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ABSTRACT. The nature of local thermal instability in static and dynamic radiating 
plasmas described by an equilibrium cooling function has been reexamined. Several 
new results have been found. In a plasma in both thermal and hydrostatic equilib­
rium, if the cooling function is not an explicit function of position, and does not 
display isentropic thermal instability (i.e. sound waves are thermally stable), then 
isobaric thermal instability by the Field criterion is present if and only if convective 
instability is present by the Schwarzschild criterion. In this case, thermal oversta-
bility does not occur. For the case of a dynamical plasma we present a very general 
Lagrangian equation for the development of nonradial thermal instability. In the 
limit of large cooling time to free-fall time ratio, the equation is solved analytically 
by WKB J techniques. Results are directly applicable to cluster X-ray cooling flows. 
Such flows are surprisingly stable except for perturbation wavenumbers that are very 
nearly radial. We believe that the origin of cooling flow optical filaments is not to 
be found in linear thermal instability. 

1. INTRODUCTION 

That a diffuse hot plasma can be thermally unstable is well-known (Field 1965, 
Mathews and Bregman 1978). We have reexamined the nature of thermal instability 
in hot plasmas. Using standard fluid techniques, we have found some surprising 
results. They include: (a) In a static plasma characterized by a mass-specific 
radiative loss function £ that depends upon density p and temperature T (but not 
position r ) , thermal instability by the Field criterion generally occurs if and only if 
convective instability by the Schwarzschild criterion is present. If the explicit spatial 
gradient d£/dr is sufficiently large and pointed opposite to the direction of gravity, 
then thermal instability or convective instability will necessarily be present, (b) 
Nonradial thermal perturbations ("blobs") in cooling flows are stable throughout 
most of the flow. Radial instabilities are present, but mode-coupling may severely 
restrict their nonlinear development. At cool temperatures ( < 10 K) and small 
radii, flow convergence can make buoyant oscillations significantly overstable. This 
may lead to nonlinear clumping in the accreting gas at the center of cooling flows. 
We present here an explanation of these finding and speculate on their implications. 
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2. THERMAL INSTABILITY OF A STATIC PLASMA 

A one-dimensional static plasma is described by the loss function equation 
£(p,T,r) = 0, or upon differentiation: 

d£__d£_ dp_ fd£\ dT_ ( d£ 
dr dr dr \dpJT dr \dT/ 

(2.1) 

Using standard transformations, one can rewrite the thermodynamic partial deriva­
tives of £ in terms of temperature derivatives at constant pressure P and constant 
entropy 5 (Balbus and Soker 1988): 

— 
dr 

d£\ 
dTjP 

3dlnP 

5 dr 

dhxp 

dr + *? 
d£ 
dT 

dlnP 

dr 
= 0. (2.2) 

The product of the isobaric temperature derivative of £ and the spatial entropy 
gradient has the same sign as the isentropic derivative of £, unless the explicit 
spatial gradient of £ is sufficiently large, in which case the product has the opposite 
sign. Since the isentropic derivative of £ is generally positive for any standard 
astrophysical cooling function, we may conclude that if £ is independent of r, a 
medium is thermally unstable by the Field criterion if and only if it is convectively 
unstable by the Schwarzschild criterion. This suggests that static models of gaseous 
galactic haloes will quite generally display convective instability, and that thermal 
instabilities will form in a dynamically active background. Equation (2.2) applied 
to a static cooling flow model heated by a 1/r2 source (say relativistic particles from 
an AGN) suggests that regardless of the form of £, either thermal or convective 
instability must be present (but not both). 

3. THERMAL INSTABILITY OF A DYNAMICAL PLASMA 

The equilibrium fluid is considered to be a flowing, spherically symmetric, 
time-independent, optically thin plasma subject to bulk heating/cooling processes. 
Self-gravity is assumed to be negligible, but an external gravitational potential 
is present. Quasi-hydrostatic equilibrium need not prevail. We consider the local 
stability of this flow to general spheroidal perturbations. We introduce the quantity 
a, which measures the radial separation of two close points as a function of time 
t. The spheroidal perturbations of the fluid displacement vector £ have associated 
radial wave number k, (kr ^> 1), and spherical harmonic index /. Neglecting thermal 
conduction the evolutionary equation for the radial displacement amplitude £ of a 
comoving fluid element is found to be: 

Tt + 5TQT'P ag 
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and n is the mean mass per particle and kg is the Boltzmann constant. The quantity 
£ enters into the equation only in the ratio £/a since a radial displacement that is 
"frozen" into the flow would scale proportional to a with no physical consequences. 

