SOME RESULTS ON STABLE *p*-HARMONIC MAPS *by* LEUNG-FU CHEUNG and PUI-FAI LEUNG

(Received 9 July, 1992)

1. Introduction. For each $p \in [2, \infty)$, a *p*-harmonic map $f: M^m \to N^n$ is a critical point of the *p*-energy functional

$$E=\frac{1}{p}\int_{\mathcal{M}}\|df\|^{p}\,dv_{m},$$

where M^m is a compact and N^n a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ -pinched N^n and certain type of hypersurface N^n in \mathbb{R}^{n+1} , the only stable *p*-harmonic maps for any compact M^m are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.

THEOREM 1. Let $S^{n_1} \times \ldots \times S^{n_k}$ be a product of k unit spheres of dimensions n_1, \ldots, n_k with $\min\{n_1, \ldots, n_k\} > p$. Then for any compact M^m , any stable p-harmonic map from M^m to $S^{n_1} \times \ldots \times S^{n_k}$ must be a constant map.

We note that the simple inductive proof for the case p = 2 in Theorem 1 as given in [2, p. 381] does not seem to work for the case p > 2. Instead we shall deduce Theorem 1 from the following more general theorem which is a generalization of the main theorem in [2].

Consider now N^n a complete submanifold in the Euclidean space \mathbb{R}^{n+r} , where the codimension r is arbitrary. Let B denote the second fundamental form given by

$$\tilde{\nabla}_X Y = \nabla_X Y + B(X, Y)$$

for any tangent vectors X, Y to N^n , where $\overline{\nabla}$ and ∇ denote the connection on \mathbb{R}^{n+r} and N^n respectively. Define the function $h: N^n \to \mathbb{R}$ by

$$h(x) = \max\{||B(u, u)||^2 : u \in TN_x \text{ and } ||u|| = 1\}$$

and at each $x \in N^n$, define the function $\phi: TN_x \to \mathbb{R}$ by

$$\phi(v) = \sum_{i=1}^{n} ||B(v, v_i)||^2,$$

where $\{v_1, \ldots, v_n\}$ is an orthonormal basis for TN_x . As was noted in [2, p. 382], the value of ϕ is independent of the choice of this orthonormal basis. At each $x \in N^n$ and for each unit vector $v \in TN_x$, we let $\operatorname{Ric}(v, v)$ denote the Ricci curvature of N^n at x in the direction v.

THEOREM 2. If at each $x \in N^n$ and for any unit vector $v \in TN_x$, we have

$$(p-2)h(x) + \phi(v) < \operatorname{Ric}(v, v),$$

then for any compact M^m , the only stable p-harmonic maps $f: M^m \to N^n$ are the constant maps.

Glasgow Math. J. 36 (1994) 77-80.

Proof of Theorem 1. For $S^{n_1} \times \ldots \times S^{n_k} \subset \mathbb{R}^{n_1+1} \times \ldots \times \mathbb{R}^{n_k+1} = \mathbb{R}^{n_1+\ldots+n_k+k}$, an easy calculation shows that at each $x \in S^{n_1} \times \ldots \times S^{n_k}$ and for any unit vector v in the tangent space to $S^{n_1} \times \ldots \times S^{n_k}$ at x, we have h(x) = 1, $\phi(v) = 1$ and $\operatorname{Ric}(v, v) \ge \min\{n_1, \ldots, n_k\} - 1$. Therefore, Theorem 1 follows from Theorem 2.

2. Proof of Theorem 2. Let us first recall the second variation formula for a *p*-harmonic map $f: M^m \to N^n$.

Let v be a vector field on N^n and let $\phi_t: N^n \to N^n$ be the one-parameter group of transformations on N^n generated by v. Let $f_t = \phi_t \circ f$ and put

$$E_{\upsilon}(t)=\frac{1}{p}\int \|df_t\|^p,$$

where all integrals will be taken over M^m with respect to the volume element dv_m on M^m . Let e_a , a = 1, ..., m be a local orthonormal frame field on M^m . Then we have [1, p, 5]

$$E_{v}''(0) = (p-2) \int \|df\|^{p-4} \left\{ \sum_{a} \left\langle \nabla_{f_{*}e_{a}}v, f_{*}e_{a} \right\rangle \right\}^{2} + \int \|df\|^{p-2} \sum_{a} \left\{ \|\nabla_{f_{*}e_{a}}v\|^{2} + \left\langle R(v, f_{*}e_{a})v, f_{*}e_{a} \right\rangle \right\}^{2}$$

where $\langle , \rangle, \nabla$ and $R(x, y) = \{\nabla_x, \nabla_y\} - \nabla_{[x,y]}$ are the Riemannian metric, the connection and the curvature tensor respectively on N^n .

Now for any vector v in \mathbb{R}^{n+r} , we let $v = v^T + v^N$, where v^T is tangent to N^n and v^N is normal to N^n .

