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Abstract

The duality properties of the integration map associated with a vector measure m are used to obtain a
representation of the (pre)dual space of the space L p(m) of p-integrable functions (where 1< p <∞)
with respect to the measure m. For this, we provide suitable topologies for the tensor product of the
space of q-integrable functions with respect to m (where p and q are conjugate real numbers) and the
dual of the Banach space where m takes its values. Our main result asserts that under the assumption of
compactness of the unit ball with respect to a particular topology, the space L p(m) can be written as the
dual of a suitable normed space.
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1. Introduction

Let (�, 6) be a measurable space and X be a (real) Banach space. Let m :6→ X
be a countably additive vector measure and let p, q > 1 be conjugate. The aim of this
paper is to provide a general representation of the space L p(m) of real p-integrable
functions with respect to m as the dual space of a certain topological tensor product.
Such a representation has already been obtained in [12]. However, the results obtained
there give only a partial answer to a general representation problem since they are only
valid under certain restrictions on the measure m, namely positivity, and on the space
L p(m) that can be difficult to describe (see [11, Section 3]). In this paper, we provide
a general tensor product representation of the predual of these spaces.
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The motivation of this paper is that the space of p-integrable functions with
respect to a vector measure provides a general representation technique for p-convex
Banach lattices: each order continuous p-convex Banach lattice with a weak order
unit is (order and topologically) isomorphic to a space L p(m) for some vector
measure m (see [5, Proposition 2.4]). Consequently, the results of this paper lead
to representations of the (pre)dual spaces of general Banach lattices; we show some
concrete examples at the end of the paper.

It seems natural to represent the dual space of L p(m) in terms of the space Lq(m), as
in the case of classical L p-spaces. However, two facts suggest that this representation
cannot be direct. The first is that it is well known that the dual of L p(m) coincides
with Lq(m) only in the trivial cases (that is, when L p(m) is isomorphic to L p(µ)

of a scalar measure µ). Furthermore, L p(m) could be a weighted c0-space, hence
reflexivity cannot be expected in general for these spaces. From the technical point of
view, the natural weak topology associated with the integration map, the so-called
m-weak topology, is the keystone of our arguments. For the case p = 1, a
representation of the elements of the dual space of L1(m) has been given in [10].

2. Preliminaries

We use standard Banach space and vector measure notation. If X is a (real) Banach
space, its unit ball is denoted by B(X). We write X ′ for its dual space. The space
of continuous linear operators from the Banach space Y into the Banach space X
is denoted by L(Y, X). We also need some basic facts regarding weak topologies
on locally convex spaces. If X is a linear space, recall that a linear functional
ϕ : X→ R is continuous with respect to a topology generated by a fundamental system
of seminorms {pι | ι ∈ I } in X if and only if there is a finite family {ι1, . . . , ιn} ⊂ I
such that |ϕ(x)| ≤

∑n
j=1 pι j (x) for all x in X . This remark holds even if the family of

seminorms does not separate points.
Let (�, 6) be a measurable space and X be a Banach space. We write χA for the

characteristic function of a set A in 6. If m :6→ X is a countably additive vector
measure, we write ‖m‖ for its semivariation and |m| for its variation (see [4, Ch. I]).
A measurable (real) function f is integrable with respect to m (m-integrable) if:

(1) it is scalarly integrable, that is, it is integrable with respect to each scalar measure
〈m, x ′〉 defined by 〈m, x ′〉(A) := 〈m(A), x ′〉 for all A ∈6, where x ′ ∈ X ′; and

(2) for every A ∈6 there is an element
∫

A f dm ∈ X such that〈∫
A

f dm, x ′
〉
=

∫
A

f d〈m, x ′〉

(see [7] for the equivalence of the definition in [1] to that given here).
Let 1≤ p <∞. The space L p(m) of p-integrable functions with respect to m

(that is, equivalence classes of measurable functions f which differ on a set of null
m-semivariation such that | f |p is m-integrable) is well known; it has been studied
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in [5, 11, 12]. This space endowed with the almost everywhere order and with the
norm given by

‖ f ‖L p(m) := sup
{(∫

�

| f |p d|〈m, x ′〉|

)1/p ∣∣∣∣ x ′ ∈ B(X ′)

}
for all f ∈ L p(m), where |〈m, x ′〉| denotes the variation of the scalar measure 〈m, x ′〉,
is an order continuous Banach lattice. If x ′ ∈ X ′ and |〈m, x ′〉| is a Rybakov measure
for m, that is, a scalar control measure for m defined by an element of X ′ (see
[4, Ch. IX]), then (L p(m), ‖ · ‖L p(m)) is an order continuous Banach function space
over (�, 6, |〈m, x ′〉|) with weak unit χ� (see ‘Köthe function space’ in [8, p. 28] for
the definition). The relation between the spaces L p(m) and Lq(m) has been analyzed
in [11].

