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GENERALIZED RADON TRANSFORM AND LEVY’S
BROWNIAN MOTION, II*®

AKIO NODA

81. Introduction

As a continuation of the author’s paper [19], we shall investigate the
null spaces of a dual Radon transform R*, in connection with a Lévy’s
Brownian motion X with parameter space (R", d). We shall follow the
notation used in (I), [19].

We begin with a brief review of the general framework behind the
representation of Chentsov type:

(1) X(x) = [, Wdh) = W(BJ),

with B,: = {he H; xc h}. It consists of the following:

(i) A Lévy’s Brownian motion X = {X(x); x€ M} with mean 0 and
variance d(x, y) = E[(X(x) — X(»))’], where d(x, y) is an L'-embeddable
(semi-)metric on M;

(ii) A Gaussian random measure W = {W(dh); he H} based on a
measure space (H,v) such that H C 2” and v is a positive measure on H
satisfying v(B,) < co and

(2)  d(x,y) = w(B. A B,) = f _malx ey for all xye M,
where
T (%, y): = ‘Xh(x) — Ia(y)| = lxh(h) - XB,,(h)I .

As a bridge connecting the metric space (M, d) and the measure space
(H, v), the equation (2) guarantees the existence of a representation of the
form (1) for a Lévy’s Brownian motion X with parameter space (M, d).
The representation (1) of Chentsov type played in (I) (and will play
* Received September 12, 1985.
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also in the present (II)) an important role, and led us to introduce a pair
of integral transformations; one is the generalized Radon transform,

(3) BOW): = | fmdd),  fe LM, m),
and the other is the dual Radon transform
(4) (Be)w): = [ glim(dn),  geLAH,).

DeriNiTION 1. For each subset A C M, we define
(5) DN(A): ={geLXH,v); (R*g)(x) =0 on A} = [15,(h); xe A]*.

This closed subspace of L*H,v) is called the null space of R* relative to
the subset A.

The study of such null spaces N,(A) is of great importance for the
following reason. For each Lévy’s Brownian motion X with parameter
space (M, d), we have a representation of the form (1). Consider an in-
creasing family of closed linear spans [X(x); x € A,] corresponding to each
increasing family of subsets A, with U,.,.. A, = M. Just as in the well-
known theory of canonical representations of Gaussian processes, we wish
to give a description of these [X(x); x € A,] in terms of a Gaussian random
measure W; they are all contained in the big closed subspace

{| emwan; ge )
of L*Q, P). Since one can easily see that
(6) X(); xe Al = {[ e®mW@n); ge N4y}

for every A C M, our problem is to determine completely the null space
N,(A,) of the dual Radon transform R*.

So the main purpose of this paper is to investigate the null spaces
Ny(A,) for a certain increasing family of closed subsets A, of M, such as
A, =V, in the case M = R", where V, denotes the closed ball of radius
e about the origin O, 0 < p < co. Examples of L'-embeddable metrics d
on R* in which we have succeeded in finding a complete description of
N(V,) as well as of [X(x); xe V,] will be explained below.

Sections 3 and 4 concern rotation-invariant distances d on M = R"

which are derived, via the equation (2), from the following choice of H:
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H=1{h,,; t>0, e S} is the set of all half-spaces
h,.: ={xeR"; (x,w) >t} not containing the origin O.

The Euclidean distance |x — y| is a familiar example of such a distance.

The generalized Radon transform (Rf)(h,,) is then given by the inte-
gral of f over the half-space A,, and hence closely related to the classical
Radon transform. This observation leads us to apply the fruitful theory
of the classical Radon transform (see, for example, [9], [12] and [16]) and
solve the problem concerning the null spaces of R*. In fact, by using
the theorem of Ludwig [16] (cf. [20] and [21]), we are able to find a com-
plete description of N,(V,) (Theorem 7) as well as that of [X(x); xe V,]
(Theorem 8).

