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1. Introduction. In K-contact and Sasakian geometry, local symmetry is a very
strong condition: a locally K-contact manifold is necessarily a space of constant
curvature equal to 1 ([16], [19]). So, there is a need for a new kind of symmetry, better
adapted to the additional structure of Sasakian and K-contact spaces. T. Takahashi
introduced the appropriate notion in [18]: a Sasakian space is (locally) ϕ-symmetric if
its Riemann curvature tensor R satisfies

g((∇X R)(Y, Z)V, W ) = 0 (1)

for all vector fields X , Y , Z, V and W orthogonal to the characteristic vector field ξ ,
where ∇ denotes the Levi Civita connection. Geometrically, this corresponds to the
fact that the characteristic reflections (i.e., reflections with respect to the integral curves
of ξ ) are local automorphisms of the Sasakian structure. In fact, it is already sufficient
that the reflections are local isometries ([5]). A K-contact manifold whose characteristic
reflections are local isometries is necessarily a (locally) ϕ-symmetric Sasakian space
([11]).

At least two generalizations of the notion of local ϕ-symmetry to the class of
contact metric spaces have appeared in the literature. The first one, in [4], defines a
locally ϕ-symmetric contact metric space to be one for which the curvature property (1)
holds. It is as yet unclear what this means geometrically in the contact metric setting.
A second generalization was proposed by the author and L. Vanhecke in [10]: a
contact metric space is called locally ϕ-symmetric if its characteristic reflections are
local isometries. This gives rise to an infinite number of curvature restrictions (see
further), including (1). Hence, this second generalization is a priori more restrictive
than the first. To distinguish between the two, we speak about weak local ϕ-symmetry
(for the first one) and strong local ϕ-symmetry (for the second). That the two classes
do not agree was shown explicitly in [9]: there, left-invariant contact metric structures
on three-dimensional non-unimodular Lie groups were constructed which are weakly,
but not strongly locally ϕ-symmetric. In [17], D. Perrone has presented another three-
dimensional contact metric space with this property, but which is moreover not locally
homogeneous.
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The first examples of strongly locally ϕ-symmetric contact metric spaces (which
are not Sasakian) were found in [10]: these are the unit tangent sphere bundles of
spaces of constant curvature c, c �= 1, equipped with their natural contact metric
structure. Later, this family of examples was extended further to include all (non-
Sasakian) contact metric (κ, µ)-spaces. These are contact metric manifolds for which
the Riemann curvature tensor R satisfies

R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) (2)

for some real numbers κ and µ and for all vector fields X and Y . Here h denotes,
up to a scaling factor, the Lie derivative of the structure tensor ϕ in the direction
of ξ . For convenience, we will call such contact metric spaces (κ, µ)-spaces. Note
that Sasakian spaces also satisfy (2) (κ = 1 and h = 0). The class of (κ, µ)-spaces was
introduced in [3], and there it was shown that the only unit tangent sphere bundles
with this curvature property are precisely those of spaces of constant curvature c (with
κ = c(2 − c) and µ = −2c). All (non-Sasakian) (κ, µ)-spaces are strongly locally ϕ-
symmetric and locally contact-homogeneous, as shown by the present author in [6].
Finally, a full local classification of (κ, µ)-spaces was realized in [7].

Apart from the (non-Sasakian) contact metric (κ, µ)-spaces, not a single example is
known of a non-Sasakian strongly locally ϕ-symmetric space. This raises the question
whether any actually exist. In dimension three, the answer is known: G. Calvaruso,
D. Perrone and L. Vanhecke have shown in [12] that the two classes agree. In previous
work, the present author studied left-invariant contact metric structures on Lie groups
and showed that, also here, strong local ϕ-symmetry forces the Lie group to be a
(κ, µ)-space ([8]).

Now, we consider the broader class of (locally) contact-homogeneous contact
metric spaces. By using the theory of homogeneous structures ([20], [14]), one can
make pointwise calculations while still taking the local homogeneity into account.
(This situation is quite similar to the study of Lie groups via computations only
involving their Lie algebras.) If we require the homogeneous contact metric manifold
to be moreover strongly ϕ-symmetric, this severely restricts the possible homogeneous
structures and the form of the Riemann curvature tensor. Indeed, we prove the
following.

MAIN THEOREM. Let (M, ξ, η, ϕ, g) be a locally contact-homogeneous contact
metric space. If it is strongly locally ϕ-symmetric, then it is a (κ, µ)-space.

So, in order to prove that every strongly locally ϕ-symmetric contact metric space
is actually a (κ, µ)-space, it suffices to show that strong local ϕ-symmetry implies local
contact-homogeneity.

2. Strongly locally ϕ-symmetric contact metric spaces. In this section we collect
the formulas and results we need on contact metric manifolds. We refer to [2] for a
more detailed treatment. All manifolds in this note are assumed to be connected and
smooth.

An odd-dimensional differentiable manifold M2n+1 has an almost contact structure
if it admits a vector field ξ , a one-form η and a (1, 1)-tensor field ϕ satisfying

η(ξ ) = 1 and ϕ2 = −id + η ⊗ ξ.
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In that case, one can always find a compatible Riemannian metric g, i.e., such that

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )

for all vector fields X and Y on M. (M, ξ, η, ϕ, g) is an almost contact metric manifold.
If the additional property dη(X, Y ) = g(X, ϕY ) holds, then (M, ξ, η, ϕ, g) is called a
contact metric manifold. As a consequence, the characteristic curves (i.e., the integral
curves of the characteristic vector field ξ ) are geodesics.