Since L p(m) · Lq(m)⊆ L1(m) (see [11]), it can be proved that each function
g ∈ Lq(m) can be identified with the operator Ig : L p(m)→ X given by Ig( f ) :=∫
�

f g dm (see [5, Proposition 3.1] and [11, Section 3]).
Throughout the paper, m :6→ X is a countably additive vector measure and

1< p <∞. Such a measure m is scalarly dominated by a measure m̃ :6→ X if
there exists a positive constant K such that

|〈m, x ′〉|(A)≤ K |〈m̃, x ′〉|(A) ∀A ∈6 ∀x ′ ∈ X ′.

The following Radon–Nikodym theorem for scalarly dominated measures is given
in [9, Theorem 1] and provides an important tool for our work. We give an adapted
version in the following lemma.

LEMMA 2.1. Let m and m̃ be vector measures with range in a Banach space X. The
following assertions are equivalent.
(i) There exists a bounded measurable function θ such that

m(E)=
∫

E
θ dm̃ ∀E ∈6.

(ii) m is scalarly dominated by m̃.

In what follows we characterize the continuous linear operators G : L p(m)→ X
that can be identified with (integration operators defined by) functions of Lq(m) in
terms of a domination property. This property is related to the definition of the
class of uniformly scalarly integral operators in [12, Definition 3], in which the set
of integration operators Ig is always contained.

THEOREM 2.2. The following assertions are equivalent for an operator G :
L p(m)→ X.
(i) There is a function g ∈ Lq(m) such that G = Ig , that is, G( f )=

∫
f g dm for

every f ∈ L p(m).
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(ii) There are functions g1, . . . , gn in Lq(m) such that for all x ′ ∈ X ′,

|〈G( f ), x ′〉| ≤
n∑

i=1

∣∣∣∣〈∫ f gi dm, x ′
〉∣∣∣∣ ∀ f ∈ L p(m).

(iii) There is a function g0 in Lq(m) such that for all x ′ ∈ X ′,

|〈G( f ), x ′〉| ≤
∫
| f g0| d|〈m, x ′〉| ∀ f ∈ L p(m).

Moreover, the subspace of all the operators G of L(L p(m), X) that satisfy (i), (ii) or
(iii) is isometrically isomorphic to Lq(m).

PROOF. By the representation of the operator G of L(L p(m), X) as an integral, it is
obvious that (i) implies (ii).

The proof that (ii) implies (iii) is a direct consequence of the following inequalities.
Let G : L p(m)→ X be an operator satisfying (ii). For all x ′ in X ′ and f in L p(m),

|〈G( f ), x ′〉| ≤
n∑

i=1

∣∣∣∣〈∫ f gi dm, x ′
〉∣∣∣∣≤ n∑

i=1

∫
| f gi | d|〈m, x ′〉|

=

∫ ( n∑
i=1

|gi |

)
| f | d|〈m, x ′〉|.

Since
∑n

i=1 |gi | ∈ Lq(m), we obtain (iii).
To prove that (iii) implies (i), suppose that G satisfies (iii) and define the set function

mG :6→ X by
mG(A) := G(χA) ∀A ∈6.

It is easy to show that mG is a countably additive vector measure, since L p(m) is
order continuous. Let us define the measure m1 :6→ X by m1(A) :=

∫
A g0 dm for

all A ∈6. It clearly satisfies the inequality

|〈G( f ), x ′〉| ≤
∫
| f | d|〈m1, x ′〉| ∀ f ∈ L p(m).

Take a set A ∈6; then

|〈mG(A), x ′〉| = |〈G(χA), x ′〉| ≤
∫
χA d|〈m1, x ′〉| = |〈m1, x ′〉|(A).

Hence, mG is scalarly dominated by m1. By [9, Theorem 1], there is a bounded
measurable function θ such that

mG(A)= G(χA)=

∫
A
θ dm1 =

∫
A
θg0 dm

for each A ∈6. Note that the product θg0 is also in Lq(m). If Iθg0 is the
integration operator from L p(m) into X defined by Iθg0( f )=

∫
f θg0 dm, then Iθg0
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and G coincide on the set of simple functions. Since this set is dense in L p(m)
we obtain G( f )= Iθg0( f ) for all f in L p(m) which gives (i) for g = θg0. Finally,
the isometry is a consequence of [11, Proposition 8]: for every g ∈ Lq(m), we have
‖Ig‖ = ‖g‖Lq (m). 2

3. Tensor product representations for Lq(m)

In this section we provide a representation technique for spaces Lq(m) based on
topological tensor products. A first step towards this is in [12], where such an
identification is found, although under strong restrictions on the spaces Lq(m); the
topologies introduced there are different to those considered here, which lead to a
general representation for any Lq(m). Indeed we will prove that Lq(m) is always
the dual space of a certain topological tensor product. The main tool that we use is
Theorem 2.2.