Recall that for any vector v normal to N^n , the shape operator corresponding to v denoted by A^v is defined by

$$A^{v}(x) = -(\tilde{\nabla}_{x}v)^{T}$$
 for all $x \in TN$.

 A^{v} is symmetric and satisfies

$$\langle B(x, y), v \rangle = \langle A^{v}(x), y \rangle$$
 for all $x, y \in TN$.

Now consider a parallel vector field v in \mathbb{R}^{n+r} . The second variation corresponding to v^{T} is given by

$$E_{v^{T}}^{"'}(0) = (p-2) \int ||df||^{p-4} \left\{ \sum_{a} \left\langle \nabla_{f_{*}e_{a}} v^{T}, f_{*}e_{a} \right\rangle \right\}^{2} + \int ||df||^{p-2} \sum_{a} \left\{ ||\nabla_{f_{*}e_{a}} v^{T}||^{2} + \left\langle R(v^{T}, f_{*}e_{a})v^{T}, f_{*}e_{a} \right\rangle \right\}.$$

We have [2, p. 381]

$$\nabla_{f_*e_a} v^T = A^{v^N}(f_*e_a)$$

and hence

$$\left\{\sum_{a}\left\langle \nabla_{f_{*}e_{a}}v^{T},f_{*}e_{a}\right\rangle \right\}^{2}=\left\langle \sum_{a}B(f_{*}e_{a},f_{*}e_{a}),v^{N}\right\rangle ^{2}.$$

Now we consider the quadratic form Q on \mathbb{R}^{n+r} defined by

$$Q(v) = E_{v^{T}}^{"}(0)$$

= $(p-2) \int ||df||^{p-4} \left\langle \sum_{a} B(f_{*}e_{a}, f_{*}e_{a}), v^{N} \right\rangle^{2}$
+ $\int ||df||^{p-2} \sum_{a} \left\{ ||A^{v^{N}}(f_{*}e_{a})||^{2} + \left\langle R(v^{T}, f_{*}e_{a})v^{T}, f_{*}e_{a} \right\rangle \right\}.$

We shall compute the trace of Q. At a point $y \in M^m$, we want to evaluate the trace of the integrands at the point $x = f(y) \in N^n$. Since this trace is independent of the choice of an orthonormal basis for \mathbb{R}^{n+r} at the point x, we choose an orthonormal basis $\{v_i, v_q\}$, $i = 1, \ldots, n, q = n + 1, \ldots, n + r$ such that the v_i are tangent to N^n and the v_q are normal to N^n . A direct calculation as in [2, p. 382] shows that

trace(Q) =
$$(p-2) \int ||df||^{p-4} \left\| \sum_{a} B(f_*e_a, f_*e_a) \right\|^2$$

+ $\int ||df||^{p-2} \sum_{a,i} \{ ||B(f_*e_a, v_i)||^2 + \langle R(v_i, f_*e_a)v_i, f_*e_a \rangle \}.$

Using the Schwarz inequality, we have

$$\begin{split} \left\| \sum_{a} B(f_{*}e_{a}, f_{*}e_{a}) \right\|^{2} &= \sum_{a,b} \left\langle B(f_{*}e_{a}, f_{*}e_{a}), B(f_{*}e_{b}, f_{*}e_{b}) \right\rangle \\ &\leq \sum_{a,b} \left\| B(f_{*}e_{a}, f_{*}e_{a}) \right\| \left\| B(f_{*}e_{b}, f_{*}e_{b}) \right\| \\ &\leq \sum_{a,b} h(x) \left\| f_{*}e_{a} \right\|^{2} \left\| f_{*}e_{b} \right\|^{2} \\ &= h(x) \Big\{ \sum_{a} \left\| f_{*}e_{a} \right\|^{2} \Big\}^{2} \\ &= \left\| df \right\|^{2} \Big\{ \sum_{a} h(x) \left\| f_{*}e_{a} \right\|^{2} \Big\}. \end{split}$$

Now suppose f is not a constant map. Then for each a such that $f_*e_a \neq 0$ at x, we put $f_*e_a = ||f_*e_a|| u_a$. We have

trace(Q)
$$\leq \int ||df||^{p-2} \sum_{a} ||f_*e_a||^2 \{(p-2)h(x) + \phi(u_a) - \operatorname{Ric}(u_a, u_a)\},$$

where \sum_{a} is taken over those *a* such that $f_*e_a \neq 0$. Therefore, by the assumption in Theorem 2,

and so f is not stable.

REFERENCES

1. F. Duzaar and M. Fuchs, Existance and regularity of functions which minimize certain energies in homotopy classes of mappings, *Asymp. Anal.* 5 (1991), No. 2, 129–144.

2. P.-F. Leung, A note on stable harmonic maps, J. London Math. Soc. (2) 29 (1984), 380–384.

3. H. Takeuchi, Stability and Liouville theorems of *p*-harmonic maps, Japan J. Math. 17 (1991), 317-332.

Department of Mathematics National University of Singapore Singapore 0511