On a contact metric manifold M, we define the (1, 1)-tensor h by

hX = 1
2

(Lξϕ)(X)

where Lξ denotes Lie differentiation in the direction of ξ . The tensor h is self-adjoint,
hξ = 0, tr h = 0 and hϕ = −ϕh. The covariant derivative of ξ is given explicitly by

∇Xξ = −ϕX − ϕhX. (3)

If the vector field ξ on a contact metric manifold (M, ξ, η, ϕ, g) is a Killing vector
field, then the manifold is called a K-contact manifold. This is the case if and only if
h = 0. Finally, if the Riemann curvature tensor satisfies

R(X, Y )ξ = ∇X∇Yξ − ∇Y∇Xξ − ∇[X,Y ]ξ = η(Y )X − η(X)Y (4)

for all vector fields X and Y on M, then the contact metric manifold is Sasakian. In
that case, ξ is a Killing vector field, hence every Sasakian manifold is K-contact.

Recall that a contact metric space (M, ξ, η, ϕ, g) is called a (strongly) locally ϕ-
symmetric space if the local reflections with respect to the integral curves of ξ are
local isometries. This geometric property is reflected in an infinite list of curvature
conditions (see also [13]):

PROPOSITION. Let (M, ξ, η, ϕ, g) be a contact metric manifold. If it is a (strongly)
locally ϕ-symmetric space, then the following infinite list of curvature conditions hold:

g
((∇2k

X ···X R
)
(X, Y )X, ξ

) = 0, (5)

g
((∇2k+1

X ···X R
)
(X, Y )X, Z

) = 0, (6)

g
((∇2k+1

X ···X R
)
(X, ξ )X, ξ

) = 0, (7)

for all vectors X, Y and Z orthogonal to ξ and k = 0, 1, 2, . . . . Moreover, if (M, g) is
analytic, these conditions are also sufficient for the contact metric manifold to be a locally
ϕ-symmetric space.

Note that (6) for k = 0 is precisely the condition (1), implying that any strongly
locally ϕ-symmetric space is also weakly locally ϕ-symmetric.

3. Contact-homogeneous structures. Let (M2n+1, ξ, η, ϕ, g) be a contact metric
space which is (locally) contact-homogeneous, i.e., the pseudo-group of local
automorphisms of the contact metric structure (ξ, η, ϕ, g) acts transitively on M. The
theory of homogeneous structures ([1], [20]) and its generalization by V. F. Kiričenko
in [14] allow to describe local homogeneity in an infinitesimal way, which is very
convenient for calculations. Namely, the contact metric space (M, ξ, η, ϕ, g) is locally
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homogeneous if and only if there exists a (1, 2)-tensor field T , the homogeneous
structure, such that

∇̃g = 0, ∇̃R = 0, ∇̃T = 0, ∇̃ξ = 0, ∇̃η = 0, ∇̃ϕ = 0 (8)

where ∇̃ is the connection determined by ∇̃ = ∇ − T .
The existence of the tensor field T makes it possible to calculate pointwise while

still taking the local homogeneity into account. So, for all further calculations, we
implicitly assume we are working at a fixed point p ∈ M. For the simplicity of the
notation, however, we do not mention p in our formulas.

Consider the operator h = 1
2 Lξϕ. Since it is symmetric with respect to the

metric g and since hϕ = −ϕh, we can find an orthonormal basis of TpM of the form
{X1, . . . , Xn, Y1, . . . , Yn, ξ} satisfying

h(Xi) = λiXi, h(Yi) = −λiYi, ϕ(Xi) = Yi, ϕ(Yi) = −Xi

for i = 1, . . . , n and such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. In this basis, we can express the
tensor T explicitly in the form:

TXi Xj =
n∑

k=1

(
Ak

i jXk + ak
i jYk

) + xijξ,

TXi Yj =
n∑

k=1

(
bk
i jXk + Bk

i jYk
) + zijξ,

TXiξ =
n∑

k=1

(
Ak

i Xk + ak
i Yk

) + xiξ,

TYi Xj =
n∑

k=1

(
Ck

i jXk + ck
i jYk

) + wijξ,

TYi Yj =
n∑

k=1

(
dk
i jXk + Dk

i jYk
) + yijξ, (9)

TYiξ =
n∑

k=1

(
dk

i Xk + Dk
i Yk

) + yiξ,

Tξ Xj =
n∑

k=1

(
αk

j Xk + βk
j Yk

) + x̃jξ,

Tξ Yj =
n∑

k=1

(
γ k

j Xk + εk
j Yk

) + ỹjξ,

Tξ ξ =
n∑

k=1

(x̄kXk + ȳkYk) + z̄ξ.