From the technical point of view, it is necessary to define several tensor product
topologies. Let us first introduce a weak topology for the space Lq(m). For any
function f ∈ L p(m) and x ′ ∈ X ′, the expression

p f,x ′(g) :=

∣∣∣∣〈∫ f g dm, x ′
〉∣∣∣∣, ∀g ∈ Lq(m),

defines a seminorm on Lq(m). We call the topology generated by this family of
seminorms in Lq(m) the m-weak topology, and we denote it by γ . Since the linear
functional f 7→ 〈

∫
f g dm, x ′〉 satisfies∣∣∣∣〈∫ f g dm, x ′

〉∣∣∣∣≤ ‖ f ‖L p(m)‖g‖Lq (m)‖x
′
‖,

the topology γ is weaker than the weak topology of Lq(m); it has been already studied
in [6, 11]. Notice that Theorem 2.2 can be written in terms of the continuity of an
operator G with respect to this topology.

We set up the topological framework for the tensor product L p(m)⊗ X ′. For
g ∈ Lq(m), we define the seminorm pg by

pg(z) :=

∣∣∣∣ n∑
i=1

〈∫
fi g dm, x ′i

〉∣∣∣∣ where z =
n∑

i=1

fi ⊗ x ′i ∈ L p(m)⊗ X ′.

The definition is independent of the particular representation of z. Using this family of
seminorms we can provide a topology (in general not Hausdorff) on the tensor product
L p(m)⊗ X ′. We will denote it by τ ; it corresponds to the topology generated by the
family of seminorms {pg | g ∈ Lq(m)}.

Suppose that g ∈ Lq(m) and define the associated integration map Ig : L p(m)→ X
by Ig( f ) :=

∫
f g dm for all f in L p(m). Define the functional

ϕg : L
p(m)⊗ X ′ −→ R
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by ϕg(z) :=
∑n

i=1〈Ig( fi ), x ′i 〉, where z =
∑n

i=1 fi ⊗ x ′i is any representation of the
tensor z in L p(m)⊗ X ′; notice again that the definition does not depend on the
particular representation of z. The following result shows that this relation provides a
procedure to identify the set of q-integrable functions with respect to m with the dual
space (L p(m)⊗τ X ′)′. As usual, we denote by τweak∗ the weak topology generated on
a dual space by the elements of the original space.

PROPOSITION 3.1. The map ϒ : (Lq(m), γ )→ ((L p(m)⊗τ X ′)′, τweak∗) given by
ϒ(g) := ϕg , is an isomorphism.

PROOF. We start by proving that ϒ is well defined and injective. Clearly, if g ∈
Lq(m), then

|ϕg(z)| =

∣∣∣∣ n∑
i=1

〈Ig( fi ), x ′i 〉

∣∣∣∣= pg(z)

for any tensor z =
∑n

i=1 fi ⊗ x ′i , and then ϕg belongs to (L p(m)⊗τ X ′)′. It is
known that if h ∈ Lq(m) and h 6= g, there are f ∈ L p(m) and x ′ ∈ X ′ such that
〈
∫

f h dm, x ′〉 6= 〈
∫

f g dm, x ′〉 (see [11, 12]), hence the identification g 7→ ϕg given
by ϒ is injective. Notice that ϒ is also linear.

To prove that the map is also surjective, consider a functional φ in (L p(m)⊗τ X ′)′.
Since it is continuous with respect to τ , there are functions g1, . . . gn ∈ Lq(m) such
that |φ(z)| ≤

∑n
i=1 pgi (z) for any tensor z ∈ L p(m)⊗τ X ′. In particular, for a simple

tensor z = f ⊗ x ′,

|φ(z)| ≤
n∑

i=1

pgi ( f ⊗ x ′)=
n∑

i=1

∣∣∣∣〈∫ f gi dm, x ′
〉∣∣∣∣. (3.1)

Now fix a p-integrable function f and define the map F f : X ′ −→ R by F f (x ′) :=
φ( f ⊗ x ′). Note that F f is well defined; also, by (3.1),

|F f (x
′)| = |φ( f ⊗ x ′)| ≤

n∑
i=1

∣∣∣∣〈∫ f gi dm, x ′
〉∣∣∣∣

for every x ′ ∈ X ′; since for all i = 1, . . . , n,
∫

f gi dm ∈ X , it follows that F f is
continuous with respect to the weak* topology of X ′. Therefore F f is an element
of the dual space (X ′, τweak∗)

′ that coincides with X .
Thus, we can define the operator Tφ : L p(m)→ X by Tφ( f ) := F f . Note that Tφ

is linear and 〈Tφ( f ), x ′〉 = φ( f ⊗ x ′) for all f in L p(m), and then

|〈Tφ( f ), x ′〉| = |φ( f ⊗ x ′)| ≤
n∑

i=1

∣∣∣∣〈∫ f gi dm, x ′
〉∣∣∣∣.

