2
t ). (13)

Lemma 7. The following estimate is necessary for evaluating the parameter u2 of Theorem 5
when the Chen–Stein method is applied to n−

t (at ). For 2 ≤ i ≤ �at/δt� + 1,

E[Z−
1 (at )Z

−
i (at )] ≤ O(δt δta

r
t ). (14)

With the preparations above, we are ready to validate the limiting theorems of the extremal
r-scan lengths of the 2-fold shift model.

4. Theorems for extremal r-scan lengths

4.1. Extremal distribution of maximum and minimum r-scans

The asymptotic distribution of the kth largest r-scan length generated from the 2-fold
shift model arises from the sum of Bernoulli random variables associated with the set of
discrete times {j�t }, j = 1, . . . , �(t − bt )/�t�, for the choices of �t = t−1 and bt =
ln t + �(r − 1)/2� ln ln t + x. Explicitly, for 1 ≤ j ≤ �(t − bt )/�t�, we define the following
Bernoulli random variables:

Z+
j (bt ) =

{
1 if ||((j − 1)�t , j�t )|| = 1 and ||(j�t , j�t + bt )|| < r ,

0 otherwise.

We claim that the Bernoulli sum n+
t (bt ) = ∑�(t−bt )/�t �

j=1 Z+
j (bt ) is a good approximation to

the count N+
t (bt ) of the number of r-scan intervals in (0, t) based on the points of �

(2)
1 whose
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r-scans exceed bt . Let {Xt,i}i≥1 be the ordered points of �
(2)
1 in (0, t) and set Xt,0 = 0 for

definiteness. Then {Rt,i = Xt,i−1+r −Xt,i−1}i≥1 are the successive r-scan segments along the
line. Let {Mt,1, Mt,2, Mt,3, . . . } be the order statistics for {Rt,i}i≥1 in decreasing order. That
is, Mt,1 is the largest r-scan length of �

(2)
1 in (0, t) and Mt,k is the kth largest r-scan length.

The duality relation guarantees that

{Mt,k ≤ bt } = {N+
t (bt ) ≤ k − 1}. (15)

If
∫ |s|g(s) ds < ∞ and r = 2p + 1, for some nonnegative integer p, we will prove that the

Bernoulli sum, n+
t (bt ), possesses the following two properties.

Property 1. limt→∞ Pr{n+
t (bt ) �= N+

t (bt )} = 0.

Property 2. n+
t (bt ) is asymptotically Poisson(λ) with

λ = exp{−(x + m2)}
�(r − 1)/2�! for bt as defined in (5) and m2 as defined in (8).

With Properties 1 and 2, Theorem 1 can be proved as follows.

Proof of Theorem 1. The duality relation, (15), gives

lim
t→∞ Pr{Mt,k ≤ bt } = lim

t→∞ Pr{N+
t (bt ) ≤ k − 1}

= lim
t→∞ Pr{n+

t (bt ) ≤ k − 1} (from Property 1)

=
k−1∑
j=0

e−λ λj

j ! (from Property 2),

as described in Theorem 1. We now prove Properties 1 and 2.

Proof of Property 1. Under the condition of at least r points of �
(2)
1 in (t − bt , t), a count

Z+
j (bt ) = 1 will not show an r-segment extending over the position t . Z+

j (bt ) = 1 signifies
a count of an r-scan segment in (0, t) with a single point in ((j − 1)�t , j�t ) and with length
exceeding bt . Therefore, {||(t − bt , t)|| ≥ r} ⊆ {n+

t (bt ) ≤ N+
t (bt )}, which implies that

{n+
t (bt ) > N+

t (bt )} ⊆ {||(t − bt , t)|| ≤ r − 1}. (16)

Thus,

Pr{n+
t (bt ) > N+

t (bt )} ≤ Pr{||(t − bt , t)|| ≤ r − 1} (according to (16))

= exp{−(bt + m2)} (bt − m2)
�(r−1)/2�

�(r − 1)/2�! (1 + o(1))

= O

(
1

t

)
(by Lemma 1 and substituting

bt = ln t + �(r − 1)/2� ln ln t + x). (17)

Conversely, the event {N+
t (bt ) > n+

t (bt )} occurs only if there exists a j , 1 ≤ j ≤
�(t − bt )/�t�, such that one of the following two cases hold.

Case 1. ‖((j − 1)�t , j�t )‖ ≥ 2 and ||(j�t , j�t + bt )|| ≤ r − 1.
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Case 2. ||((j − 1)�t , j�t )|| = 1 and ||(j�t , (j − 1)�t + bt )|| ≤ r − 1 and ||(j�t , j�t +
bt )|| ≥ r .

For Case 1, Z+
j (bt ) = 0 and there is at least one r-scan segment starting within the interval

((j − 1)�t , j�t ) with length exceeding bt . Case 2 occurs when Z+
j (bt ) = 0 and there is an

r-scan interval with its initial marker within the interval ((j − 1)�t , j�t ) and its last marker
within the interval ((j − 1)�t + bt , j�t + bt ) and its length exceeds bt .

As shown in (9) and (10), we have the following estimates:

Pr{Case 1 occurs for index j} = O

(�2
t

t

)
, Pr{Case 2 occurs for index j} = O

(�2
t

t

)
.

Thus,

Pr{n+
t (bt ) < N+

t (bt )} = Pr{Case 1 or Case 2 occurs for some index j}

≤
�(t−bt )/�t �∑

j=1

Pr{Case 1 occurs for index j}

+
�(t−bt )/�t �∑

j=1

Pr{Case 2 occurs for indexj}

= O

(
t

�t

)
O

(�2
t

t

)
+ O

(
t

�t

)
O

(�2
t

t

)
= O(�t )

= O

(
1

t

)
(by (9) and (10)). (18)

Therefore, by (17) and (18), we have

Pr{N+
t (bt ) �= n+

t (bt )} = Pr{N+
t (bt ) < n+

t (bt )} + Pr{N+
t (bt ) > n+

t (bt )} = O

(
1

t

)
.