Our result on the structure of [X(x); xe V,] can be restated in terms

of mutually independent Gaussian processes M,, ,(¢) introduced by McKean
[17]:

(1) M0 = [ X)S,u@etda), t>0,

where ¢ denotes the uniform probability measure on the unit sphere S*-!
and {S, (w); (m,k)ed}, 4: ={(m,k); m >0 and 1 < k< A(m)}, is taken
to be a CONS in L*S""!, ¢) consisting of spherical harmonics. The basic
representation (1) of X yields

(8) My &) = || 1u(ufdBouw),

where the kernel 1,(f) is expressed in terms of the Gegenbauer polynomial
Ci(u) of degree m with q: = (n — 2)/2:

2,() = (const.) f Ol (1 — w)du .

It turns out that the representation (8) of M, .(f) is canonical only
for m < 2 (Theorem 10). Moreover, for m > 3, we determine the dimension
of [B,); t < pl©[M, (t); t < p] (orthogonal complement in L*%2, P))
which can be regarded as the degree of non-canonicality of (8). In this,
way, our Theorems 8 and 10 might be viewed as a development (or refine-
ment) of the result in [17] proved for a Brownian motion with n-dimensional
parameter.

In Section 2 we shall give various kinds of L'-embeddable metrics d
on R". Some of them should be mentioned here.
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The first kind of d depends on the choice of a bounded subset K  R*
such that |[K|> 0 and Oe¢ K. Take the following measure space (Hy, v):

H.:={h,,, ={xeR"; a(x — p)e K} = a 'K + p; e SO(n)/ X, p e R"}
and
dvg(h,,,): = cdadp c>0,

where Y;: = {x € SO(n); aK = K} and da denotes the normalized Haar
measure on SO(n)/Y;. Then, the equation (2) gives us an L!-embeddable
metric d; invariant under every rigid motion on R":

di(x,y) = CJ (@K + x — y) Aa"'K|dx

80(n)/ Sk

—cf 1K+ atx— ) 2 K|da = rillx — ).

The typical choice of K = V, allows us to compute the explicit form
of ry, and get a large class of invariant distances by forming a super-
position of the family {d,,; 0 < p < oo} (cf. Section 2, 2-1). This idea of
superposition is due to Takenaka [24] who gave a nice account of re-
presentations of self-similar Gaussian random fields.

It deserves mention that the generalized Radon transform

(Rf) (h..,) = L{f(a“x +pydx,  h.,eHx,

was discussed in connection with the Pompeiu problem (cf. [26]).

The next kind of d is of the form [|x — y||, where ||x|| is a norm of
negative type ([6] and [8]). Such a norm is characterized as the support
function of a special convex body in R" called a zonoid ([5]), and therefore
admits of the following expression in terms of a bounded symmetric posi-
tive measure ¢ on S*°':

(9) el = [ 15 le(do).

With the help of this well-known expression, the measure space (H,v)
combined with ||x — y|| via (2) is naturally taken to be

v(dh, ) = dir(dw) on the set H of half-spaces A, , .

Note that rotation-invariance of ¢ yields the Euclidean distance |x — y|
up to a constant multiple.
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It is worthwhile to remark that every Lévy’s Brownian motion X with
parameter space (R", ||x — y||]) possesses a notable property: For each line
L in R", restrict the whole parameter space R" to the one-dimensional set
L; then the Gaussian process X,, = {X(x); x € L} coincides with a standard
Brownian motion. In order to get at his definition of Brownian motion
with n-dimensional parameter, Lévy [15] added one more simple condition
that the probability law of X(x) — X(O) is invariant under every rotation
€ SO(n). The class of Lévy’s Brownian motions corresponding to norms
of negative type is thus thought of as a nice extension of Lévy’s original
one.

§2. L'-embeddable metrics on Euclidean space

This section is devoted to the study of the equation (2) connecting a
metric space (R*, d) with a measure space (H, v). Indeed we describe a
variety of L'-embeddable metrics d on R™ and corresponding measures v
on H C 2%, Among them, we should like to mention the following class
of rotation-invariant distances:

10)  dx) =clx—yl+ [ uan [ e - e lad),
0 sn—1
where ¢ > 0 and p is a non-negative measure on (0, o) such that
jw te**u(dt) < oo for any a > 0.
0

This class will be further discussed in Sections 3 and 4.