The applications of eq. (3.1) to cooling flows are ideally suited to the use 
of WKBJ techniques because the cooling time is long compared to sound crossing 
time. We define 

0 2 _ 1 + 
k2r2 

1(1 + l)a2 

- l 
2 _ / 3 d l n P dlnp 

UBV = 9\l~d'r dr~ 
(3.3) 

where WBV is the effective Brunt-Vaisala frequency. The WKBJ solution to eq. 
(3.1) is 

0±i p PwBvdt' 

exp 
/ I 5 i u r , s - a 7 - + 3-37-

• / 

5 dlnp _ dlnP 
3 dr dr 

dt' (3.4) 

Equation (3.4) may be interpreted as follows. The term 1//3 on the left-hand-side 
of the equation is a geometric factor which converts £ to |£| for large I. The first 
grouping of terms on the left-hand-side is simply the WKBJ expression for comoving 
Brunt-Vaisala, oscillations. In the following group, there are two thermal terms. If 
the isentropic condition QT,S < 0 holds, then the nearly adiabatic oscillations are 
overstable, pumped by buoyancy forces that are aided by radiative losses. The 
second thermal term involves the explicit spatial gradient of the loss rate, and is 
generally present if there is a central heating source in the flow, as in a Compton 
driven wind (Begelman et al. 1983). In this case, overstability becomes possible 
if the heating increases on a downward displacement of the fluid element, and 
decreases on an upward displacement. 

The physically important quantity 6p/p (relative Eulerian density perturba­
tion) for WKBJ solutions is: 

6_p 

9 

ZdlnP 
5 dr 

dlnp 
dr 

(3.5) 

In other words, the relative Eulerian density amplitude is simply the radial displace­
ment divided by the entropy scale height of the flow. Note that the true test of 
instability is the behavior of Sp/p, since it is ultimately Eulerian perturbations that 
measure physical changes in flow quantities. Equations (3.4) and (3.5) can be used 
to give the rough scaling of 6p/p as a function of equilibrium Eulerian position r 
of an accreting fluid element, assuming power-like behavior for background flow 
variable. For oscillatory perturbations with (3 ~ unity, on the most unstable 
part of the equilibrium cooling curve where £/T ~ T - 3 / 2 (Raymond, Cox, and 
Smith 1976), © r , s is very small. Then 8p/p ~ r - 1 ' 2 for an isothermal sphere 
potential, and ~ r - 1 ' 4 for a central point mass. Under these conditions, oscillatory 
instabilities are generally mild away from r = 0. As shown in the two figures, they 
all but disappear in more detailed treatments of cooling flows. Deep in the core 
radius of the cluster potential, if g ~ r then Sp/p ~ r - 1 and an overstability of 
an essentially adiabatic character becomes important. Clumpy gas at the center 
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T • 1 ' r 

Figure 1. Evolution of two perturbations in typical cluster cooling flow: /? = 
1 corresponds to radially displaced perturbation (kr <C /(/ + 1)), /3 = 0.3 to 
a more nearly azimuthal displacment (kr ~ 3 X i(i + 1)). Background flow is 
"standard, no star-formation" model of White and Sarazin (19897). Dashed line is 
numerical solution to eq. (3.1), dotted line is WKBJ solution eq. (3.4). (They are 
indistinguishable.) Solid line is 6p/p; little growth is evident down to 10 kpc. Field 
type instability would obtain as /? —> 0. 
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of cooling flows is in fact seen or inferred in millimeter, optical and x-ray studies 
(Lazareff et al. 1988, Hu et al. 1985, Canizares et al. 1987). 

The importance of our findings is that if significant amounts of matter are 
cooling and dropping out of x-ray accretion flows at large radii, highly nonlinear 
(and nonacoustical) disturbances are necessary ab initio. To both grow and avoid 
detection (there is no direct evidence of cooling gas at large distances from cluster 
or galactic center [Hu et al. 1985]), several constraints on the matter are necessary 
(e.g. Nulsen 1986, Thomas 1987): no buoyant oscillations, small blob sizes, no 
dynamical or conductive assimilation into diffuse flow, ~ 100% efficiency of dark 
matter formation, etc. Alternatively, if one adopts the straightforward implication 
of this work that rapidly cooling, unstable blobs are not present at large flow radii, 
nonsteady accretion is needed to explain the x-ray observations. This conclusion 
is also independly supported by the recent discovery of large amounts of accreting 
molecular gas in the inner 5 kpc of NGC1275 (Lazareff et al. 1988). 

5. CONCLUSIONS 

[1] In gravitationally bound hot plasmas, there is an important connection 
between thermal instability by the Field criterion and convective instability by the 
Schwarzschild criterion. If the radiative loss function £ is independent of position 
and is of any standard astrophysical form, the two occur simultaneously. If thermal 
instability is present under these conditions, it will form in a convectively unstable 
background. A large spatial gradient (opposite to gravity) in £ forces either one or 
the other of the instabilities to be present. 

[2] In slowly settling cooling flows, nonradial perturbations are essentially 
stable at large radii, and potentially overstable at very small radii. It is only 
when the oscillation frequency approaches the cooling time that Field-type thermal 
instability becomes important. In particular, cooling blobs must be highly nonlinear 
to grow and drop out of accretion flows. The alternative is young or transient cooling 
flows. 
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