This completes the proof of Property 1.

Proof of Property 2. Assuming that
∫ |s|g(s) ds < ∞ and r = 2p+1, for some nonnegative

integer p, we apply the Chen–Stein method to verify the asymptotic Poisson law of n+
t (bt ) =∑�(t−bt )/�t �

j=1 Z+
j (bt ). Following the result of Lemma 2 and the stationarity of �

(2)
1 , we have

E[Z+
j (bt )] = E[Z+

1 (bt )] = �t exp{−(x + m2)}
�(r − 1)/2�! t (1 + o(1)). (19)

Therefore,

λt ≡ E[n+
t (bt )] =

⌊
t − bt

�t

⌋
E[Z+

1 (bt )] = λ(1 + o(1)) for λ = exp{−(x + m2)}
�(r − 1)/2�! . (20)

To demonstrate the Poisson approximation, we construct an index neighborhood subset
Bj for each j , Bj = {i : |i − j | ≤ �2bt/�t�}. According to the Chen–Stein protocol
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(see Barbour et al. (1992)), the upper bound for the total variational distance between n+
t (bt )

and a Poisson random variable Po(λ) is

d(n+
t (bt ), Po(λ)) ≤ d(n+

t (bt ), Po(λt )) + d(Po(λt ), Po(λ))

≤ (u1 + u2)

(
1 − e−λt

λt

)
+ u3 min(1,

√
λt ) + |λ − λt |,

where

u1 =
�(t−bt )/�t �∑

j=1

∑
i∈Bj

E[Z+
j (bt )] E[Z+

i (bt )], u2 =
�(t−bt )/�t �∑

j=1

∑
i∈Bj , i �=j

E[Z+
j (bt )Z

+
i (bt )],

and u3 = 2
�(t−bt )/�t �∑

j=1

E[Z+
j (bt )]d

(( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ Z+
j (bt ) = 1

)
,

∑
i �∈Bj

Z+
i (bt )

)
.

Estimates of u1, u2, and u3 are assessed by evaluation of corresponding areas of the two-
dimensional process �∗

2. We use Lemma 2 and Lemma 4 to provide the following estimates:

u1 =
�(t−bt )/�t �∑

j=1

∑
i∈Bj

E[Z+
j (bt )] E[Z+

i (bt )]

≤ 2

(
t − bt

�t

)(
2bt

�t

)
(E[Z+

1 (bt )])2 (by stationarity)

≤ 4O

(
tbt

�2
t

)(�t

t
λ

)2 (
by (19), (20), and λ = exp{−(x + m2)}

�(r − 1)/2�!
)

≤ 4O

(
ln t

t

)
λ2,

u2 =
�(t−bt )/�t �∑

j=1

∑
i∈Bj , i �=j

E[Z+
j (bt )Z

+
i (bt )]

≤ 2
t

�t

�(2bt )/�t �+1∑
i=2

E[Z+
1 (bt )Z

+
i (bt )] (by stationarity)

= 2
t

�t

{�ln ln t/�t �+1∑
i=2

E[Z+
1 (bt )Z

+
i (bt )] +

�bt /�t �+1∑
�ln ln t/�t �+2

E[Z+
1 (bt )Z

+
i (bt )]

+
�2bt /�t �+1∑
�bt /�t �+2

E[Z+
1 (bt )Z

+
i (bt )]

}

≤ 2
t

�t

(
ln ln t

�t

O

( �2
t

t ln t

)
+ bt

�t

O

(�2
t (ln ln t)(r−1)/2

t (ln t)2

)
+ 2bt

�t

O

(�2
t

t2

))
(see (11))

= O

(
ln ln t

ln t
+ (ln ln t)(r−1)/2

ln t

)
.
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To study the convergence property of u3, for j ≤ �2bt/�t�, let Ej,1 and Ej,2 be sets in R
2

determined as

Ej,1 =
{
((j − 1)�t , j�t + bt ) ×

((
j − 1 +

⌊
2bt

�t

⌋)
�t , ∞

)}
,

Ej,2 =
{((

j − 1 +
⌊

2bt

�t

⌋)
�t , ∞

)
× ((j − 1)�t , j�t + bt )

}
.

And, for �2bt/�t� < j ≤ �(t − bt )/�t�, let Ej,1 and Ej,2 be determined as above and let Ej,3
and Ej,4 be determined as

Ej,3 =
{
((j − 1)�t , j�t + bt ) ×

(
0,

(
j − 1 −

⌊
2bt

�t

⌋)
�t

)}
,

Ej,4 =
{(

0,

(
j − 1 −

⌊
2bt

�t

⌋)
�t

)
× ((j − 1)�t , j�t + bt )

}
.

Then the random variables Z+
j and {Z+

i }{i �∈Bj } interact through these regions. Conditioning on
the event that there is no point in Ej,1∪Ej,2∪Ej,3∪Ej,4 (that is ‖ Ej,1∪Ej,2∪Ej,3∪Ej,4 ‖= 0),
the random variables Z+

j and {Z+
i }{i �∈Bj } are independent. A direct calculation shows that

V (Ej,2) = V (Ej,1) =
∫ ∫

(x,y)∈Ej,1

f2(x, y) dx dy

=
∫ j�t+bt

(j−1)�t

∫ ∞

(j−1+�2bt /�t �)�t

f2(x, y) dy dx

=
∫ j�t+bt

(j−1)�t

∫ ∞

(j−1+�2bt /�t �)�t

f2(0, y − x) dy dx

and since f2 is nonnegative and (y − x, ∞) ⊂ (bt − 2�t , ∞)

<

∫ j�t+bt

(j−1)�t

∫ ∞

bt−2�t

f2(0, v) dv dx

=
∫ ∞

bt−2�t

(�t + bt )f2(0, v) dv

≤
∫ ∞

bt−2�t

(3�t + v)f2(0, v) dv (since v ≥ bt − 2�t and

3�t + v ≥ �t + bt ).