2-1. The first type of an L'-embeddable metric d on R" is derived
from the d; in Section 1 with the choice of K = V,,. For each u >0,
we set

H,:={,=V,,+p; peR} and v,(dk,): = dp/2|S"'|(u/2)""",

to get the desired distance

A, 9): = [ e 9wuldh) = rux = 3D,
where

(1n ri®) = |(Vup + te) & Vol 2] 8" (u/2)"
min(t/u,1)

= uf 1 — ¥)=-v2dy, e, =(1,0,---,00e R".

0
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Observe that lim,_. r,(f) = r.(tf) = t for each ¢t > 0. Hence we put d.(x, y):
= |x — ¥l

Having found the family {d,; 0 < u < oo}, we now form its super-
position by means of a positive measure G(du) on (0, ]:

(12 dx,5): = [ du(,»)Gdw).

400

The corresponding measure space (H,v) is obviously taken as follows:
H=1{k,, =V, +p; 0<u<oo,peR}MU{h. t>0 0eS}

(disjoint union) and

Mdk,,) = 5:1 wG(dwdp,  Wdh,.) = G({eo]) (ilisl—)'f——‘ dto(do).

Here is a brief comment on the choice of (H,v). Even if v»(B,) = oo
for some x ¢ R", the equation (2) still has a meaning under the condition
that w(B, A B,) < oo for all x,yc R*. We therefore impose the condition

j min (¢, 1)G(du) < oo on the measure G. In order to get at the stronger
]

conclusion that »(B,) < oo for all x € R, it suffices to change every element
h e H containing the origin O for its complement A°, so that B, is empty
and v(B,) = v(B, A B,) < co. This manipulation was explained in (I),
Section 2.

The above distance (12) is invariant under every rigid motion on R"
and takes the form r(lx — y|) with

12) r(t) = IM r (DG(dY) .

It follows that

(13) r(t) = [(1 — £ D1G(dw) .
(t,00]
In the one-dimensional case, this expression (13) immediately shows
the following
ProrosiTioN 1. Suppose r(t) is a continuous function on [0, o), r(0)
= 0 and has the right derive r’.(t) > 0 which is non-increasing on (0, o)

and satisfies Ul tdr@(t), < oo, Then the distance d(x, y): = r(x — y|) on R
0
is L'-embeddable.
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For n > 2, we devote our attention to the case where G(du) is abso-
lutely continuous on (0, o) with density g(u) and G({oc}) = 0. The equality
(13) becomes

(3 r® = [ - e g,

which coincides with the classical Radon transform f(3%,,) applied to the
radial function f(y): = g(ly)/|S™*!||y|* on R"*? i.e., the integral of f over
the hyperplane éh,,: = {ye€ R"**; (¥, w) =t} in R"** ([9], p. 103). By appeal
to the inversion formula ([9], p. 120), we get

(14) ORTARIE %)”“rf(t)}(tz — W)y,

with
Q= ,,211{1”@/2)}2.

ne B
T

I'(n)

We consider the functions ,(f): = (1 — e %)/, 2 > 0; every ,(t) satis-
fies (— d/dt)"*'y(t) > 0 for all n > 2. By (14), the L'-embeddable metric
¥(x — y)) on R" is of the form (12) with the corresponding density

g(u) = dnz"“r et — ub)t it
Thus, the method of superposition gives us the following

PropositioN 2 (cf. [2] and [3]). Suppose a function r(t) on [0, o) is
expressed in the form

(15) r® = ct+ [ v,
where ¢ > 0 and 7 is a non-negative measure on (0, o) such that
f “ min (1, 2-97(d2) < oo .
0

Then the distance d(x,y): = r(x — y|) on R" is L'-embeddable.

2-2. The second type of d is an extension of the norm ||x — y|| ad-
mitting of the expression (9).

ProrosITION 3. Suppose r(t) is a function described in Proposition 1.
Then the distance
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(16) d(x,y): = L r(x — y, 0)|c(dw)  on R

is L'-embeddable.

Proof. The proof is carried out by constructing a measure space
(H,v) combined with (16) via the equation (2). Since r(f) is of the form

an r(t) = ct + f " min @, WGdu), ¢ = G({oo}),
0
it is convenient to divide d into two parts:

dx,9): = [ 1=y ale(do) = cllx - 3],

and

dx3): = [ G@w [ min(@— 3,0, we(da).