From the properties (8), we can immediately reduce the number of coefficients
in (9). Condition (8)4 implies TXξ = ∇Xξ = −ϕX − ϕhX . Therefore, Tξ ξ = 0, TXiξ =
−(1 + λi)Yi and TYiξ = (1 − λi)Xi. So, we find

x̄k = ȳk = z̄ = Ak
i = xi = Dk

i = yi = 0,

ak
i = −(1 + λi)δik, dk

i = (1 − λi)δik.
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Next, we derive from (8)1:

(TZ · g)(X, Y ) = (∇Zg)(X, Y ) − (∇̃Zg)(X, Y ) = 0.

On the other hand, it holds by definition:

(TZ · g)(X, Y ) = −g(TZX, Y ) − g(X, TZY ).

Hence, TZ is a skew-symmetric operator for each Z ∈ TpM. Putting Z = Xi, Yi, ξ , it
follows

Ak
i j + Aj

ik = 0, Bk
i j + B j

ik = 0, ak
i j + b j

ik = 0,

xij = 0, zij = (1 + λi)δij,

Ck
i j + C j

ik = 0, Dk
i j + D j

ik = 0, ck
i j + d j

ik = 0, (10)

yij = 0, wij = −(1 − λi)δij,

αk
j + α

j
k = 0, εk

j + ε
j
k = 0, βk

j + γ
j

k = 0,

xj = 0, yj = 0.

Finally, we use the equality ∇ξϕ = 0, which holds for every contact metric space
([2]), together with (8)6 to obtain

0 = (∇ξϕ)Z = (Tξ · ϕ)Z = Tξ (ϕZ) − ϕ(Tξ Z).

Substituting Z = Xi, Yi, we find

βk
j + γ k

j = 0, εk
j − αk

j = 0. (11)

In particular, combining (10) and (11), we have βk
j = −γ k

j = β
j

k.
Combining all these conditions on the coefficients, the expressions (9) for T

simplify to

TXi Xj =
n∑

k=1

(
Ak

i jXk + ek
i jYk

)
,

TXi Yj =
n∑

k=1

(−e j
ikXk + Bk

i jYk
) + δij(1 + λi)ξ,

TXiξ = −(1 + λi)Yi,

TYi Xj =
n∑

k=1

(
Ck

i jXk − f j
ikYk

) − δij(1 − λi)ξ,

TYi Yj =
n∑

k=1

(
f k
i jXk + Dk

i jYk
)
, (12)

TYiξ = (1 − λi)Xi,

Tξ Xj =
n∑

k=1

(
αk

j Xk + βk
j Yk

)
,

Tξ Yj =
n∑

k=1

(− βk
j Xk + αk

j Yk
)
,

Tξ ξ = 0
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where Ak
i j, Bk

i j, Ck
i j, Dk

i j and αk
j are skew-symmetric in j and k and βk

j is symmetric in j
and k.

4. The first curvature condition. Recall that we are looking for locally
homogeneous contact metric spaces which are strongly locally ϕ-symmetric. The first
necessary condition on the curvature tensor is given by (5) for k = 0: R(X, Y )ξ = 0
for all vector fields X and Y orthogonal to ξ . On the other hand, since ∇̃ξ = 0, also
R̃(X, Y )ξ = 0. Because the two connections ∇ and ∇̃ are related via T , we will use this
to obtain additional restrictions on the coefficients of T .

First, we need the precise relation between R and R̃, which is given in [20]. For
arbitrary vector fields X , Y and Z, it holds

R̃(X, Y )Z = R(X, Y )Z + TTX Y Z − TTY X Z − TX TY Z + TY TX Z. (13)

In particular

R(X, Y )ξ = [TX , TY ]ξ − (TTX Y − TTY X )ξ (14)

for all vector fields X and Y on M. If we express the condition R(X, Y )ξ = 0 for strong
local ϕ-symmetry for vector fields X and Y orthogonal to ξ , we obtain a system of
linear equations in the coefficients Ak

i j, Bk
i j, Ck

i j, Dk
i j, ek

i j and f k
i j, which can be solved

explicitly. We give some more details now, giving the explicit solutions.

4.1. One index. Using (14) and (12), we compute

0 = g(R(Xi, Yi)ξ, Xi) = 2λif i
i i,

0 = g(R(Xi, Yi)ξ, Yi) = −2λiei
i i.

Hence,
� if λi > 0: ei

ii = f i
ii = 0;

� if λi = 0: ei
ii and f i

ii are arbitrary.

4.2. Two different indices. This time we look at the conditions of the form
g(R(X, Y )ξ, Z) = 0 where X, Y, Z ∈ {Xi, Yi, Xj, Yj}, i < j, with both indices occurring.
This gives rise to a list of linear equations in the coefficients of T with two different
indices. However, this system subdivides into systems of five equations for only five
coefficients. Since all the subsystems are similar, we treat only the one involving Ci

i j,
Di

i j, e j
ii, ei

i jand ei
ji. This subsystem corresponds to the conditions

0 = g(R(Xi, Xj)ξ, Xi),

0 = g(R(Xi, Yi)ξ, Yj),

0 = g(R(Xi, Yj)ξ, Yi),

0 = g(R(Xj, Yi)ξ, Yi),

0 = g(R(Yi, Yj)ξ, Xi).
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After some calculations, using (14) and (12), this system can be written as

M




Ci
i j

Di
i j

e j
ii

ei
i j

ei
ji




=




0

0

0

0

0




(15)

where

M =




0 0 1 + λj −(1 − λi) −2λi

1 + λj −(1 + λi) 1 − λi −(1 + λj) 0

0 0 1 + λi −(1 − λj) 0

1 + λi −(1 + λj) 0 0 2λi

1 − λj −(1 − λi) 0 0 0




.