Similarly,

V (Ej,3) = V (Ej,4) ≤
∫ ∞

2bt

(�t + bt )f2(0, v) dv ≤
∫ ∞

2bt

vf2(0, v) dv.

Since
∫ ∞

0 vf2(0, v) dv is finite, V (Ej,1), V (Ej,2), V (Ej,3), and V (Ej,4) all converge to 0 as
t → ∞.
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Under the event E : {�∗
2 ∩ {Ej,1 ∪ Ej,2 ∪ Ej,3 ∪ Ej,4} = ∅}, Z+

j (bt ) and
∑

i �∈Bj
Z+

i (bt )

are independent, i.e. (
∑

i �∈Bj
Z+

i (bt ) | E) and (Z+
j (bt ) | E) are independent. Therefore,

d

(( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ Z+
j (bt ) = 1

∣∣∣∣ E

)
,

( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ E

))

= d

((( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ E

) ∣∣∣∣ (Z+
j (bt ) = 1 | E)

)
,

( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ E

))

= 0.

Let E c denote the complementary event of E . We then have

d

((∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ Z+
j (bt ) = 1

)
,
∑
i �∈Bj

Z+
i (bt )

)

≤ d

(( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ Z+
j (bt ) = 1

∣∣∣∣ E

)
,

( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ E

))
Pr{E}

+ d

(( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ Z+
j (bt ) = 1

∣∣∣∣ E c
)

,

( ∑
i �∈Bj

Z+
i (bt )

∣∣∣∣ E c
))

Pr{E c}

≤ Pr{E c}
= Pr{�∗

2 ∩ {E1 ∪ E2 ∪ E3 ∪ E4} �= ∅}
= 1 − exp(−V (Ej,1 ∪ Ej,2 ∪ Ej,3 ∪ Ej,4))

−→ 0.

This proves the convergence of u3 to 0. Therefore, the Poisson approximation of n+
t (bt )

is proved. It has been proved in (20) that limt→∞ λt = λ. Therefore, we have the Poisson
distribution with parameter λ for n+

t (bt ) with bt = ln t+�(r − 1)/2� ln ln t+x. This completes
the proof.

4.2. Asymtotic minimum r-scan distribution

For the asymptotic distribution of the minimum r-scan length of �
(2)
1 , we set the partition

length δt = t−2 and at = r
√

x/t. The associated Bernoulli random variables, for 1 ≤ j ≤
�(t − at )/δt�, are

Z−
j (at ) =

{
1 if ||((j − 1)δt , jδt )|| = 1 and ||(jδt , (j − 1)δt + at )|| ≥ r ,

0 otherwise.

We form the sum n−
t (at ) = ∑�(t−at )/δt �

j=1 Z−
j (at ), and define N−

t (at ) as the count of r-scan

intervals which do not exceed at in the interval (0, t) generated from the points of �
(2)
1 .

If the shift density g is continuous, the asymptotic distribution of the kth smallest r-scan
length of the 2-fold shift model will be based on the following two properties.

Property 3. limt→∞ Pr{N−
t (at ) �= n−

t (at )} = 0.
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Property 4. n−
t (at ) is distributed asymptotically Poisson with parameter

α = (r + 1)x

�(r+1)/2�∑
j=0

2r+1−2j [f2(0, 0)]j
j ! (r + 1 − 2j)! .

From Properties 3 and 4, Theorem 2 can be proved as follows.

Proof of Theorem 2. The duality relation shows that Pr{mt,k ≥ at } = Pr{N−
t (at ) ≤ k − 1}.

Also,
lim

t→∞ Pr{N−
t (at ) ≤ k − 1} = lim

t→∞ Pr{n−
t (at ) ≤ k − 1} (from Property 3)

=
k−1∑
j=0

e−α αj

j ! (from Property 4).

Therefore,

lim
t→∞ Pr{mt,k ≥ at } =

k−1∑
j=0

e−α αj

j ! ,

as described in Theorem 2.

Proof of Property 3. The event of Z−
j (at ) = 1 indicates the existence of an r-scan interval

with its initial marker in ((j − 1)δt , jδt ) and its length less than at . Therefore, we have
N−

t (at ) ≥ n−
t (at ). Thus, Pr{N−

t (at ) �= n−
t (at )} = Pr{N−

t (at ) > n−
t (at )}. The event of

{N−
t (at ) > n−

t (at )} will occur only if there exists a j , 1 ≤ j ≤ �(t − at )/δt�, such that one of
the following two events occur.

Case 3. ‖((j − 1)δt , jδt )‖ ≥ 2 and ‖(jδt , jδt + at )‖ ≥ r − 1.

Case 4. ||((j − 1)δt , jδt )|| = 1 and ||(jδt , (j − 1)δt + at )|| < r and ||(jδt , jδt + at )|| ≥ r .

Case 3 occurs when Z−
j (at ) = 0 and there is an r-scan segment which qualifies for length less

than at and with its first two markers very close together and occurring in ((j −1)δt , jδt ). Here
Z−

j (at ) = 1 indicates the existence of an r-scan interval with the first point in the subinterval
((j − 1)δt , jδt )) and the r-scan length less than at . The probability difference is bounded by

Pr{Z−
j (at ) = 0, ‖((j − 1)δt , jδt )‖ = 1, ‖(jδt , jδt + at )‖ ≥ r} = Pr{Case 4}.

As shown in (12) and (13), the estimates of Pr{Case 3 occurs for index j} ≤ O(δ2
t ) and

Pr{Case 4 occurs for index j} ≤ O(δ2
t ) prevail. Therefore,

Pr{N−
t (at ) �= n−

t (at )}
= Pr{N−

t (at ) > n−
t (at )}

≤ Pr

{
Case 3 occurs for some index j, 1 ≤ j ≤

⌊
t − at

δt

⌋}

+ Pr

{
Case 4 occurs for some index j, 1 ≤ j ≤

⌊
t − at

δt

⌋}

≤
�(t−at )/δt �∑

j=1

Pr{Case 3 occurs for index j} +
�(t−at )/δt �∑

j=1

Pr{Case 4 occurs for index j}
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≤ O

(
t

δt

)
O(δ2

t ) + O

(
t

δt

)
O(δ2

t )

= O(t−1).