We have already described a measure space (H,,v,) for the first part
d, in Section 1. On the other hand, a measure space (H, v,) combined
with d, is easily found; it is

H,:={k,,,.={xeR"; |(x,0) — t| <uf2}; 0<u< oo, teR" and we S"}
equipped with v, (dk, . .): = G(dw)dtr(dw)/2 .

The proof is thus completed.

For a given norm [|x|| of negative type, we consider the distance
llx — y|l5, 0 < a < 1. It is known ([8] and [14]) that ||x — y||* can be ex-
pressed in the form (16) with r(f) = t*. Hence the method of superposition
again shows that the distance d(x, y): = ¥(|x — y||) on R" is L'-embeddable

if Y(t) = f : t*m(da), where m is a bounded positive measure on (0, 1].
0,1
2-3. In connection with the theory of continuous functions ¢(x) of

negative type on the semigroup (R", +) ([4]), we proceed to discuss a new
class of L'-embeddable metrics on R™.

First recall the known expression of ¢ ([4], p. 220):

M =a+ - QW+ [ (1—emoq 5O

1+ lslz)r(d@’

where ae R!, be R*, @ is a non-negative quadratic form on R* and 7 is a
non-negative measure on R"\{0} such that
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j |ER7(dE) < oo and j e O7(de) < oo for all xe R".
0<iEi<l 1¢1>1
Set d(x,y): = 24(x + y) — ¢(2x) — $(2y), to get

dx,5) = Q=) + [ (0 — eoyr(ag).

R7\{0}

This form of d gaurantees the existence of a centered Gaussian random
field X = {X(x); xe R"} such that d(x,y) = E[(X(x) — X(y)))].
We are ready to state the following

ProrosiTION 4. Suppose r(t) is a function described in Proposition 1,
and define a distance on R* by

a8 dix )= [ e — e o)rde),

R7\{0}

s

where 7 is a positive measure on R™\{0} such that

[ rieds <o and [ emor(dg) < oo
0<jel<1 161>1

for all xe R". Then d is L'-embeddable.

Proof. In view of the general form (17) of r, it suffices to treat the
two special cases: (1) r(f) =t and (1) r@t) = min (¢, ©), 0 < u < oo.

(i) The case r(f) = t. A measure space corresponding to (18) is given
by

Wdh,) = [ 1@ &le dtzy e (da)

on the set H of half-spaces h,,, t > 0 and we S"™', where 4, denotes the
Dirac measure at the point ae S*~'.

(ii) The case r(f) = min (¢, u). Consider the following subset para-
metrized by (¢, £) € R' X R™:

ko= {xeR;|e=9 — t|<u/2}.
Then it is easy to verify that the measure
vo(dk,): = dtrde))2  on H,:={k,;te R, e R"}

yields the desired distance (18) in this second case, which completes the
proof.
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If a rotation-invariant distance of the form (18) is requested, we must
take a rotation-invariant measure 7, which is of the form

7(d§) = dp(|&)da(g]|&]) with a positive measure g on (0, o)
such that r r)e“*du(t) < oo for all @ > 0. It also deserves mention that
0

one can derive the distance ||x — y||* in Section 2-2 as the limit of distances
of the form (18) with r(t) = t*, 0 < « < 1. Indeed, for each p > 0, take the
measure 7,(d§): = dc(&/p)/p* concentrated on the sphere 6V, of radius p;
then one can see that

fim [, Je0 — e orrde) = [ 6= no)Fedo) = llx — 51

pto Jov,

2-4. Let X be a centered Gaussian random field with homogeneous
increments ([25]). Then the variance d(x, y): = E[(X(x) — X(¥))*] takes the
analogous form

d(x, y) — Q(x _ y) +f |ei(z,€) _ ei(y,é) lzr(df) ,

B™\(0)
where 7 is a spectral measure on R"\{0} satisfying Imin (&F, D1(dg) < oo,
On the lines of Proposition 4, we can prove the following

ProrositioN 5. Suppose r(t) is a function described in [19], Proposition
2. Set

s dix,y): = | r(dee =, e ONrs),

where d; denotes the geodesic distance on the unit circle S' = {ze C:|z| = 1}
and 7 is a symmetric positive measure on R"\{0} such that

[ min C0ED, V() < oo
R\ {0}
Then the distance d on R® is L'-embeddable.