The determinant of the matrix M is given by 8λi
2(λi + λj)(λj − λi). Keeping in mind

that λi ≥ λj ≥ 0, we have the following solutions for the system (15):
� if λi > λj ≥ 0: Ci

i j = Di
i j = e j

ii = ei
i j = ei

ji = 0;
� if λi = λj > 0: Ci

i j = Di
i j, e j

ii = ei
i j = ei

ji = 0, Di
i j is arbitrary;

� if λi = λj = 0: Ci
i j = Di

i j, e j
ii = ei

i j, Di
i j, e j

ii and ei
ji are arbitrary.

Working similarly for the other subsystems {C j
ji, D j

ji, ei
jj, e j

ji, e j
i j}, {Ai

i j, Bi
i j, f j

ii , f i
i j, f i

ji}
and {A j

ji, B j
ji, f i

jj, f j
ji , f j

i j}, we find
� if λi > λj > 0:

Ai
i j = Bi

i j = f j
ii = f i

i j = f i
ji = 0,

A j
ji = B j

ji = f i
jj = f j

ji = f j
i j = 0,

Ci
i j = Di

i j = e j
ii = ei

i j = ei
ji = 0,

C j
ji = D j

ji = ei
jj = e j

ji = e j
i j = 0;

� if λi > λj = 0:

Ai
i j = Bi

i j = f j
ii = f i

i j = f i
ji = 0,

A j
ji = B j

ji = f i
jj = f j

ji = 0, f j
i j is arbitrary,

Ci
i j = Di

i j = e j
ii = ei

i j = ei
ji = 0,

C j
ji = D j

ji = ei
jj = e j

ji = 0, e j
i j is arbitrary;

� if λi = λj > 0:

Ai
i j = Bi

i j, f j
ii = f i

i j = f i
ji = 0, Ai

i j is arbitrary,

A j
ji = B j

ji, f i
jj = f j

ji = f j
i j = 0, A j

ji is arbitrary,

Ci
i j = Di

i j, e j
ii = ei

i j = ei
ji = 0, Di

i j is arbitrary,

C j
ji = D j

ji, ei
jj = e j

ji = e j
i j = 0, D j

ji is arbitrary;
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� if λi = λj = 0:

Ai
i j = Bi

i j, f j
ii = f i

i j, Ai
i j, f i

i j and f i
ji are arbitrary,

A j
ji = B j

ji, f i
jj = f j

ji , A j
ji, f j

ji and f j
i j are arbitrary,

Ci
i j = Di

i j, e j
ii = ei

i j, Di
i j, ei

i j and ei
ji are arbitrary,

C j
ji = D j

ji, ei
j j = e j

ji, D j
ji, e j

ji and e j
ij are arbitrary.

4.3. Three different indices. As in the previous case, the conditions
g(R(X, Y )ξ, Z) = 0 where X, Y, Z ∈ {Xi, Yi, Xj, Yj, Xk, Yk}, i < j < k, and with three
different indices occurring, lead to subsystems of twelve equations in twelve coef-
ficients: {Ak

i j, Ai
jk, A j

ki, Bk
i j, Bi

jk, B j
ki, f k

i j, f j
ik, f k

ji , f i
jk, f j

ki, f i
kj} and {Ck

i j, Ci
jk, C j

ki, Dk
i j, Di

jk,

D j
ki, ek

i j, e j
ik, ek

ji, ei
jk, e j

ki, ei
kj}. Again, both cases are quite similar. We do not give the

explicit equations here. It suffices to say that the rank of the system is equal to
� 6 if λi = λj = λk = 0;
� 9 if λi = λj = λk > 0;
� 10 if λi > λj = λk = 0;
� 11 in all other cases.
The corresponding solutions are given by
� if λi = λj = λk = 0:

Ak
i j = Bk

i j, Ai
jk = Bi

jk, A j
ki = B j

ki,

Ck
i j = Dk

i j, Ci
jk = Di

jk, C j
ki = D j

ki,

ek
i j = e j

ik, ei
jk = ek

ji, e j
ki = ei

kj,

f k
i j = f j

ik, f i
jk = f k

ji , f j
ki = f i

kj,

Ak
i j, Ai

jk, A j
ki, Dk

i j, Di
jk, D j

ki, ek
i j, ei

jk, e j
ki, f k

i j, f i
jk and f j

ki are arbitrary;

� if λi = λj = λk > 0:

Ak
i j = Bk

i j, Ai
jk = Bi

jk, A j
ki = B j

ki,

Ck
i j = Dk

i j, Ci
jk = Di

jk, C j
ki = D j

ki,

ek
i j = e j

ik = ei
jk = ek

ji = e j
ki = ei

kj = 0,

f k
i j = f j

ik = f i
jk = f k

ji = f j
ki = f i

kj = 0,

Ak
i j, Ai

jk, A j
ki, Dk

i j, Di
jk and D j

ki are arbitrary;