This completes the proof.

Proof of Property 4. We will apply the Chen–Stein method to the Bernoulli sum n−
t (at ) =∑�(t−at )/δt �

j=1 Z−
j (at ) for at = r

√
x/t and δt = t−2. According to Lemma 5 and the stationary

property of �
(2)
1 , we have

E[Z−
j (at )] = E[Z−

1 (at )] = (r + 1)δt

x

t

(�(r+1)/2�∑
j=0

2r+1−2j [f2(0, 0)]j
j ! (r + 1 − 2j)!

)
(1 + o(1)).

Therefore,

αt := E[n−
t (at )] = E

[�(t−at )/δt �∑
j=1

Z−
j (at )

]

=
�(t− r

√
x/t)/δt �∑

j=1

E[Z−
j (at )]

=
(

t

δt

)
E[Z−

1 (at )](1 + o(1))

= α(1 + o(1))

for

α = (r + 1)x

�(r+1)/2�∑
j=0

2r+1−2j [f2(0, 0)]j
(r + 1 − 2j)! j ! . (21)

To validate the Poisson approximation of n−
t (at ), we construct the set of neighborhoods

{Dj } for each j as Dj = {i : |i − j | ≤ �at/δt�}. Then, according to the Chen–Stein protocol
(see Theorem 5), the upper bound for the total variational distance between the Bernoulli sum
n−

t (at ) and the Poisson Po(α) random variable is as follows:

d(n−
t (at ), Po(α)) ≤ d(n−

t (at ), Po(αt )) + d(Po(αt ), Po(α))

≤ (v1 + v2)

(
1 − e−αt

αt

)
+ v3 min(1, α

−1/2
t ) + |α − αt |,

where

v1 =
�(t−at )/δt �∑

j=1

∑
i∈Dj

E[Z−
j (at )] E[Z−

i (at )],

v2 =
�(t−at )/δt �∑

j=1

∑
i∈Dj ,i �=j

E[Z−
j (at )Z

−
i (at )], and

v3 = 2
�(t−at )/δt �∑

j=1

E[Z−
j (at )]d

(( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Z−
j (at ) = 1

)
,

∑
i �∈Dj

Z−
i (at )

)
.
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Detailed estimates of v1, v2, and v3 are calculated by evaluating appropriate events of the
two-dimensional Poisson process �∗

2. We use Lemmas 5, 6, and 7 to provide the following
estimates:

v1 =
�(t−at )/δt �∑

j=1

∑
i∈Dj

E[Z−
j (at )] E[Z−

i (at )]

≤ 2

(
t

δt

)(
at

δt

)
(E[Z−

1 (at )])2 (by the stationary property of �
(2)
1 )

= 2

(
t

δt

)(
at

δt

)(
α

δt

t

)2

(1 + o(1)) (by Lemma 5, with α as defined in (21))

= O(t−(r+1)/r ),

v2 =
�(t− r

√
x/t)/δt �∑

j=1

∑
i∈Dj , i �=j

E[Z−
j (at )Z

−
i (at )]

≤ 2

(
t

δt

)(
at

δt

)
O(δ2

t t
−1) (by (14) in Lemma 7)

= O(t−1/r ).

To verify the convergence of v3 to 0, let Ẽj,1, Ẽj,2, Ẽj,3, and Ẽj,4 be sets in R
2 determined as

follows. For j ≤ �at/δt�,

Ẽj,1 = {((j − 1)δt , (j − 1)δt + at ) × ((j − 1)δt + at , ∞)},
Ẽj,2 = {((j − 1)δt + at , ∞) × ((j − 1)δt , (j − 1)δt + at )}.

For j ≥ �at/δt� + 1, let Ẽj,1 and Ẽj,2 be as above, and let

Ẽj,3 = {((j − 1)δt , (j − 1)δt + at ) × (0, (j − 1)δt − at )},
Ẽj,4 = {(0, (j − 1)δt − at ) × ((j − 1)δt , (j − 1)δt + at )}.

Direct calculation shows that

V (∪4
i=1Ẽj,i) =

∫ ∫
∪4

i=1Ẽi

f2(x, y) dx dy

<

∫ ∞

−∞

∫ (j−1)δt+at

(j−1)δt

f2(x, y) dx dy +
∫ (j−1)δt+at

(j−1)δt

∫ ∞

−∞
f2(x, y) dx dy

+
∫ ∞

−∞

∫ (j−1)δt+at

(j−1)δt

f2(x, y) dx dy +
∫ (j−1)δt+at

(j−1)δt

∫ ∞

−∞
f2(x, y) dx dy

= 4at (see the detailed proof of (22) in Section 5).

For each j , ∪4
i=1Ẽj,i is the region of A(Z−

j (at ))
⋂ ∪i �∈Dj

A(Z−
i (at )). Therefore, under the

occurrence of the event of Ẽ : �∗
2

⋂{Ẽj,1∪Ẽj,2∪Ẽj,3∪Ẽj,4} = ∅, Z−
j (at ) and

∑
i �∈Dj

Z−
i (at )

are determined by the realizations of disjoint regions in the two-dimentional Poisson process,
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and are therefore independent. That is, (
∑

i �∈Dj
Z−

i (at ) | Ẽ) and (Z−
j (at ) | Ẽ) are independent.

Therefore, the variation distance

d

(( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Z−
j (at ) = 1

∣∣∣∣ Ẽ

)
,

( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Ẽ

))

≡ d

((( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Ẽ

) ∣∣∣∣ (Z−
j (at ) = 1 | Ẽ)

)
,

( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Ẽ

))

= 0.