§3. Null spaces of dual Radon transforms

In this section we are concerned with every rotation-invariant distance
d on R" of the form (10). The corresponding measure space is then taken
to be the set H of half-spaces h,, equipped with the rotation-invariant
measure
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(20) Wdh, ) = {c + f:’ ue‘”p(du)}dto(dm).

Our aim is to determine the null space N,(V,) of the dual Radon trans-
form R* on this L*(H,v) (see (5)). In view of the relation (6) for a Lévy’s
Brownian motion X with parameter space (R", d), our result on N(V,)
will show a gap between the two closed subspaces [X(x);xe V,] and
[W(dh,,.); h... € H(p)] in LY, P), where H(p): = {h, ,c H; 0 <t < p,we S"'}
is the set of all half-spaces intersecting V,.

3-1. We shall start with a brief discussion of the restriction X, of
the whole parameter space R" to the closed ball V,. Since B, C H(p) for
every x¢ V, the complement of H(p) is of no importance. That is, a
measure space combined with the distance d,,, on V, via (2) is given by

H,:={h,, =h.,NV,; h,.cHp) and di(h,,) = du(h,.),

which is isomorphic to the original (H(p), v).

The relevant dual Radon transform R} is, therefore, considered to be
a Hilbert-Schmidt operator from L*(H(p),v) to L*V,, dx), although both
R} and R* take the same form

[, st@n.,  geLx@@),».

As was shown in (I), Theorem 5, the singular value decomposition of R}
is expressed by means of 2,; >0, f, .(x) and g, .(h,.), i€ l,:

(R;kg)(x) =i€ZIJ 2,8, gP:i)L2(H(p),v)fo,i(x) s

where {f,.; i€ I} (resp. {g,:; ie€l}) forms an ONS in L*V,, dx) (resp.
L¥(H(p), v))-
The Gaussian system X|,, now admits of the Karhunen-Loéve expansion

@D X(x) =2, 4&,if00(®),  xeV,,
iel,
where the system
= v = 2 o, dht o, ; 2
&=t =, &uhIW@h,); iel

is an 1.i.d. sequence of standard Gaussian random variables. Moreover
we have
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@)  [X@ixe V)= ieLl={[  gk.)Wdh.);geN:},
P
with the null space N, of R*:
= {ge LAH), ; (RE® =0 on V,}.

Note that N(V,) = N, ® L*(H(p)*, v), which implies that (22) coincides with
6) for A=V,

3-2. We are now going to determine the null space N, of R¥, 0 <p
< oo,
For that purpose we need

Lemma 6. We have an expansion
(23) Kou(ho) = 33 Ault]%) 25 Sus(]%)S,4(0)
= 3 aultl|=Dh(m)P3((x, )]
where O4(t): = C(D)/CL() with q: = (n — 2)/2, and

(24) 2.0 = :S" | X, ,](t)J Dr(u)(1 — wd)*7du.

Furthermore we have

(25) m(t) S”Iﬁ( LS d)“ll(t)(l tr)e+12

for m>1and 0 <t <1

Proof. Since Xp,(hi,s) = X, (%) = Xez1,n((¥, ), &2 = x/|x|, the above -
assertions for the variables w, ¥’ € S coincide with (I), Lemma 7 stated

in terms of the variables x, y e S™.
Now, take an arbitrary function g from L*(H(p),v). Such a function

is written in the form

gh..) = 8 i(D)Sn,i(0) ,

(m,k)€4

where
gns®: = [ 8(ISuslodo(da), 0<t<yp.

The density in the expression (20) of v is simply denoted by
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(20) v(®): =c + J:o ue“ p(du) .

Then all functions g,,.(¢) belong to L*(0, pl, v(¢)dt), because

> [ @uouodt = gl < oo

(m,k)€

Lemma 6 implies that

BEQ) @ = 3 Snu(wllx) [ 2ultlxDensO(DdL.

We now assume that ge N,. Then we have
(26) [Iatiogasovidt =0,  0<u<p,
0

for every (m, k) e 4.

In case m = 0, we make use of (24) to get
(26), I“a PG, (At =0, 0<u<op,
0

where we have put

Gos®): = || &r(o)0(e)ds .

