SOME RESULTS ON STABLE p-HARMONIC MAPS by LEUNG-FU CHEUNG and PUI-FAI LEUNG

(Received 9 July, 1992)

1. Introduction. For each $p \in[2, \infty)$, a p-harmonic map $f: M^{m} \rightarrow N^{n}$ is a critical point of the p-energy functional

$$
E=\frac{1}{p} \int_{M}\|d f\|^{p} d v_{m}
$$

where M^{m} is a compact and N^{n} a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched N^{n} and certain type of hypersurface N^{n} in \mathbb{R}^{n+1}, the only stable p-harmonic maps for any compact M^{m} are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.

Theorem 1. Let $S^{n_{1}} \times \ldots \times S^{n_{k}}$ be a product of k unit spheres of dimensions n_{1}, \ldots, n_{k} with $\min \left\{n_{1}, \ldots, n_{k}\right\}>p$. Then for any compact M^{m}, any stable p-harmonic map from M^{m} to $S^{n_{1}} \times \ldots \times S^{n_{k}}$ must be a constant map.

We note that the simple inductive proof for the case $p=2$ in Theorem 1 as given in [$2, \mathrm{p} .381$] does not seem to work for the case $p>2$. Instead we shall deduce Theorem 1 from the following more general theorem which is a generalization of the main theorem in [2].

Consider now N^{n} a complete submanifold in the Euclidean space \mathbb{R}^{n+r}, where the codimension r is arbitrary. Let B denote the second fundamental form given by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y)
$$

for any tangent vectors X, Y to N^{n}, where $\tilde{\nabla}$ and ∇ denote the connection on \mathbb{R}^{n+r} and N^{n} respectively. Define the function $h: N^{n} \rightarrow \mathbb{R}$ by

$$
h(x)=\max \left\{\|B(u, u)\|^{2}: u \in T N_{x} \text { and }\|u\|=1\right\}
$$

and at each $x \in N^{n}$, define the function $\phi: T N_{x} \rightarrow \mathbb{R}$ by

$$
\phi(v)=\sum_{i=1}^{n}\left\|B\left(v, v_{i}\right)\right\|^{2}
$$

where $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis for $T N_{x}$. As was noted in [2, p. 382], the value of ϕ is independent of the choice of this orthonormal basis. At each $x \in N^{n}$ and for each unit vector $v \in T N_{x}$, we let $\operatorname{Ric}(v, v)$ denote the Ricci curvature of N^{n} at x in the direction v.

Theorem 2. If at each $x \in N^{n}$ and for any unit vector $v \in T N_{x}$, we have

$$
(p-2) h(x)+\phi(v)<\operatorname{Ric}(v, v)
$$

then for any compact M^{m}, the only stable p-harmonic maps $f: M^{m} \rightarrow N^{n}$ are the constant maps.

Proof of Theorem 1. For $S^{n_{1}} \times \ldots \times S^{n_{k}} \subset \mathbb{R}^{n_{1}+1} \times \ldots \times \mathbb{R}^{n_{k}+1}=\mathbb{R}^{n_{1}+\ldots+n_{k}+k}$, an easy calculation shows that at each $x \in S^{n_{1}} \times \ldots \times S^{n_{k}}$ and for any unit vector v in the tangent space to $S^{n_{1}} \times \ldots \times S^{n_{k}}$ at x, we have $h(x)=1, \phi(v)=1$ and $\operatorname{Ric}(v, v) \geq$ $\min \left\{n_{1}, \ldots, n_{k}\right\}-1$. Therefore, Theorem 1 follows from Theorem 2.
2. Proof of Theorem 2. Let us first recall the second variation formula for a p-harmonic map $f: M^{m} \rightarrow N^{n}$.

Let v be a vector field on N^{n} and let $\phi_{t}: N^{n} \rightarrow N^{n}$ be the one-parameter group of transformations on N^{n} generated by v. Let $f_{t}=\phi_{t} \circ f$ and put

$$
E_{v}(t)=\frac{1}{p} \int\left\|d f_{t}\right\|^{p}
$$

where all integrals will be taken over M^{m} with respect to the volume element $d v_{m}$ on M^{m}. Let $e_{a}, a=1, \ldots, m$ be a local orthonormal frame field on M^{m}. Then we have [1, p. 5]

$$
\begin{aligned}
E_{v}^{\prime \prime}(0)= & (p-2) \int\|d f\|^{p-4}\left\{\sum_{a}\left\langle\nabla_{f_{*} e_{a}} v, f_{*} e_{a}\right\rangle\right\}^{2} \\
& +\int\|d f\|^{p-2} \sum_{a}\left\{\left\|\nabla_{f_{*} e_{u}} v\right\|^{2}+\left\langle R\left(v, f_{*} e_{a}\right) v, f_{*} e_{a}\right\rangle\right.
\end{aligned}
$$

where $\langle\rangle,, \nabla$ and $R(x, y)=\left\{\nabla_{x}, \nabla_{y}\right\}-\nabla_{[x, y]}$ are the Riemannian metric, the connection and the curvature tensor respectively on N^{n}.

Now for any vector v in \mathbb{R}^{n+r}, we let $v=v^{T}+v^{N}$, where v^{T} is tangent to N^{n} and v^{N} is normal to N^{n}.