Let Ẽ c denote the complement of Ẽ . We have

d

(( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Z−
j (at ) = 1

)
,

∑
i �∈Dj

Z−
i (at )

)

≤ d

(( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Z−
j (at ) = 1

∣∣∣∣ Ẽ

)
,

( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Ẽ

))
Pr{Ẽ}

+ d

(( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Z−
j (at ) = 1

∣∣∣∣ Ẽ c
)

,

( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Ẽ c
))

Pr{Ẽ c}

≤ Pr{Ẽ c}
≤ Pr{�∗

2 ∩ {Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ Ẽ4} �= ∅}
= 1 − exp(−V (∪4

i=1Ẽj,i))

= 4at (1 + o(1));
and it follows that

v3 = 2
�(t− r

√
x/t)/δt �∑

j=1

E[Z−
j (at )]d

(( ∑
i �∈Dj

Z−
i (at )

∣∣∣∣ Z−
j (at ) = 1

)
,

∑
i �∈Dj

Z−
i (at )

)

≤ 2

(�(t− r
√

x/t)/δt �∑
j=1

E[Z−
j (at )]

)
4at (1 + o(1))

= 8αtat (1 + o(1))

→ 0

as limt→∞ αt = α and limt→∞ at = 0. Therefore, the Poisson law with parameter α for
n−

t (at ) is established.

5. Details of estimates

In this section the proof of the estimates of Section 3 will be elaborated.

Proof of Lemma 1. Some simple maniputations give∫ z

0

∫ ∞

−∞
f2(x, y) dx dy =

∫ z

0

∫ ∞

−∞

(∫ ∞

−∞
g(x − s)g(y − s) dx

)
ds dy = z, (22)
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and similarly for
∫ ∞
−∞

∫ z

0 f2(x, y) dx dy = z. Since

V (A1(0, z)) =
∫ z

0

∫ z

0
f2(x, y) dx dy

= 2
∫ z

0

∫ x

0
f2(x − y, 0) dy dx (since f2(x, y) = f2(y, x) and

f2(x, y) = f2(x − y, 0))

= 2
∫ z

0

∫ x

0
f2(s, 0) ds dx

= 2
∫ z

0

∫ z

s

f2(s, 0) dx dx

= 2
∫ z

0
(z − s)f2(s, 0) ds

= z − 2
∫ ∞

0
sf2(s, 0) ds + 2

∫ ∞

z

(s − z)f2(s, 0) ds

= z −
∫ ∞

−∞
|s|f2(s, 0) ds + 2

∫ ∞

z

(s − z)f2(s, 0) ds

= z −
∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv + 2

∫ ∞

z

(s − z)f2(s, 0) ds,

we have

2z =
∫ ∞

−∞

∫ z

0
f2(x, y) dx dy +

∫ z

0

∫ ∞

−∞
f2(x, y) dx dy (from (22))

= V (A2(0, z)) + 2V (A1(0, z)) (from the defintions of A1 and A2 in Figure 1).

Therefore, where
∫ |s|g(s) ds < ∞, we have

lim
z→∞(z − V (A1(0, z))) =

∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv, (23)

lim
z→∞ V (A2(0, z)) = 2

∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv. (24)

Now, we have

Pr{there are at most k points of �(2) in (0, z)}

=
�k/2�∑
j=0

Pr{||A1(0, z)|| = j ; ||A2(0, z)|| ≤ k − 2j}

and since A1(0, z) and A2(0, z) are disjoint regions, and ��
2 is a two-dimensional Poisson

process, we have

=
�k/2�∑
j=0

e−V (A1(0,z)) [V (A1(0, z))]j
j ! e−V (A2(0,z))

(k−2j∑
i=0

[V (A2(0, z))]i
i!

)
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= e−V (A1(0,z)) [V (A1(0, z))]�k/2�

�k/2�! e−V (A2(0,z))I2(k) (for I2(k) as defined in (8))

+
�k/2�−1∑

j=0

e−V (A1(0,z)) [V (A1(0, z))]j
j ! e−V (A2(0,z))

(k−2j∑
i=0

[V (A2(0, z))]i
i!

)

= exp{−(V (A1(0, z)) + V (A2(0, z)))} [V (A1(0, z))]�k/2�

�k/2�! I2(k)

+ smaller-order terms of z, and using (23) and (24)

= exp

{
−

(
z +

∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv

)}

× [z − ∫ ∞
−∞

∫ ∞
−∞ |u − v|g(u)g(v) du dv]�k/2�

�k/2�!
× I2(k)(1 + o(1)). (25)

Proof of Lemma 2. Lemma 2 is proved by evaluating the requisite events of the two-dimen-
sional Poisson process �∗

2. Observe that

Pr{‖(�t , �t + bt )‖ ≤ r} − Pr{‖(0, �t + bt )‖ ≤ r}
= Pr{‖(�t , �t + bt )‖ ≤ r, ‖(0, �t + bt )‖ > r}

=
r∑

k=1

Pr{‖(0, �t )‖ = k; ‖(�t , �t + bt )‖ ≤ r − k}

= Pr{‖(0, �t )‖ = 1; ‖(�t , �t + bt )‖ ≤ r − 1}

+
r∑

k=2

Pr{‖(0, �t )‖ = k; ‖(�t , �t + bt )‖ ≤ r − k}.

Therefore,

Pr{‖(0, �t )‖ = 1; ‖(�t , �t + bt )‖ ≤ r − 1}
= Pr{‖(�t , �t + bt )‖ ≤ r} − Pr{‖(0, �t + bt )‖ ≤ r}

−
r∑

k=2

Pr{‖(0, �t )‖ = k; ‖(�t , �t + bt )‖ ≤ r − k}

applying (25) for z = bt = ln t + �(r − 1)/2� ln ln t + x and z = �t + bt , and also knowing
that Pr{‖(0, �t )‖ = k; ‖(�t , �t + bt )‖ ≤ r − k} ≤ O(�k

t )O(exp(−bt )bt
�(r−k)/2�), we

obtain

= �t exp{−(x + ∫ ∞
−∞

∫ ∞
−∞ |u − v|g(u)g(v) du dv)}

�(r − 1)/2�! t (1 + o(1)),

o(1) → 0 as t → ∞.
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Proof of Lemma 3. First we consider the following two-dimensional disjoint sets:

C1 = {(−∞, 0) × (0, �t )} ∪ {(0, �t ) × (−∞, 0)},
C2 = {(�t + bt , ∞) × (0, �t )} ∪ {(0, �t ) × (�t + bt , ∞)},
C3 = {(�t , �t + bt ) × (0, �t )} ∪ {(0, �t ) × (�t , �t + bt )},
C4 = {(0, �t ) × (0, �t )}.