As is well known ([12]), p. 14), the integral equation (26), yields the unique
solution G,,(f) =0, i.e., g.(t) =0 on (0, p].
The equation (26) for m > 1 takes a different form: By (25), we have
f CEA — )G, (ut)dt
(26)n, ’
- J ‘_lcgntg(t) 1 — )16, (u)dt2 = 0, 0<u<p,

where
G = gn (Du@@) for 0<t<p and G,.(0) =(— D" g (— Dv(— 1)

for — p <t <0. The theorem in Ludwig [16] for the Gegenbauer trans-
form (see also [20] and [21]) now concludes that G, .(f), t > 0, is a poly-
nomial of the form > [m-v2q, . . t"'"* with some coefficients a,;, ;€ R,
We have thus proved that g in N, is necessarily of the form

@i, iPmoks s where P, (Fe0): = Sp (@)™ 7% [u(D)

(m,k,))ed
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and J: ={(m, k, j)eZ*;, m >3, 1< k< h(m) and 1 <j < [(m — 1)/2]}.
Conversely, the functions p, . (h;.), (m, k,j)eJ, form an orthogonal
system in L*(H(p), v) and we can check that every p,, . ; belongs to the null
space N,.
What we have proved is summarized below.

THEOREM 7. Let R¥ be the dual Radon transform on L*(H(p), v), where
v is a measure of the form (20). Then we have

Np = [pm,k,j(ht,w); (m9 k,j) € J] .

In other words, a function g belongs to N, if and only if g is expressed in
the form

@7 g(ht,m)—f( 20 O, i S (@ U()

m,k,7)EJ

Let p go to infinity in the above theorem. Then we obtain, as a by-
product of Theorem 7, a complete description of the full null space of R*:

N,: ={geL¥H,v); (R*g)(x) =0, xc R"}.

THEOREM 7. If the measure p in (20') is equal to O (in other words, if
d(x,y) = c|x — y|, ¢ > 0), then N, = {0}, i.e.,, R* is injective on L*H, v).
While, if u is positive we have N, = [pn,{h..); (m, R, j) e J].

3-3. We are now in a position to state noteworthy consequences of
the preceding results. By virtue of the relation (22), our conclusion follows
from Theorems 7 and 7.

THEOREM 8. Let X be a Lévy’s Brownian motion with parameter space
(R*, d), where d is of the form (10). Then we have, for 0 < p < oo,

[X(x): xe V] = {L{(mg(h)W(dh); ge LH(p), v) satisfying
[t [ | Sust@de(hdo(do) =0
for all (m, k,j) € J} :
For the case p = oo, we have

(X(); xe B') = {[_etW(an); ge L{H, »),

if d(x,y) =clx—y|, ¢>0,
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and

[X(x); xe R"] = { f _g()W(dh); ge L(H,») satisfying
[t St dotdo) = 0
0 Sn—1
for all (m, k, j)eJ},
if d is given by (10) with positive p.

3-4. With a suitable choice of a(x) > 0 satisfying I v(B,)a(x)dx < oo,
R™

the Hilbert-Schmidt operator Ro T, from L*R", a(x)dx) to L*H,v) was
discussed in connection with a factorization of the covariance operator of
X (d), Theorem 3). As a counterpart of the exterior Radon transform (cf.
[21] and [22]), it would be interesting to study the exterior halfspace
transform

(28) Ro T f)(hi0): = L, [f@a@x)dx, - fe IV, alx)dx),

where the resultant function Ro T,f is considered to be in L*(H(p)*, v).

Under the assumption that « is a radial function, a(x) = a(|x]) on V¢,

we can determine the null space of Ro T,:
Ny(@): = {fe L(V}, a(|x)dx); (R T.f) (h,.) =0 on H(p)}.
First observe that, for a given fe L V¢, «( x|)dx) ,

(29) (RO Taf) (ht,m) = (R;kf)(w/t) ) t > p and [OXS] Sn~1 ’
where f(hw): = f(o/tye L(H(p™"), v.), v. being a measure on H(p ') defined
by

v(dhy,.): = | 8™t (1) dta(dw) ,

and R¥ is the dual Radon transform defined on L*(H(p™'), v,). On the lines
of Theorem 7, we can prove the following

ProrosiTioN 9. For 0 < p < oo, we have
N(@) = [fu{%); (m, k,)) e J(@)],
where

frp, %) = Spu(xf|xDlx| " e x]), (2] = p,
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and

JHa): = {(m, k,j)ed; f“ g-am=n -y )) "1t < oo } .