� if λi > λj = λk = 0:

Ak
i j = Bk

i j, Ai
jk = Bi

jk = A j
ki = B j

ki = 0,

Ck
i j = Dk

i j, Ci
jk = Di

jk = C j
ki = D j

ki = 0,

ek
i j = e j

ik, ei
jk = ek

ji = e j
ki = ei

kj = 0,

f k
i j = f j

ik, f i
jk = f k

ji = f j
ki = f i

kj = 0,

Ak
i j, Dk

i j, ek
i j and f k

i j are arbitrary;
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� otherwise:

Ak
i j = Bk

i j = (λi + λj)(λj + λk)(λk + λi)(λi − λj)(λk − λi) aijk,

Ai
jk = Bi

jk = (λi + λj)(λj + λk)(λk + λi)(λi − λj)(λj − λk)aijk,

A j
ki = B j

ki = (λi + λj)(λj + λk)(λk + λi)(λj − λk)(λk − λi) aijk,

Ck
i j = Dk

i j = (λi + λj)(λj + λk)(λk + λi)(λi − λj)(λk − λi) dijk,

Ci
jk = Di

jk = (λi + λj)(λj + λk)(λk + λi)(λi − λj)(λj − λk)dijk,

C j
ki = D j

ki = (λi + λj)(λj + λk)(λk + λi)(λj − λk)(λk − λi) dijk,

ek
i j = e j

ik = (λi + λj)(λk + λi)(λi − λj)(λj − λk)(λk − λi) dijk,

ei
jk = ek

ji = (λi + λj)(λj + λk)(λi − λj)(λj − λk)(λk − λi) dijk,

e j
ki = ei

kj = (λj + λk)(λk + λi)(λi − λj)(λj − λk)(λk − λi) dijk,

f k
i j = f j

ik = (λi + λj)(λk + λi)(λi − λj)(λj − λk)(λk − λi) aijk,

f i
jk = f k

ji = (λi + λj)(λj + λk)(λi − λj)(λj − λk)(λk − λi) aijk,

f j
ki = f i

kj = (λj + λk)(λk + λi)(λi − λj)(λj − λk)(λk − λi) aijk,

aijk and dijk are arbitrary.

5. Curvature components. The results in the previous section have already greatly
reduced the number of independent coefficients for the homogeneous structure T of a
strongly locally ϕ-symmetric contact metric space. In this section, we obtain even more
information as a consequence of the conditions (8). The operator h plays a crucial role
here. Recall that the vanishing of h is equivalent to the contact metric structure being
K-contact. Since a locally ϕ-symmetric K-contact manifold is always Sasakian (hence
also a (κ, µ)-space), we may suppose that h �= 0 or, equivalently, λ1 > 0. First, we show
that also h is parallel for the connection ∇̃.

LEMMA. ∇̃h = 0.

Proof. In the following calculation, we use the definition of h, the properties (8)
and in particular the equalities:

[ξ, Z] = ∇ξ Z − ∇Zξ = ∇̃ξ Z + Tξ Z − ∇̃Zξ − TZξ = ∇̃ξ Z + Tξ Z − TZξ,

0 = ∇ξϕ = ∇̃ξϕ + Tξ · ϕ = Tξ ◦ ϕ − ϕ ◦ Tξ .

We compute

2(∇̃X h)Y = 2∇̃X (hY ) − 2h(∇̃X Y ) = ∇̃((Lξϕ)Y ) − (Lξϕ)(∇̃X Y )

= ∇̃X ([ξ, ϕY ] − ϕ[ξ, Y ]) − [ξ, ϕ(∇̃X Y )] + ϕ[ξ, ∇̃X Y ]

= ∇̃X (∇̃ξ (ϕY ) + Tξ (ϕY ) − TϕYξ ) − ∇̃X (ϕ(∇̃ξ Y + Tξ Y − TYξ ))

− ∇̃ξ (ϕ∇̃X Y ) − Tξ (ϕ∇̃X Y ) + Tϕ∇̃X Yξ

+ ϕ(∇̃ξ ∇̃X Y ) + ϕ(Tξ ∇̃X Y ) − ϕ(T∇̃X Yξ )
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= ϕ(∇̃X ∇̃ξ Y ) + Tξ (ϕ∇̃X Y ) − Tϕ∇̃X Yξ − ϕ(∇̃X ∇̃ξ Y )

−ϕ(Tξ ∇̃X Y ) + ϕ(T∇̃X Yξ ) − ϕ(∇̃ξ ∇̃X Y )

−Tξ (ϕ∇̃X Y ) + Tϕ∇̃X Yξ, + ϕ(∇̃ξ ∇̃X Y )

+ϕ(Tξ ∇̃X Y ) − ϕ(T∇̃X Yξ )

= 0. �

As a consequence, we have R̃(X, Y ) · h = ∇̃X ∇̃Y h − ∇̃Y ∇̃X h − ∇̃[X,Y ]h = 0 for all
vector fields X and Y by the Ricci identity. From (13), we then get

R(X, Y ) · h = ([TX , TY ] − TTX Y + TTY X ) · h

or

R(X, Y ) ◦ h − h ◦ R(X, Y )

= ([TX , TY ] − (TTX Y − TTY X )) ◦ h − h ◦ ([TX , TY ] − (TTX Y − TTY X )). (16)

We can use this formula to compute some curvature components g(R(X, Y )Z, W ).
Indeed, if hZ = λZ and hW = µW with λ �= µ, then we have

g(R(X, Y )hZ − hR(X, Y )Z, W ) = (λ − µ)g(R(X, Y )Z, W ),

while

g([TX , TY ]hZ − (TTX Y − TTY X )hZ − h([TX , TY ]Z − (TTX Y − TTY X )Z))

= (λ − µ)g([TX , TY ]Z − (TTX Y − TTY X )Z, W ).