Therefore, the operator Tφ satisfies the inequalities in (ii) of Theorem 2.2. Thus, there
is a function g0 in Lq(m) such that Tφ( f )=

∫
g0 f dm for all f in L p(m). Hence,

ϕg0( f ⊗ x ′)= 〈
∫

g0 f dm, x ′〉 = φ( f ⊗ x ′) for every simple tensor in L p(m)⊗ X ′,
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which implies that ϕg0 = φ, and then ϒ is surjective. The fact that ϒ is a topological
isomorphism is clear because of the definitions of the topologies γ and τweak∗ ; the
action of the tensors of L p(m)⊗τ X ′ on the functionals of its dual space is given by
evaluations of a finite set of the functionals that define the topology γ . 2

Although Proposition 3.1 provides a representation of the space L p(m) as the
dual of a certain topological linear space, this space is not in general Hausdorff.
The following trivial example shows this. Consider the Lebesgue measure space
(�, 6, µ) and the vector measure m0 :6→ `2 given by m0(A) := µ(A)e1 for all
A ∈6, where e1 is the first element of {ei | i ∈ N}, the canonical basis of `2. Clearly,
if we consider a simple tensor f ⊗ ei , where f ∈ L p(m) and i > 1, then we obtain
pg( f ⊗ ei )= 0 for every g ∈ Lq(m). The same argument can be used for any vector
measure m to show that for every x ′ ∈ X ′ that satisfies 〈

∫
h dm, x ′〉 = 0 for every

h ∈ L1(m) and f ∈ L p(m), the equality pg( f ⊗ x ′)= 0 holds, and then the induced
topology cannot be Hausdorff.

The rest of the paper is devoted to improving the representation of Lq(m) as a dual
of a Hausdorff topological vector space. The first step is to construct a (Hausdorff)
quotient space preserving the duality properties with respect to Lq(m). As usual, if
g ∈ Lq(m), we define the kernel of pg as

ker pg = {z ∈ L p(m)⊗ X ′ | pg(z)= 0}.

The set
⋂

g ker pg , where the intersection is taken over the set of functions g in
Lq(m), is a linear subspace of the tensor product. Consider the quotient space (defined
algebraically) (L p(m)⊗ X ′)/(

⋂
g ker pg). We define in this space the topology τ̃

generated by the family of quotient seminorms { p̃g | g ∈ Lq(m)}, that are given by

p̃g([z]) := inf
v∈[z]

pg(v)= inf∑n
i=1 fi⊗x ′i∈[z]

∣∣∣∣ n∑
i=1

〈∫
fi g dm, x ′i

〉∣∣∣∣,
where the elements of the equivalence classes [z] of z are elements of the tensor
product L p(m)⊗ X ′. Note that p̃g([z]) can be computed directly by

p̃g([z])=

∣∣∣∣ n∑
i=1

〈∫
fi g dm, x ′i

〉∣∣∣∣
for any

∑n
i=1 fi ⊗ x ′i ∈ [z], since the quotient is defined using the family of seminorms

{pg}. The next result, together with Proposition 3.1, provides a representation of the
space Lq(m) as the dual space of a Hausdorff topological vector space.

PROPOSITION 3.2. The map

Q : ((L p(m)⊗τ X ′)′, τweak∗)→

((
(L p(m)⊗ X ′)

/(⋂
g

ker pg

)
, τ̃

)′
, τweak∗

)
given by Q(φ)= φ̃, where φ̃([z])= φ(z) for each tensor z in L p(m)⊗ X ′, is a linear
isomorphism.
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PROOF. We give the straightforward proof for the sake of completeness. Let φ be
a functional in the dual space (L p(m)⊗τ X ′)′. By the continuity of φ with respect
to τ , for every tensor z in L p(m)⊗ X ′ there are n q-integrable functions g1, . . . , gn
such that

|φ(z)| ≤
n∑

i=1

pgi (z). (3.2)

Define the linear map φ̃ from (L p(m)⊗ X ′)/(
⋂

g ker pg) into R by φ̃([z]) := φ(z),
for all z ∈ [z] ∈ (L p(m)⊗ X ′)/(

⋂
g ker pg). If [z1] = [z2], then pg(z1 − z2)= 0 for

each g ∈ Lq(m), and so φ(z1 − z2)= 0 by (3.2). Thus φ̃([z1])= φ̃([z2]) by the
linearity of φ. Obviously φ̃ is continuous with respect to the topology τ̃ , since
|φ̃([z])| ≤