§4. The McKean processes

As in Section 3, we shall assume that X = {X(x); xe€ R"} is a Lévy’s
Brownian motion with parameter space (R", d), where d is a rotation-
invariant distance of the form (10). Since the representations (8) of the
McKean processes M, .(2), (m, k) € 4, follow from the original representation
(1) of X, we can answer, as a byproduct of Theorem 8, the basic question
concerning the canonical property of (8).

We being by applying Lemma 6 to the representation (1) of X; we get

(30) X@ = 3 Suulal) f ooy An(t]%DSn o) W(dh,,0

3 Sl j ;" 2t/ %)dBo(?) ,

where the Gaussian processes B, .(t), (m, k) € 4, are defined by

(31) B,.(0): = j Sp@W(dh,), t>0.
H(t)
Observe that
E[B,, o) B 1(t)] = j S, (@)Ss i)l dh, )
H(t)NH(t")
min (¢,t7)
= 5(m,k), (‘m,’,k’)j‘0 v(u)du ’

where v(u) was given by (20’). This shows that the processes B, .(f) are
mutually independent Gaussian additive processes with common spectral
density v(t) = E[(B, (dt))?]/dt.

In view of the expression (30) of X, we are naturally led to the
following

DEerFinITION 2 (cf. [17]). The Gaussian process
(7) Moi®: = [ X()Suu@(do),  ¢>0,

is called the McKean process with index (m, k), (m,k)c 4. In the case
m = 0, M,,(?) has a more familiar name, the M(t)-process (cf. [15]).
With this definition, the expression (30) is rewritten as follows:
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X@) = 3 SuulxlxDMoullx),

and

(8) M, i® = | 2(u/0dB,.0),

where the kernel 4,(f) was computed in L.emma 6.

Now, Theorem 8 is rephrased in terms of these Gaussian processes
M, (&) and B, (), (m, k) e 4.

TrHEOREM 10. (i) In the case m < 2, the representation (8) of M, .(t)
is canonical, i.e.,

M,(D);t < p] = [B,u(D); t<p]  for every p > 0.

(i) In the case m > 3, the representation (8) of M, .(t) is not canon-
ical. Furthermore we have

[Bno(8); ¢ < p] © [M,,(8); ¢ < p]
— [} @) aBa.o; 1<) < (m = Di21

for every 0 < p < oo, and

[Bn:(D); t > 01O [M, (t); t > 0]
0}  ifdlx,y=clx—yl, ¢c>0,

|[ ey -aBL.0: 1 < < [m = vy,

otherwise.

Concluding remarks. (1) Our discussions in Sections 3 and 4 can be
extended to the case with other parameter spaces such as M = S™ (n-sphere)
or H" (n-dimensional real hyperbolic space). In particular, consider a
familiar Lévy’s Brownian motion X with parameter space (M, d;), dg
being the usual geodesic distance on M = S® or H™ (cf. [18] and [23]).
Such an X admits of a nice representation ([23]) analogous to (1) for a
Brownian motion with n-dimensional parameter. By making use of this
known representation of X, we can show that Theorems 8 and 10 have
respective counterparts in these two cases of (S*, d;) and (H", d;). The
details are omitted.

(i) In their study of conformal invariance of white noise, Hida, Lee
and Lee [13] introduced a generalized Gaussian random field Y = {Y(x);
xe R, 0 <|x| <1} defined by
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(32) ¥ = [ Fex, h ) W(dh,,),

where the kernel F is given by
(33) F(x, h.,) = a(x)t™" " {(x, 0) — t]x]},

and W = {W(dh,,); h,,c H(1)} is a Gaussian random measure (white noise)
with variance u(dh,,): = t"~'dte(dw), v being a measure on the set H(1) of
half-spaces h,,, 0 <<t<1 and we S".