From (16), we then conclude

g(R(X, Y )Z, W ) = g([TX , TY ]Z − (TTX Y − TTY X )Z, W ). (17)

Note that this equality only holds for eigenvectors Z and W of h with different
eigenvalues! In the rest of this section, we use (17) to compute certain curvature
components and then use the symmetries of the curvature tensor to derive information
on the eigenvalues λi of h and their multiplicities. We perform one such calculation
in detail, and afterwards only provide the resulting expressions for the curvature
components.

In order to take the multiplicities of the eigenvalues of h into account, we
now change the notation slightly and work with an orthonormal basis {X11, . . . ,

X1k1 , X21, . . . , X2k2 , . . . , Xt1, . . . , Xtkt , Y11, . . . , Y1k1 , . . . , Yt1, . . . , Ytkt , ξ} such that

h(Xsi) = λsXsi, h(Ysi) = −λsYsi, ϕ(Xsi) = Ysi, ϕ(Ysi) = −Xsi

for s = 1, . . . , t, i = 1, . . . , ks and such that λ1 > λ2 > · · · > λt = 0. The indexing of
the coefficients in (12) will be changed accordingly.

5.1. The zero eigenvalue. Suppose first that h has a zero eigenvalue on ξ⊥. With
the notation above, this means kt > 0. From (17), we have

g(R(X11, Xt1)Y11, Yt1) = g
(
[TX11 , TXt1 ]Y11 − (

TTX11 Xt1 − TTXt1 X11

)
Y11, Yt1

)
.
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We calculate the right-hand side term by term, using the results from the previous
section:

TXt1 Y11 = −
t∑

s=1

ks∑
i=1

e11
t1 siXsi +

t∑
s=1

ks∑
i=1

Bsi
t1 11Ysi

= −e11
t1 11X11 −

k1∑
i=2

e11
t1 1iX1i −

t−1∑
s=2

ks∑
i=1

e11
t1 siXsi

− e11
t1 t1Xt1 −

kt∑
i=2

e11
t1 tiXti

+ B11
t1 11Y11 +

k1∑
i=2

B1i
t1 11Y1i +

t−1∑
s=2

ks∑
i=1

Bsi
t1 11Ysi

+ Bt1
t1 11Yt1 +

kt∑
i=2

Bti
t1 11Yti

=
t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 − λs) d11 si t1Xsi

+
k1∑

i=2

A1i
t1 11Y1i −

t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 + λs) a11 si t1Ysi,

g(TX11 TXt1 Y11, Yt1) =
t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 − λs) d11 si t1et1

11 si

+
k1∑

i=2

A1i
t1 11Bt1

11 1i −
t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 + λs) a11 si t1Bt1

11 si

= −
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s (λ1 − λs)2(λ1 + λs)d2

11 si t1

+
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s (λ1 − λs)(λ1 + λs)2a2

11 si t1

=
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s (λ2

1 − λ2
s )

(
(λ1 + λs)a2

11 si t1 − (λ1 − λs)d2
11 si t1

)
,

TX11 Y11 = −
t∑

s=1

ks∑
i=1

e11
11 siXsi +

t∑
s=1

ks∑
i=1

Bsi
11 11Ysi + (1 + λ1)ξ

=
k1∑

i=2

A1i
11 11Y1i + (1 + λ1)ξ,

g(TXt1 TX11 Y11, Yt1) =
k1∑

i=2

A1i
11 11Bt1

t1 1i − (1 + λ1) = −(1 + λ1),
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TX11 Xt1 =
t∑