Recall that for any vector v normal to N^{n}, the shape operator corresponding to v denoted by A^{v} is defined by

$$
A^{v}(x)=-\left(\tilde{\nabla}_{x} v\right)^{T} \quad \text { for all } x \in T N .
$$

A^{v} is symmetric and satisfies

$$
\langle B(x, y), v\rangle=\left\langle A^{v}(x), y\right\rangle \quad \text { for all } x, y \in T N
$$

Now consider a parallel vector field v in \mathbb{Q}^{n+r}. The second variation corresponding to v^{T} is given by

$$
\begin{aligned}
E_{v}^{\prime \prime} r(0)= & (p-2) \int\|d f\|^{p-4}\left\{\sum_{a}\left\langle\nabla_{f_{*} e_{a}} v^{T}, f_{*} e_{a}\right\rangle\right\}^{2} \\
& +\int\|d f\|^{p-2} \sum_{a}\left\{\left\|\nabla_{f_{*} e_{a}} v^{T}\right\|^{2}+\left\langle R\left(v^{T}, f_{*} e_{a}\right) v^{T}, f_{*} e_{a}\right\rangle\right\}
\end{aligned}
$$

We have [2, p. 381]

$$
\nabla_{f_{*} e_{a}} v^{r}=A^{v^{N}}\left(f_{*} e_{a}\right)
$$

and hence

$$
\left\{\sum_{a}\left\langle\nabla_{f_{*} e_{a}} v^{T}, f_{*} e_{a}\right\rangle\right\}^{2}=\left\langle\sum_{a} B\left(f_{*} e_{a}, f_{*} e_{a}\right), v^{N}\right\rangle^{2}
$$

Now we consider the quadratic form Q on \mathbb{R}^{n+r} defined by

$$
\begin{aligned}
Q(v)= & E_{v}^{\prime \prime} \tau(0) \\
= & (p-2) \int\|d f\|^{p-4}\left\langle\sum_{a} B\left(f_{*} e_{a}, f_{*} e_{a}\right), v^{N}\right\rangle^{2} \\
& +\int\|d f\|^{p-2} \sum_{a}\left\{\left\|A^{\nu^{N}}\left(f_{*} e_{a}\right)\right\|^{2}+\left\langle R\left(v^{T}, f_{*} e_{a}\right) v^{T}, f_{*} e_{a}\right\rangle\right\}
\end{aligned}
$$

We shall compute the trace of Q. At a point $y \in M^{m}$, we want to evaluate the trace of the integrands at the point $x=f(y) \in N^{n}$. Since this trace is independent of the choice of an orthonormal basis for \mathbb{R}^{n+r} at the point x, we choose an orthonormal basis $\left\{v_{i}, v_{q}\right\}$, $i=1, \ldots, n, q=n+1, \ldots, n+r$ such that the v_{i} are tangent to N^{n} and the v_{q} are normal to N^{n}. A direct calculation as in [2, p. 382] shows that

$$
\begin{aligned}
\operatorname{trace}(Q)= & (p-2) \int\|d f\|^{p-4}\left\|\sum_{a} B\left(f_{*} e_{a}, f_{*} e_{a}\right)\right\|^{2} \\
& +\int\|d f\|^{p-2} \sum_{a, i}\left\{\left\|B\left(f_{*} e_{a}, v_{i}\right)\right\|^{2}+\left\langle R\left(v_{i}, f_{*} e_{a}\right) v_{i}, f_{*} e_{a}\right\rangle\right\}
\end{aligned}
$$

Using the Schwarz inequality, we have

$$
\begin{aligned}
\left\|\sum_{a} B\left(f_{*} e_{a}, f_{*} e_{a}\right)\right\|^{2} & =\sum_{a, b}\left\langle B\left(f_{*} e_{a}, f_{*} e_{a}\right), B\left(f_{*} e_{b}, f_{*} e_{b}\right)\right\rangle \\
& \leq \sum_{a, b}\left\|B\left(f_{*} e_{a}, f_{*} e_{a}\right)\right\|\left\|B\left(f_{*} e_{b}, f_{*} e_{b}\right)\right\| \\
& \leq \sum_{a, b} h(x)\left\|f_{*} e_{a}\right\|^{2}\left\|f_{*} e_{b}\right\|^{2} \\
& =h(x)\left\{\sum_{a}\left\|f_{*} e_{a}\right\|^{2}\right\}^{2} \\
& =\|d f\|^{2}\left\{\sum_{a} h(x)\left\|f_{*} e_{a}\right\|^{2}\right\} .
\end{aligned}
$$

Now suppose f is not a constant map. Then for each a such that $f_{*} e_{a} \neq 0$ at x, we put $f_{*} e_{a}=\left\|f_{*} e_{a}\right\| u_{a}$. We have

$$
\operatorname{trace}(Q) \leq \int\|d f\|^{p-2} \sum_{a}\left\|f_{*} e_{a}\right\|^{2}\left\{(p-2) h(x)+\phi\left(u_{a}\right)-\operatorname{Ric}\left(u_{a}, u_{a}\right)\right\}
$$

where \sum_{a} is taken over those a such that $f_{*} e_{a} \neq 0$. Therefore, by the assumption in Theorem 2,

$$
\operatorname{trace}(Q)<0
$$

and so f is not stable.

REFERENCES

1. F. Duzaar and M. Fuchs, Existance and regularity of functions which minimize certain energies in homotopy classes of mappings, Asymp. Anal. 5 (1991), No. 2, 129-144.
2. P.-F. Leung, A note on stable harmonic maps, J. London Math. Soc. (2) 29 (1984), 380-384.
3. H. Takeuchi, Stability and Liouville theorems of p-harmonic maps, Japan J. Math. 17 (1991), 317-332.

Department of Mathematics
National University of Singapore
Singapore 0511