This representation (32) of Y might be thought of as a multi-dimen-
sional version of canonical representations of Gaussian processes, and
takes a more general form than the representation (1) of Chentsov type
(which corresponds to the choice of F(x, h,,) = 1). This generality would
cause us many difficulties in investigating the integral transformation R}
associated with (32):

(34) (Bf€) (0): = || Fx, hJe(h,Judh,.),

g being in a suitable class of functions on H(1). But in the persent
situation where the kernel F is specified by (33) with the additional con-
dition that a(x) > 0, we can prove analogous results on the null spaces
N(F) of R, 0 <p <1:

N,(F): = {g(h,,.); suppg  H(p)  and (Rig)(®) =0, 0 < |x| < p}.

Indeed, similar arguments to Section 3-2 lead us to the following con-
clusion:

N(F) = [8n,f(Mi0); m =2, 1< k< h(m) and 1 <j < [m/2]],
where we put

gm,k,i(ht,m): = chg]X(O,p](t)Sm,k(m) .

REFERENCES

[1]1 R. V. Ambartzumian, Combinatorial integral geometry, with applications to mathe-
matical stereology, John Wiley & Sons, Chichester, 1982.

[ 2] P. Assouad, Produit tensoriel, distances extrémales et realisation de covariance,
I et II, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 649-652 et 675-677.

[ 8] P. Assouad et M. Deza, Espaces métriques plongeables dans un hypercube: Aspects
combinatories, Ann. Discrete Math., 8 (1980), 197-210.

[4] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups,
Springer-Verlag, New York, 1984.

https://doi.org/10.1017/50027763000000763 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000763

BROWNIAN MOTION, II 107

[5]1 E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc., 145 (1969), 323~
345,

[ 61 J. Bretagnolle, D. Dacunha-Castelle et J. L. Krivine, Lois stables et espaces L?
Ann. Inst. H. Poincaré Sect. B, 2 (1966), 231-259.

[ 71 N. N. Chentsov, Lévy Brownian motion for several parameters and generalized
white noise, Theory Probab. Appl., 2 (1957), 265-266 (English translation).

[ 81 G. Choquet, Lectures on analysis, Vol. III, W. A. Benjamin, New York, 1969.

[9] S. R. Deans, The Radon transform and some of its applications, John Wiley &
Sons, New York, 1983.

[10] L. E. Dor, Potentials and isometric embeddings in L, Israel J. Math., 24 (1976),
260-268.

[11] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental
functions (Bateman manuscript project), Vol. II, McGraw-Hill, New York, 1953.

[12] S. Helgason, The Radon transform, Birkhiuser, Boston, 1980.

[13] T. Hida, Kei-Seung Lee and Sheu-San Lee, Conformal invariance of white noise,
Nagoya Math. J., 98 (1985), 87-98.

[14] P. Lévy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris,
1954.

, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris,
1965.

[16] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math.,
19 (1966), 49-81.

[17] H. P. McKean, Brownian motion with a several-dimensional time, Theory Probab.
Appl., 8 (1963), 335-354.

[18] A. Noda, Lévy’s Brownian motion; Total positivity structure of M(t)-process and
deterministic character, Nagoya Math. J., 94 (1984), 137-164.

, Generalized Radon transform and Lévy’s Brownian motion, I, Nagoya Math.
J., 105 (1987), 71-87.

[20] E. T. Quinto, Null spaces and ranges for the classical and spherical Radon trans-
forms, J. Math. Anal. Appl., 90 (1982), 408-420.

, Singular value decompositions and inversion methods for the exterior Radon
transform and a spherical transform, J. Math. Anal. Appl., 95 (1983), 437-448.

[22] R. S. Strichartz, Radon inversion—variations on a theme, Amer. Math. Monthly,
89 (1982), 377-384 and 420-423.

[23] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric
spaces of constant curvature, Nagoya Math. J., 82 (1981), 131-140.

[24] S. Takenaka, Representation of Euclidean random field, Nagoya Math. J., 105
(1987), 19-31.

[25] A. M. Yaglom, Some classes of random fields in n-dimensional space related to
stationary random processes, Theory Probab. Appl., 2 (1957), 273-320.

[26] L. Zaleman, Offbeat integral geometry, Amer. Math. Monthly, 87 (1980), 161-175.

[15]

[19]

[21]

Department of Mathematics
Aichi University of Education
Kariya 448

Japan

https://doi.org/10.1017/50027763000000763 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000763