s=1

ks∑
i=1

Asi
11 t1Xsi +

t∑
s=1

ks∑
i=1

esi
11 t1Ysi

=
t−1∑
s=2

ks∑
i=1

λ2
1λs

(
λ2

1 − λ2
s

)
a11 si t1Xsi +

kt∑
i=2

Ati
11 t1Xti

−
t−1∑
s=2

ks∑
i=1

λ2
1λs

(
λ2

1 − λ2
s

)
d11 si t1Ysi +

kt∑
i=1

eti
11 t1Yti,

g
(
TTX11 Xt1 Y11, Yt1

) =
t−1∑
s=2

ks∑
i=1

λ2
1λs

(
λ2

1 − λ2
s

)
a11 si t1Bt1

si 11 +
kt∑

i=2

Ati
11 t1Bt1

ti 11

−
t−1∑
s=2

ks∑
i=1

λ2
1λs

(
λ2

1 − λ2
s

)
d11 si t1Dt1

si 11 +
kt∑

i=1

eti
11 t1Dt1

ti 11

= −
t−1∑
s=2

ks∑
i=1

λ3
1λ

3
s

(
λ2

1 − λ2
s

)2a2
11 si t1

+
t−1∑
s=2

ks∑
i=1

λ3
1λ

3
s

(
λ2

1 − λ2
s

)2d2
11 si t1

=
t−1∑
s=2

ks∑
i=1

λ3
1λ

3
s

(
λ2

1 − λ2
s

)2(d2
11 si t1 − a2

11 si t1

)
,

TXt1 X11 =
t∑

s=1

ks∑
i=1

Asi
t1 11Xsi +

t∑
s=1

ks∑
i=1

esi
t1 11Ysi

=
k1∑

i=2

A1i
t1 11X1i −

t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 + λs)a11 si t1Xsi

−
t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 − λs)d11 si t1Ysi,

g
(
TTXt1 X11 Y11, Yt1

) =
k1∑

i=2

A1i
t1 11Bt1

1i 11 −
t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 + λs)a11 si t1Bt1

si 11

−
t−1∑
s=2

ks∑
i=1

λ2
1λ

2
s (λ1 − λs)d11 si t1Dt1

si 11

=
t−1∑
s=2

ks∑
i=1

λ3
1λ

4
s (λ1 + λs)2(λ1 − λs)a2

11 si t1

+
t−1∑
s=2

ks∑
i=1

λ3
1λ

4
s (λ1 − λs)2(λ1 + λs)d2

11 si t1

=
t−1∑
s=2

ks∑
i=1

λ3
1λ

4
s

(
λ2

1 − λ2
s

)(
(λ1 + λs)a2

11 si t1 + (λ1 − λs)d2
11 si t1

)
.
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Bringing all this together, we find

g(R(X11, Xt1)Y11, Yt1)

= (1 + λ1) + 2
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s

(
λ2

1 − λ2
s

)(
(λ1 + λs)a2

11 si t1 − (λ1 − λs)d2
11 si t1

)
.

Similarly, we compute

g(R(Y11, Yt1)X11, Xt1)

= (1 − λ1) + 2
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s

(
λ2

1 − λ2
s

)(
(λ1 + λs)d2

11 si t1 − (λ1 − λs)a2
11 si t1

)
.

Since both expressions must agree because of the symmetries of the curvature tensor,
we find the following equality:

λ1 = 2
t−1∑
s=2

ks∑
i=1

λ5
1λ

3
s

(
λ2

1 − λ2
s

)(
d2

11 si t1 − a2
11 si t1

)
. (18)

On the other hand, working in a similar way, we find

g(R(Xt1, Y11)X11, Yt1)

= (1 − λ1) + 2
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s

(
λ2

1 − λ2
s

)(
(λ1 + λs)a2

11 si t1 − (λ1 − λs)d2
11 si t1

)
,

g(R(X11, Yt1)Xt1, Y11)

= (1 + λ1) + 2
t−1∑
s=2

ks∑
i=1

λ4
1λ

3
s

(
λ2

1 − λ2
s

)(
(λ1 + λs)d2

11 si t1 − (λ1 − λs)a2
11 si t1

)
.

Again, both expressions must agree and we get

λ1 = 2
t−1∑
s=2

ks∑
i=1

λ5
1λ

3
s

(
λ2

1 − λ2
s

)(
a2

11 si t1 − d2
11 si t1

)
. (19)

Comparing (18) and (19), we see that λ1 = 0, which is contrary to our assumption.
Hence, kt = 0 and zero is not an eigenvalue of h on ξ⊥.

5.2. The number of eigenvalues. Suppose next that h has at least two different
positive eigenvalues on ξ⊥, i.e., k2 > 0. Calculating as before, we get first

g(R(X11, X21)Y11, Y21) = (1 + λ1)(1 + λ2) + 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)

· ((λ2 + λs)(λs + λ1)a2
11 21 si − (λ2 − λs)(λs − λ1)d2

11 21 si

)
,

g(R(Y11, Y21)X11, X21) = (1 − λ1)(1 − λ2) + 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)

· ((λ2 + λs)(λs + λ1)d2
11 21 si − (λ2 − λs)(λs − λ1)a2

11 21 si

)
.
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These two expressions must agree because of the symmetries of the Riemann curvature
tensor. This gives

λ1 + λ2 = 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)
λs(λ1 + λ2)

(
d2

11 21 si − a2
11 21 si

)

or

1 = 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)
λs

(
d2

11 21 si − a2
11 21 si

)
. (20)

On the other hand, we also have

g(R(X11, Y21)Y11, X21) = −(1 + λ1)(1 − λ2) + 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)

· ((λ2 − λs)(λs + λ1)d2
11 21 si − (λ2 + λs)(λs − λ1)a2

11 21 si

)
,

g(R(Y11, X21)X11, Y21) = −(1 − λ1)(1 + λ2) + 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)

· ((λ2 − λs)(λs + λ1)a2
11 21 si − (λ2 + λs)(λs − λ1)d2

11 21 si

)

and hence

λ1 − λ2 = 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)
λs(λ1 − λ2)

(
a2

11 21 si − d2
11 21 si

)

or

1 = 2
∑
s≥3

ks∑
i=1

(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
s

)(
λ2

s − λ2
1

)
λs

(
a2

11 21 si − d2
11 21 si

)
. (21)

If we compare the right-hand sides of (20) and (21), we see that they are each other’s
negative. Hence, we obtain a contradiction once more. Consequently, k2 must be zero
and h has only one positive eigenvalue on ξ⊥.