(26)

Consider the sets A(�t , bt + �t ), A1(�t , bt + �t ), and A2(�t , bt + �t ) as defined in
Figure 1 by setting a = �t and b = bt + �t . It should be noted that C3 is a subset of
A2(�t , bt + �t ). Based on (22), we have

V (C1) + V (C2) + V (C3) + 2V (C4) =
∫ �t

0

∫ ∞

−∞
f2(x, y) dx dy +

∫ ∞

−∞

∫ �t

0
f2(x, y) dx dy

= 2�t . (27)

Also,

V (C4) =
∫ �t

0

∫ �t

0
f2(x, y) dx dy

= f2(0, 0)�2
t (1 + o(1)) with f2(0, 0) =

∫ ∞

−∞
g2(η) dη, (28)

and

V (C3) = 2
∫ �t

0

∫ �t+bt

�t

f2(x, y) dx dy = 2
∫ �t

0

∫ �t+bt

�t

f2(x − y, 0) dx dy.

Since, for each fixed y, 0 < y < �t ,∫ bt

�t

f2(x, 0) dx <

∫ �t+bt

�t

f2(x − y, 0) dx <

∫ �t+bt

0
f2(x, 0) dx,

we conclude, after integrating over y from 0 to �t , that

2�t

∫ bt

�t

f2(x, 0) dx < V (C3) < 2�t

∫ �t+bt

0
f2(x, 0) dx,

which can be rewritten as

�t

(∫ bt

−bt

f2(x, 0) dx −
∫ �t

−�t

f2(x, 0) dx

)
< V (C3) < �t

∫ �t+bt

−(�t+bt )

f2(x, 0) dx,

and therefore,
V (C3) = �t (1 + o(1)). (29)

Owing to (27)–(29), we have

V (C1 ∪ C2) = 2�t − V (C3) − 2V (C4) = �t (1 + o(1)). (30)

According to (23) and (24), in the proof of Lemma 1, with z = bt , as t → ∞,

V (A1(�t , bt + �t )) = bt −
∫ ∞

−∞

∫ ∞

−∞
|u − v|g(u)g(v) du dv + o(1). (31)
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Consider {Ci}4
i=1 as defined in (26) and A1(�t , �t + bt ) and A2(�t , �t + bt ) as defined

in Figure 1. The probability of the event {||(0, �t )|| ≥ 2, ||(�t , �t + bt )|| ≤ r − 1} can be
bounded as follows.

Pr{||(0, �t )|| ≥ 2, ||(�t , �t + bt )|| ≤ r − 1}
= Pr{||C1 ∪ C2 ∪ C3|| + 2||C4|| ≥ 2; 2||A1(�t , �t + bt )||

+ ||A2(�t , �t + bt )|| ≤ r − 1}

=
�(r−1)/2�∑

j=0

Pr{||C1 ∪ C2 ∪ C3|| + 2||C4|| ≥ 2; ||A1(�t , �t + bt )|| = j ;

||A2(�t , �t + bt )|| ≤ r − 1 − 2j}

≤
�(r−1)/2�∑

j=0

Pr{||C1 ∪ C2 ∪ C3|| + 2||C4|| ≥ 2; ||A1(�t , �t + bt )|| = j},

since C1, C2, C3, C4, and A1(�t , �t + bt ) are all disjoint regions, we have the bound

< (Pr{||C1 ∪ C2 ∪ C3|| ≥ 2} + Pr{||C4|| ≥ 1})

×
(�(r−1)/2�∑

j=0

Pr{||A1(�t , �t + bt )|| = j}
)

,

and, according to the Poisson law and evaluations of V (C1 ∪ C2 ∪ C3), V (C4), and V (A1(�t ,

�t + bt )) in (28)–(31), we obtain

= O(�2
t )O

(
e−bt

b
�(r−1)/2�
t

�(r − 1)/2�
)

= O

(�2
t

t

)
.

The probability of the event {||(0, �t )|| = 1, ||(0, bt )|| ≤ r, ||(0, �t + bt )|| ≥ r + 1} can be
bounded as follows.

Pr{||(0, �t )|| = 1, ||(0, bt )|| ≤ r, ||(0, �t + bt )|| ≥ r + 1}
< Pr{||(0, �t )|| = 1, ||(�t , bt )|| ≤ r − 1, ||(bt , �t + bt )|| ≥ 1},

since A1(�t , bt ) is disjoint from both A(0, �t ) and A(bt , bt + �t ), we have the bound

≤ Pr{||(0, �t )|| = 1, ||(bt , �t + bt )|| ≥ 1} Pr

{
||A1(�t , bt )|| ≤

⌊
r − 1

2

⌋}
= (Pr{||(0, �t )|| = 1} − Pr{||(0, �t )|| = 1, ||(bt , �t + bt )|| = 0})

× Pr

{
||A1(�t , bt )|| ≤

⌊
r − 1

2

⌋}
,

then, according to the Poisson law, we obtain

= O(e−2�t (2�t ) − e−2�t (2�t )e
−2�t )O

(
e−bt

b
�(r−1)/2�
t

�(r − 1)/2�!
)
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= O(�2
t )O(e− ln t )

= O

(�2
t

t

)
.

This completes the proof.