∑n
i=1 p̃gi ([z]) for every [z] by (3.2). Therefore Q(φ) := φ̃ is well defined

and injective.
To see that it is also surjective, consider a (τ̃ -continuous) functional φ̃ :

(L p(m)⊗ X ′)/(
⋂

g ker pg)→ R and define the map φ : L p(m)⊗ X ′→ R by

φ(z) := φ̃([z]). Direct computations like those in the previous part of the proof show
that φ belongs to the space (L p(m)⊗ X ′, τ )′; clearly Q(φ)= φ̃. By the arguments
used above, the equivalence between the weak* topologies of both spaces is also
clear. 2

In what follows we introduce the uniform topology associated with τ in the tensor
product L p(m)⊗ X ′ in order to find a representation of Lq(m) as the dual space of a
normed space. We denote by τu the topology generated by the seminorm

u(z)= sup
‖g‖Lq (m)≤1

∣∣∣∣ n∑
i=1

〈∫
fi g dm, x ′i

〉∣∣∣∣,
where z =

∑n
i=1 fi ⊗ x ′i is an element of L p(m)⊗ X ′. For a functional φ in

(L p(m)⊗ X ′, τu)
′, we define

‖φ‖u := sup |φ(z)|,

where the supremum is computed over all tensors z ∈ L p(m)⊗ X ′ satisfying u(z)≤ 1.
Clearly ker u =

⋂
g ker pg , where the intersection is defined over all the integrable

functions in Lq(m); as in the previous case, we will deal with the quotient space
(L p(m)⊗ X ′)/ ker u. In this case, we also define the quotient topology τũ generated
by the seminorm ũ([z]) := u(z), for z ∈ L p(m)⊗ X ′. The corresponding norm on the
dual of the quotient space is given by

‖φ̃‖ũ := sup
ũ([z])≤1

|φ̃([z])| ∀φ̃ ∈ ((L p(m)⊗ X ′)/ker u, τũ)
′,

where the elements [z] belong to (L p(m)⊗ X ′)/ ker u.
We omit the proof of the next proposition, which follows along the lines of the proof

of Proposition 3.2.
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PROPOSITION 3.3. The function

Qu : ((L
p(m)⊗τu X ′)′, ‖ · ‖u)−→ ((L p(m)⊗ X ′/ker u, τũ)

′, ‖ · ‖ũ),

defined by Qu(φ)= φ̃, where φ̃([z])= φ(z) for each tensor z in L p(m)⊗ X ′, is an
isometric isomorphism.

We give an easy example of the representation procedure developed here.

EXAMPLE 1. Let 1< r, p <∞, and s, q be the corresponding conjugate exponents,
and let ([0, 1], 6, µ) be the Lebesgue measure space. We define the vector measure
m :6→ Lr (µ) as m(A) := χA, for all A ∈6. It is easy to see that L p(m)= L pr (µ),
while Lq(m)= Lqr (µ), and (Lr (µ))′ = Ls(µ). Notice also that for every function k
in L1(m),

∫
k dm = k. Take a tensor z =

∑n
i=1 fi ⊗ hi in L p(m)⊗ (Lr (µ))′ =

L pr (µ)⊗ Ls(µ). Then

u(z) = sup
g∈B(Lq (m))

∣∣∣∣ n∑
i=1

〈∫
fi g dm, hi

〉∣∣∣∣
= sup

g∈B(Lqr (µ))

∣∣∣∣ n∑
i=1

∫ (∫
fi g dm

)
hi dµ

∣∣∣∣
= sup

g∈B(Lqr (µ))

∣∣∣∣∫ g
n∑

i=1

fi hi dµ

∣∣∣∣.
Since

1
pr
+

1
s
=

(
1−

1
q

)
1
r
+

1
s
= 1−

1
qr
,∑n

i=1 fi hi ∈ (Lqr (µ))′ and u(z)= ‖
∑n

i=1 fi hi‖(Lqr (µ))′ . Observe that

ker u =

{
z =

n∑
i=1

fi ⊗ hi ∈ L p(m)⊗ Ls(µ) :

n∑
i=1

fi hi = 0 µ-almost everywhere
}
.

Therefore, the space ((L p(m)⊗ Ls(µ))/ ker u, τu) can be identified isometrically
with (Lq(m))′ = L t (µ), where 1/qr + 1/t = 1, and the formulae for u provide an
equivalent representation of the norm of L t (µ).

The following theorem is the main result of this paper. We show that the key to
obtaining a satisfactory generalization of the duality results for classical L p-spaces
(scalar measure) is a certain compactness assumption for the unit ball of Lq(m). The
theorem gives a description of a suitable normed predual of the space L p(m), and
consequently of the dual space (L p(m))′.