5.3. (κ, µ)-spaces. Since there is now only one positive eigenvalue λ = λ1 > 0
left for h, we can revert to our original notation. So, we have an orthonormal basis
{X1, . . . , Xn, Y1, . . . , Yn, ξ} such that

h(Xi) = λXi, h(Yi) = −λYi, ϕ(Xi) = Yi, ϕ(Yi) = −Xi

for i = 1, . . . , n. Furthermore, based on Section 4, the homogeneous structure T is
given in this basis as

TXi Xj =
n∑

k=1

Ak
i jXk,

TXi Yj =
n∑

k=1

Ak
i jYk + δij(1 + λ)ξ,

https://doi.org/10.1017/S0017089505002909 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002909


LOCALLY ϕ-SYMMETRIC MANIFOLDS 107

TXiξ = −(1 + λ)Yi,

TYi Xj =
n∑

k=1

Dk
i jXk − δij(1 − λ)ξ,

TYi Yj =
n∑

k=1

Dk
i jYk, (22)

TYiξ = (1 − λ)Xi,

Tξ Xj =
n∑

k=1

(
αk

j Xk + βk
j Yk

)
,

Tξ Yj =
n∑

k=1

(−βk
j Xk + αk

j Yk
)
,

Tξ ξ = 0

where Ak
i j, Dk

i j and αk
j are skew-symmetric in j and k and βk

j is symmetric in j and k.
Let us first investigate under which conditions on the coefficients the curvature

tensor R satisfies

R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ).

For X and Y both orthogonal to ξ , this is already the case (see Section 4). This leaves
only the case R(X, ξ )ξ for X orthogonal to ξ . Using (14) and the expressions (22), we
compute

R(Xi, ξ )ξ = (
1 − λ2 − 2λβ i

i

)
Xi − 2λ

∑
k�=i

βk
i Xk,

R(Yi, ξ )ξ = (
1 − λ2 + 2λβ i

i

)
Yi + 2λ

∑
k�=i

βk
i Yk.

On the other hand, for a (κ, µ)-contact metric structure, we have

R(Xi, ξ )ξ = (κ + λµ)Xi, R(Yi, ξ )ξ = (κ − λµ)Yi.

So, we need

β1
1 = · · · = βn

n , βk
i = 0, i �= k.

Then κ = 1 − λ2 and µ = −2β1
1 . We show now that (βk

i ) is indeed a multiple of the
identity.

We do this in a similar way as before, by calculating curvature components in the
basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} starting from (17). For i �= j, we easily compute

g(R(Xi, Yi)Xj, Yi) = −2β i
j , g(R(Xj, Yi)Xi, Yi) = 0

and hence β
j

i = 0 for i �= j. Further, still for i �= j, we get

g(R(Xi, Yi)Xj, Yj) = −2β
j

j .
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So,

β
j

j = −1
2

g(R(Xi, Yi)Xj, Yj) = −1
2

g(R(Xj, Yj)Xi, Yi) = β i
i .

Summarizing, we have shown that the Riemann curvature tensor of a locally
contact-homogeneous strongly locally ϕ-symmetric space satisfies

R(X, Y )ξ = κ (η(Y )X − η(X)Y ) + µ (η(Y )hX − η(X)hY ). (23)

This does not quite prove the main theorem yet! Indeed, since all calculations were made
at a fixed point p ∈ M, we only know that the κ and µ in (23) are functions on M, and
not necessarily constants, i.e., we have a generalized (κ, µ)-space. These were introduced
in [15]. It was shown in that paper that non-Sasakian spaces in this class with non-
constant κ and µ are necessarily three-dimensional. However, as we mentioned in the
introduction, it was proved by G. Calvaruso, D. Perrone and L. Vanhecke in [12] that
three-dimensional strongly locally ϕ-symmetric spaces are always (κ, µ)-spaces, i.e.,
with constant κ and µ. These remarks complete the proof of the main theorem.

Note that we have only used the very first curvature condition to prove the main
result. We could therefore strengthen it as follows:

PROPOSITION. Let (M, ξ, η, ϕ, g) be a locally contact-homogeneous contact metric
space satisfying R(X, Y )ξ = 0 for all vector fields X and Y orthogonal to ξ . Then the
manifold is a (κ, µ)-space.

Proof. Since we used λ1 > 0 to prove the main theorem, we still have to consider
the case when the contact structure is actually K-contact. Then h = 0 or, equivalently,
λi = 0 for i = 1, . . . , n. By (14) and (12), we easily calculate

R(Xi, ξ )ξ = Xi, R(Yi, ξ )ξ = Yi.

Together with the condition R(X, Y )ξ = 0 for all vector fields X and Y orthogonal
to ξ , it follows

R(X, Y )ξ = η(Y )X − η(X)Y

for arbitrary vector fields X and Y and the structure is Sasakian, hence (κ, µ). �
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