Proof of Lemma 4. If r = 2p+1 and p is a nonnegative integer, we will verify the estimates,
(35), (36), and (37), below, of E[Z+

j (bt )Z
+
i (bt )], j �= i, which is involved in the calculation

of the error parameter u2 of the Chen–Stein method in (1), where the neighborhood subset Bi

is specified as

Bi =
{
j : |j − i| <

⌊
2bt

�t

⌋}

=
{
j : |j − i| ≤

⌊
ln ln t

�t

⌋}
∪

{
j :

⌊
ln ln t

�t

⌋
< |j − i| ≤

⌊
bt

�t

⌋}

∪
{
j :

⌊
bt

�t

⌋
< |j − i| ≤

⌊
2bt

�t

⌋}
= (I) + (II) + (III). (32)

For the case in which p = 0 (1-scan case), we have, for 1 ≤ |i − j | ≤ �bt/�t�,

E[Z+
j (bt )Z

+
i (bt )] = E[Z+

1 (bt )Z
+
i−j+1(bt )]

= Pr{‖(0, �t )‖ = 1, ‖(�t , �t + bt )‖ = 0,

‖((i − j)�t , (i − j + 1)�t )‖ = 1,

‖((i − j + 1)�t , (i − j + 1)�t + bt )‖ = 0} (directly from the defini-

tions of Z+
j and Z+

i ),

(33)

since ‖((i − j)�t , (i − j + 1)�t )‖ = 1 and ‖(�t , �t + bt )‖ = 0 are disjoint events for
1 ≤ |i − j | ≤ �bt/�t� the last equation equals 0.

For �bt/�t� + 1 ≤ |j − i| ≤ �2bt/�t�, we have

E[Z+
j (bt )Z

+
i (bt )] = E[Z+

1 (bt )Z
+
i−j+1(bt )]

= Pr{||(0, �t )|| = 1, ||(�t , �t + bt )|| = 0,

||((i − j)�t , (i − j + 1)�t )|| = 1,

||((i − j + 1)�t , (i − j + 1)�t + bt )|| = 0}.
Because of the disjoint nature of A1(a, b) to other regions of A(c, d) in the two-dimensional
space when (a, b) and (c, d) are nonoverlapping intervals of the line, we have

≤ Pr{||(0, �t )|| = 1, ||((i − j)�t , (i − j + 1)�t )|| = 1, }
× Pr{||A1(�t , �t + bt )|| = 0}
× Pr{||A1((i − j + 1)�t , (i − j + 1)�t + bt )|| = 0, }

= O(�2
t )O(e−bt )O(e−bt )

≤ O

(�2

t2

)
. (34)
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To sum up, from (33) and (34) we obtain, when p = 0 (r = 1),

∑
j∈Bi,j �=i

E[Z+
i (bt )Z

+
j (bt )] ≤ 2

bt

�t

O

(�2
t

t2

)
≤ O

(
ln t

t3

)
.

For the case in which p ≥ 1 (r ≥ 3), the bounds of (I), (II), and (III) in (32) are evaluated next.
For (I) in (32) and 1 ≤ |i − j | ≤ �ln ln t/�t�,

E[Z+
j (bt )Z

+
i (bt )] = E[Z+

1 (bt )Z
+
i−j+1(bt )] (by the stationary property of �

(2)
1 )

< Pr{||(0, �t )|| = 1, ||((i − j)�t , (i − j + 1)�t )|| = 1,

||(�t , �t + bt ) \ ((i − j)�t , (i − j + 1)�t )|| ≤ r − 2}
≤ Pr{||(0, �t )|| = 1, ||((i − j)�t , (i − j + 1)�t )|| = 1}

× Pr

{
||A1(�t , �t + bt ) \ A((i − j)�t , (i − j + 1)�t )|| ≤

⌊
r − 2

2

⌋}

= O(�2
t )O

(
e−bt

b
�(r−2)/2�!
t

�(r − 2)/2�!
)

= O

( �2
t

t ln t

)
. (35)

For (II) in (32) and �ln ln t/�t� + 1 ≤ |i − j | ≤ �bt/�t�,

E[Z+
j (bt )Z

+
i (bt )] = E[Z+

1 (bt )Z
+
i−j+1(bt )]

≤ Pr{||(0, �t )|| = 1, ||((i − j)�t , (i − j + 1)�t )|| = 1,

||(�t , �t + bt ) \ ((i − j)�t , (i − j + 1)�t )|| ≤ r − 2,

||(�t + bt , �t + bt + ln ln t)|| ≤ r − 1}
≤ Pr{||(0, �t )|| = 1, ||((i − j)�t , (i − j + 1)�t )|| = 1}

× Pr{||A1(�t , �t + bt ) \ A((i − j)�t , (i − j + 1)�t )|| ≤ r − 2}
× Pr{||A1(�t + bt , �t + bt + ln ln t)|| ≤ r − 1}

= O(�2
t )O

(
e−bt

b
�(r−2)/2�
t

�(r − 2)/2�!
)

O

(
e− ln ln t (ln ln t)�(r−1)/2�

�(r − 1)/2�!
)

= O

(�2
t (ln ln t)�(r−1)/2�

t (ln t)2

)
. (36)

For (III) in (32) and �bt/�t� + 1 ≤ i − j ≤ �2bt/�t�, using an argument similar to the one
used above for the case in which p = 0, we have

E[Z+
j (bt )Z

+
i (bt )] = E[Z+

1 (bt )Z
+
i−j+1(bt )]

= Pr{||(0, �t )|| = 1, ||(�t , �t + bt )|| ≤ r − 1,

||((i − j)�t , (i − j + 1)�t )|| = 1,

||((i − j + 1)�t , (i − j + 1)�t + bt )|| ≤ r − 1}
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≤ Pr{||(0, �t )|| = 1, ||((i − j)�t , (i − j + 1)�t )|| = 1, }
× Pr{||A1(�t , �t + bt )|| ≤ r − 1}
× Pr{||A1((i − j + 1)�t , (i − j + 1)�t + bt )|| ≤ r − 1}

= O(�2
t )O

(
e−bt

b
�(r−1)/2�
t

�(r − 1)/2�!
)

O

(
e−bt

b
�(r−1)/2�
t

�(r − 1)/2�!
)

= O

(�2
t

t2

)
. (37)

Therefore, from (35), (36), and (37) we have, for p ≥ 1,∑
j∈Bi,j �=i

E[Z+
i (bt )Z

+
j (bt )] =

∑
1≤|j−i|≤�ln ln t/�t �

E[Z+
i (bt )Z

+
j (bt )]

+
∑

�ln ln t/�t �<|j−i|≤�bt /�t �
E[Z+

i (bt )Z
+
j (bt )]

+
∑

�bt /�t �≤|i−j |≤�2bt /�t �
E[Z+

i (bt )Z
+
j (bt )]

≤ 2

⌊
ln ln t

�t

⌋
O

( �2
t

t ln t

)
+ 2

⌊
bt

�t

⌋
O

(�2
t (ln ln t)�(r−1)/2�

t (ln t)2

)

+ 2

⌊
2bt

�t

⌋
O

(�2
t

t2

)
.