THEOREM 3.4. The two spaces (((L p(m)⊗ X ′)/ker u, τũ)
′, ‖ · ‖ũ) and (Lq(m),

‖ · ‖Lq (m)) are isometrically isomorphic if and only if the unit ball of Lq(m) is
m-weakly compact.
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PROOF. We start by showing the direct implication. If Lq(m) is the topological dual
of ((L p(m)⊗ X ′)/ ker u, τũ) then this space defines the weak* topology on bounded
sets of Lq(m). By Alaoglu’s theorem the unit ball of Lq(m) is weakly* compact;
since the weak* topology coincides with the m-weak topology of Lq(m) on its unit
ball, BLq (m) is m-weakly compact.

To prove the converse, first notice that the function space Lq(m) can be identified
with a subspace of ((L p(m)⊗ X ′)/ ker u, τũ)

′ that coincides with (L p(m)⊗ X ′, τu)
′

by Proposition 3.3. The inclusion is given by the identification explained before
Proposition 3.1, that is, by the map

i : Lq(m)→ (L p(m)⊗ X ′, τũ)
′,

where i(g) := ϕg for g in Lq(m) with

ϕg

( n∑
i=1

fi ⊗ x ′i

)
:=

n∑
i=1

〈∫
fi g dm, x ′i

〉
.

Clearly i is well defined, and direct computations show that it is continuous. To
prove that it is an isomorphism, we take φ̃ ∈ ((L p(m)⊗ X ′)/ker u, τũ)

′ and we
must prove that φ̃ belongs to ((L p(m)⊗ X ′)/ker u, τ̃ )′, which can be identified
with Lq(m) by Propositions 3.1 and 3.2; our aim is to show that any functional
φ̃ : (L p(m)⊗ X ′)/ker u→ R that is continuous with respect to τũ is also continuous
with respect to the topology τ̃ . Thus, we search for a function g0 in Lq(m) such that

|φ̃([z])| ≤ ‖φ̃‖ũ · p̃g0([z])

for every [z] ∈ (L p(m)⊗ X ′)/ ker u. In order to find this element it is necessary to use
a separation argument; we choose one based on Ky Fan’s lemma (see [3, p. 491]). For
a fixed z =

∑n
i=1 fi ⊗ x ′i in L p(m)⊗ X ′, we define the function8z : B(Lq(m))→ R

as follows:

8z(g) := φ̃([z])− ‖φ̃‖ũϕg(z)

=

n∑
i=1

φ( fi ⊗ x ′i )− ‖φ̃‖ũ

( n∑
i=1

〈∫
fi g dm, x ′i

〉)
,

where φ is a functional satisfying Q(φ)= φ̃ provided by Proposition 3.2, and∑n
i=1 fi ⊗ x ′i is any representation of z (note that the definition of the function 8z

is independent of the particular representations of [z] and of φ̃). Thus let F be the
family of functions 8z for z in L p(m)⊗ X ′. We need to prove that F satisfies all the
hypotheses of Ky Fan’s lemma.

All the functions 8z are defined on the unit ball of Lq(m), which is compact with
respect to the m-weak topology by assumption. Remark that the space Lq(m) with the
m-weak topology is a Hausdorff space.
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The family of functions F is concave; if z1 and z2 are in L p(m)⊗ X ′ then for any α
in [0, 1], there is an element z0 in L p(m)⊗ X ′ such that α8z1 + (1− α)8z2 =8z0 ;
take z0 = αz1 + (1− α)z2.

Let us now show that for every tensor z in L p(m)⊗ X ′, the function 8z is
convex. By the linearity of 8 it is enough to prove that this holds for a simple tensor
z = f ⊗ x ′. Suppose that g1, g2 ∈ BLq (m) and α ∈ [0, 1]. Then

8z(αg1 + (1− α)g2) = φ( f ⊗ x ′)− ‖φ̃‖ũ

〈∫
f (αg1 + (1− α)g2) dm, x ′

〉
= α8z(g1)+ (1− α)8z(g2).

Moreover, by construction, 8z is continuous with respect to the m-weak topology of
L p(m) for all z in L p(m)⊗ X ′.

Finally, we must prove that for all z in the tensor product L p(m)⊗ X ′, there is a
function gz in the unit ball of Lq(m) such that8z(gz)≤ 0; this is a consequence of the
fact that 8z is a continuous function defined on a compact set. Indeed,

φ(z) := φ̃([z])≤ |φ̃([z])| ≤ ‖φ̃‖ũ · ũ([z])

= ‖φ̃‖ũ · sup
‖g‖Lq (m)≤1

(〈 n∑
i=1

fi g dm, x ′i

〉)
and this supremum is attained for some gz in the unit ball of Lq(m). Then for all z in
L p(m)⊗ X ′, there exists gz in BLq (m) such that

φ̃

( n∑
i=1

fi ⊗ x ′i

)
≤ ‖φ̃‖ũ

( n∑
i=1

〈∫
fi gz dm, x ′i

〉)
.

By Ky Fan’s lemma, we conclude that there is g0 in B(Lq(m)) such that for all
z =

∑n
i=1 fi ⊗ x ′i ∈ L p(m)⊗ X ′,

φ̃

( n∑
i=1

fi ⊗ x ′i

)
≤ ‖φ̃‖ũ

( n∑
i=1

〈∫
fi g0 dm, x ′i

〉)
. (3.3)

Thus φ̃ is continuous with respect to τ̃ and so φ̃ ∈ ((L p(m)⊗ X ′)/ker u, τ̃ )′; the
identification is clearly bijective, since this space is isomorphic to Lq(m) by
Propositions 3.1 and 3.2. A direct computation using inequality (3.3) shows that
the function g′0 := g0‖φ̃‖ũ ∈ Lq(m) can be identified with φ̃ and clearly ‖g′0‖Lq (m) ≤

‖φ̃‖ũ . The converse inequality follows by a simple calculation: if φ̃g′0
and φg′0

are the
functionals defined by g′0 and z =

∑n
i=1 fi ⊗ x ′i ∈ L p(m)⊗ X ′, then

|φ̃([z])| = |φ̃g′0
([z])| = |φg′0

(z)|

=

∣∣∣∣ n∑
i=1

〈∫
fi‖g

′

0‖Lq (m)
g′0

‖g′0‖Lq (m)
dm, x ′i

〉∣∣∣∣
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≤ ‖g′0‖Lq (m) · sup
‖h‖Lq (m)≤1

∣∣∣∣ n∑
i=1

〈∫
fi h dm, x ′i

〉∣∣∣∣
= ‖g′0‖Lq (m) · u(z)= ‖g

′

0‖Lq (m) · ũ([z]).

This proves the isometry and completes the proof. 2

Since the m-weak topology is weaker than the weak topology of the space L p(m),
the compactness property required in Theorem 3.4 is satisfied if the space Lq(m) is
reflexive; some results regarding reflexivity of this space may be found in [5]. In fact,
from [6], it is known that the space Lq(m) is reflexive if and only if its unit ball is
compact for the m-weak topology.

In the following corollary, we isolate a result on the duality of the space Lq(m)
that was implicitly shown in the proof of Theorem 3.4; in particular, this theorem
gives a sufficient and necessary condition for the topological duals of the space
(L p(m)⊗ X ′)/ker u with the topologies τ̃ and τũ to coincide. This assertion is the
natural ‘vector measure’ version of one of the main results of the duality theory of
Banach spaces: the dual of a Banach space with the norm topology coincides with the
dual of the space with the weak topology.

COROLLARY 3.5. The following assertions are equivalent.

(i) The unit ball of Lq(m) is compact with respect to the m-weak topology.
(ii) ((L p(m)⊗ X ′)/ker u, τ̃ )′ = ((L p(m)⊗ X ′)/ker u, τũ)

′.
(iii) (L p(m)⊗ X ′, τ )′ = (L p(m)⊗ X ′, τu)

′.

Let us finish by illustrating our procedure with two examples. In the first, we obtain
an alternative formula to define the norm in the dual of Lq(m) of a vector measure m
over an Orlicz space. In the second, we characterize the dual of Lq(mV ) of a measure
mV induced by a kernel operator.

EXAMPLE 2. Let (�, 6, µ) be a measure space, and L0(µ) be the space of (classes of
µ-a.e. equal) measurable functions. Take a Young’s function 8 with the 12-property
(see [2] for basic definitions about Orlicz spaces). We define the vector measure
m :6→ L8(µ) by m(A)= χA. Since L8(µ) is order continuous, the equality
L1(m)= L8(µ) holds, and then

L p(m) = { f ∈ L0(µ) : | f |p ∈ L1(m)}

= { f ∈ L0(µ) : | f |p ∈ L8(µ)}

= { f ∈ L0(µ) :8(| f |p) ∈ L1(µ)}.