This completes the proof.

Proof of Lemma 5. For y → 0,

Pr{‖(0, y)‖ ≥ r + 1}

=
�(r+1)/2�∑

j=0

Pr{‖A1(0, y)‖ = j, ‖A2(0, y)‖ ≥ r + 1 − 2j}

+ Pr

{
‖A1(0, y)‖ ≥

⌊
r + 1

2

⌋
+ 1

}
,

then by substituting V (A1(0, y)) = f2(0, 0)y2(1 + o(1)) (o(1) → 0 as y → 0), and
V (A2(0, y)) = 2y − V (A1(0, y)), we obtain

=
�(r+1)/2�∑

j=0

{
exp

(
−{f2(0, 0)y2}

)
(f2(0, 0)y2)j

j ! exp (−2y)
(2y)r+1−2j

(r + 1 − 2j)!
}

+ exp{−f2(0, 0)y2} (f2(0, 0)y2)�(r+1)/2�+1

(�(r + 1)/2� + 1)! + smaller-order terms of y

=
{�(r+1)/2�∑

j=0

f2(0, 0)j

j !
2r+1−2j

(r + 1 − 2j)!
}
yr+1 + smaller-order terms of y. (38)
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Also,

Pr{‖(0, at )‖ ≥ r + 1} − Pr{‖(δt , at )‖ ≥ r + 1}
= Pr{‖(0, at )‖ ≥ r + 1, ‖(δt , at )‖ ≤ r}

= Pr{‖(0, δt )‖ ≥ 1, ‖(δt , at )‖ = r} +
r−1∑
j=0

Pr{‖(0, δt )‖ ≥ r + 1 − j, ‖(δt , at )‖ = j}

= Pr{‖(0, δt )‖ = 1, ‖(δt , at )‖ = r} + Pr{‖(0, δt )‖ ≥ 2, ‖(δt , at )‖ = r}

+
r−1∑
j=0

Pr{‖(0, δt )‖ ≥ r + 1 − j, ‖(δt , at )‖ = j}.

Therefore,

Pr{‖(0, δt )‖ = 1, ‖(δt , at )‖ = r}
= Pr{‖(0, at )‖ ≥ r + 1} − Pr{‖(δt , at )‖ ≥ r + 1}

− Pr{‖(0, δt )‖ ≥ 2, ‖(δt , at )‖ = r} −
r−1∑
j=0

Pr{‖(0, δt )‖ ≥ r + 1 − j, ‖(δt , at )‖ = j},

then, using (38) for y = at = r
√

x/t and δt = 1/t2, and knowing that Pr{‖(0, δt )‖ ≥
2, ‖(δt , at )‖ = r} + ∑r1

j=0 Pr{‖(0, δt )‖ ≥ r + 1 − j, ‖(δt , at )‖ = j} = O(δ2
t ), we obtain

= (r + 1)δtx

t

�(r+1)/2�∑
j=0

2r+1−2j f2(0, 0)j

j ! (r + 1 − 2j)! (1 + o(1)). (39)

This completes the proof of Lemma 5.

For the analysis of the minimum r-scan length, Lemmas 6 and 7 provide the necessary
estimates under the continuity assumption of the density g. Lemma 6 gives the results relevant
to Property 1, describing the convergence in probability of n−

t (at ) to N−
t (at ). Lemma 7 is

required as an error bound of u2 in (1) when applying the Chen–Stein method to n−
t (at ).

Proof of Lemma 6. The estimates (12) and (13) give the bounds of events

{||(0, δt )|| ≥ 2, ||(δt , at )|| ≥ r − 1} and

{||(0, δt )|| = 1, ||(0, at )|| < r + 1, ||(0, at + δt )|| ≥ r + 1},
respectively. As discussed in Property 1, their value contributes to the estimate of the probability
of the event {n−

t (at ) �= N−
t (at )},

Pr{||(0, δt )|| ≥ 2, ||(δt , at )|| ≥ r − 1}
≤ Pr{||(0, δt )|| ≥ 2}
= Pr{||A1(0, δt )|| ≥ 1} + Pr{||A1(0, δt )|| = 0, ||A1(0, δt )|| ≥ 2}
= O(δ2).
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and this proves the bound in (12). Paraphrasing the argument above, we can also prove the
bound in (13),

Pr{||(0, δt )|| = 1, ||(0, at )|| < r + 1, ||(0, at + δt )|| ≥ r + 1}
≤ Pr{||(0, δt )|| = 1, ||(δt , at )|| < r, ||(at , at + δt )|| ≥ 1}
< Pr{||(0, δt )|| = 1, ||(at , at + δt )|| ≥ 1}
= O(δ2

t ).

Proof of Lemma 7. Paraphrasing the argument of (39), for 2 ≤ i ≤ �at/δt� + 1, we have

E[Z−
1 (at )Z

−
i (at )]

= Pr{||(0, δt )|| = 1, ||(δt , at )|| ≥ r||((i − 1)δt , iδt )|| = 1, ||(iδt , (i − 1)δt + at )|| ≥ r}
≤ Pr{||(0, δt )|| = 1, ||((i − 1)δt , iδt )|| = 1, ||(iδt , (i − 1)δt + at )|| ≥ r}
= O(δt δta

r
t ).

This proves the bound in (14).
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