Notice that the function 8 ◦ π : R+→ R+ given by 8 ◦ π(t)=8(t p) is a Young’s
function, and that the12-property for8 implies the12-property for8 ◦ π since there
exists b such that, for all t > 0,

8 ◦ π(2t)=8(2pt p)≤ bbpc+18(2p−bpc−1t p)≤ bbpc+18 ◦ π(t),
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where bpc =max{n ∈ Z | n ≤ p}. Therefore L p(m)= L8◦π (µ). Let 9 be the
conjugate Young’s function of 8. Since L8(µ) is order continuous, (L8(µ))′ =
L9(µ). Take z =

∑n
i=1 fi ⊗ hi ∈ L p(m)⊗ L9(µ). Then

u(z) = sup
g∈B(Lq (m))

∣∣∣∣ n∑
i=1

〈∫
fi g dm, hi

〉∣∣∣∣
= sup

g∈B(Lq (m))

∣∣∣∣∫ g

( n∑
i=1

∫
fi hi

)
dµ

∣∣∣∣
=

∥∥∥∥ n∑
i=1

fi hi

∥∥∥∥O

(Lq (m))′
,

where (Lq(m))′ is again an Orlicz space and ‖ · ‖O
(Lq (m))′ is the corresponding Orlicz

norm. Assume now that Lq(m) is reflexive. Since a Banach space Z is reflexive
if and only if Z ′ is reflexive (see [13, II.A.14]), it is a consequence of Theorem 3.4
that there is an isometric isomorphism between the spaces (Lq(m), ‖ · ‖O)′ and
((L p(m)⊗ L9(µ))/ker u, τũ). Thus we can represent the elements of a dense
subset the dual space of Lq(m) as equivalence classes of elements

∑n
i=1 fi ⊗ hi ∈

L p(m)⊗ L9(m).

EXAMPLE 3. Fix 1< p <∞ and 1< r <∞ and let q and v be their respective
conjugate exponents. Let ([0, 1], 6, µ) be the Lebesgue measure space and V :
Lr (µ)→ Lr (µ) the kernel operator defined by

V ( f )(t) :=
∫ t

0
f (s)K (s, t) ds,

where K : [0, 1] × [0, 1] → R+ is a bounded integrable function. We define the vector
measure mV :6→ Lr (µ) by mV (A) := V (χA). Notice that for φ =

∑n
i=1 aiχAi ,∫

φ dmV =

n∑
i=1

ai mV (Ai )= V (φ).

For 0≤ f ∈ L1(m), there is a sequence (φn) ∈ S(6) such that φn ↑ f . By the order
continuity of L1(mV ), φn→ f in L1(mV ), and then

∫
φn dmV →

∫
f dmV in Lr (µ).

There is a subsequence (8nk )k such that 0≤ φnk ↑ f and∫
f dmV = lim

k

∫
φnk dmV = lim

k
V (φnk )

= lim
k

∫ t

0
φnk (s)K (s, t) ds.

Fix t ∈ [0, 1]. Now 0≤ φnk (s)K (s, t) ↑ f (s)K (s, t), since the kernel K (s, t) is
positive in its first variable. A direct application of the monotone convergence theorem
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yields the formula ∫ t

0
f (s)K (s, t) ds = lim

k

∫ t

0
φnk (s)K (s, t) ds.

Since every function f ∈ L1(mV )may be written as a difference of positive functions,∫
f dmV = V ( f ) for all f ∈ L1(mV ). From Fubini’s theorem, for any representation

of z as
∑n

i=1 fi ⊗ hi in L p(m)⊗ Lr (µ)′ = L p(mV )⊗ Lv(µ),

u(z) = sup
g∈B(Lq (mV ))

∣∣∣∣ n∑
i=1

〈∫ 1

0
fi g dmV , hi

〉∣∣∣∣
= sup

g∈B(Lq (mV ))

∣∣∣∣ n∑
i=1

∫ 1

0

(∫ 1

0
fi g dmV

)
hi dµ

∣∣∣∣
= sup

g∈B(Lq (mV ))

∣∣∣∣ n∑
i=1

∫ 1

0
V ( fi g)hi dµ

∣∣∣∣
= sup

g∈B(Lq (mV ))

∣∣∣∣ n∑
i=1

∫ 1

0

(∫ t

0
fi (s)g(s)K (s, t) dµ(s)

)
hi (t) dµ(t)

∣∣∣∣
= sup

g∈B(Lq (mV ))

∣∣∣∣ n∑
i=1

∫ 1

0

(∫ 1

0
fi (s)g(s)K (s, t)χ[0,t](s) dµ(s)

)
hi (t) dµ(t)

∣∣∣∣
= sup

g∈B(Lq (mV ))

∣∣∣∣ n∑
i=1

∫ 1

0
g(s) fi (s)

(∫ 1

s
K (s, t)hi (t) dµ(t)

)
dµ(s)

∣∣∣∣
= sup

g∈B(Lq (mV ))

∣∣∣∣∫ 1

0
g(s)

n∑
i=1

φi dµ(s)

∣∣∣∣
=

∥∥∥∥ n∑
i=1

φi

∥∥∥∥
Lq (mV )

′

where φi (s)= fi (s)
∫ 1

s K (s, t)hi (t) dµ(t). Then we obtain a representation of a
dense subset of the elements of the predual space Lq(mV ) as equivalence classes of
functions defined by means of elements of L p(mV ) and Lv(µ).
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