ALGEBRAS OF HOLOMORPHIC FUNCTIONS
IN RINGED SPACES. 1

MAXWELL E. SHAUCK

1. Introduction. A pair (X, &) is a ringed space if it is a subsheaf of rings
with 1 of the sheaf of germs of continuous functions on X. If U is an open sub-
set of X, we denote the set of sections over U relative to . by I'(U, &). If
¢ € T(U, ), then ¢(u) € & implies that there exists some open neighbour-
hood V of u, V' C U, and some g continuous on V such that the germ of g at
u, .8, is ¢(u). Now we define ¢ (%) (#) to be g(#) and in this way we obtain, in
a unique fashion, a continuous complex-valued function on U. The collection
of all such functions for a given set I'(U, %) is denoted by & (U) and is
called the 27-holomorphic functions on U. The following theorem is a special
case of a result of Quigley (5).

THEOREM. Let X be a locally connected Hausdorff space and (X, ) a
ringed space. Then & is Hausdorff if and only if &/ (U) is quasi-analytic for all
open connected subsets U C X.

This result implies the existence of a general notion of continuation in the
context of ringed spaces. In a natural generalization of the notions of continu-
ation and domain of existence from the subject of analytic functions of several
complex variables we have obtained necessary and sufficient conditions that a
pair of .27-holomorphic functions are continuations and that an open subset of
X be a domain of existence. The results obtained are similar to the Cartan-
Thullen theorem.

We impose more of the conditions on .2/ which are enjoyed by the sheaf of
germs of analytic functions of several complex variables such as completeness
in the compact open topology and the Montel and Baire properties. The notion
of convexity is investigated and results concerning functions unbounded on the
boundary of open convex subsets of X are obtained.

2. In the following, (X, %) is a ringed space in which X is a locally con-
nected Hausdorff space. If D is an open connected subset of X and f is in
(D), we let Q(f) be the connected component of ,f in &/, where x is any
element of D, and we let o(f) be the set of all ,f, where x ranges over D.
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Definition 1. With the above notation, suppose that p isin C1D — D and V
is an open neighbourhood of p. If fis in &7 (D) and g is in &7 (V), then g is an
extension of f to V if and only if g = f on VN D. We say that p is a local
boundary singularity for f if and only if f has no extension to any neighbourhood
of p. The set of all p in C1D — D such that p is a local boundary singularity
for f is denoted by G3(f). If CID — D = G;(f), we say that D is an %7 -domain
of holomorphy for f.

Definition 2. A function g in & (V) for V open in X is called a continuation
of fin &Z (D) for D open in X if and only if there exist Wy, ..., W,, open
connected subsets of X, and f; in &/ (W,) such that Wy = D, W, =V,
W.N\ Wi # 0 and fi1 is an extension of f; to W, ;. An element p in
CID — D is a global boundary singularity for f in & (D) if and only if f has no
continuation to any open neighbourhood of p. Gi(f) is, by definition, the set
of all p in C1D — D which are global boundary singularities for f. We say that
D is an &/-domain of existence for f if and only if G,(f) = CID — D.

THEOREM 1. Let D and V be open connected subsets of X, f in o (D), g in
(V). Then g is a continuation of f if and only if Q(f) = Q(g).

Proof. Suppose that g is a continuation of f. Let W, f; in & (W),
1 £ i £ n, be the relevant open sets and &7-holomorphic functions, as in
Definition 2. Let U; = o(f;), 1 £ ¢ = n. Then the U;s are open connected
subsets of & and for s in W,N\ W, ;= £,.1 which implies that
U;N\ Uppr # 0. Thus, U = U[U;: 1 =4 < n]is an open connected subset of
. Now Ur=o(f) CUCQ() and U, = o(g) C 2(g), and this implies
that Q(f) = Q(g).

Suppose that Q(f) = Q(g), and sisin D, ¢tisin V. Let C be the collection
of all sets of the form [,h: v in W], where W is an open connected set in X and &
is in & (W); then C is a base for the topology on 2/ consisting of open con-
nected sets. Since f and ,$ are in the same component, there is a chain
Ui, ..., Uyof setsin C connecting ,f and 8. Leto(g;) = U,and g, € & (W),
1 £4¢ = n Nowsisin Wy, tisin W,, and since U; M U1 # B, there is some
v, in W; N\ W41 such that ,8; = ,,8:41, 1 <2 < n — 1. This means that
there exists a V;, open and connected, V; contained in W; M W4, such that
g: = gi+1 0N Vz,lé'lfén—:l-

Now s is in D M Wy and f = 8:; thus, there exists an open connected
subset Vo C D M Wi such that f = gy on V,. Let hy = g; on V,. For £ in
W1M W, let V1 be an open connected subset of W; M W, such that g; = g»
on Vi.Leth, = g1 = goon Vi. For ¢, in Wy M W, let V, be an open connected
subset of W, M Wj; such that g = g3 on V, and let Ay = g, on V,. Continue
in this way to ¢t in W, M V and let V, C W, M V be such that g, = gon V,
and let &, = g, on V,. Now write the chain as follows:
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wy = D; gl’

Wy = Vo; gzl = hy,
W5 = Wh; g =g,
Wy = Vy; g4’ = hy,
Ws' = W, g = g,

Wm—2, = Wny gm—2’ = &ny
Wm—ll = Vs gm—l’ = Ny,
W' = V; o = g.

Then W/ N\ Wi # 80, and g/ = gipi’ on W/ N Wy, 1 £ =m — 1,
f=g,8=¢D=W/;and W,/ = V.

In the following, we let 7 be the local homeomorphism of .27 onto X.

LeMmMA 1. Let D be an open connected subset of X, p in CID — D, f € 7 (D).
Then p € Gi(f) if and only if p & 7w (Q(f)).

Proof. Suppose thatp ¢ G1(f), then there exists a V, an open neighbourhood
of p, and an & in &7 (V) such that Q(f) = Q (k). Since ,h isin Q(f), we see that
w(h) = p € =(Q(f)).

Now suppose that p € w(2(f)). Then there exists s € (f) such that=(s) = p;
thus there exists an open connected neighbourhood W of s such that
(r|W)"1 € T(, #(W)), and we let V be (W), V C «(Q(f)). If we let
¢ = (x|W)™! and h(u) = ¢(u)(u), then & is in & (V). Since p is in 7V,
w(p) =,h € W CQ(f), and thus s is in (k) M Q(f). This implies that
() = ).

THEOREM 2. Let D be an open connected subset of X. Then D is an </ -domain
of existence for f in A (D) if and only if #(Q(f)) = D. Further, if & is Hausdorff
and D is a domain of existence, then w is one-to-one on Q(f) and, in fact, if D is
not a domain of existence, there exists a p in C1D — D such that p ¢ Gs(f).

Proof. Suppose that 7 (Q(f)) = D; then if p is in C1D — D, p ¢ D; thus,
p ¢ m(Q(f)) and by Lemma 1, p is in G,(f).

Now assume that C1D — D = Gy(f) for f in &/ (D); then we show that
7(Q(f)) = D. Since n(s(f)) = D C = (Q(f)), it is sufficient to show that
=(Q(f)) CD.

Let p be in #(2(f)) and assume that p € D. Then there exists an s in Q(f)
such that w(s) = p and an open neighbourhood V of p and an & in &/ (V) such
that Q(k) = Q(f). Now let Vi, ..., V, be open connected sets and f; in
V), 1 £1=mn, where V, =V, fi =f, f» = h, the standard chain of
Definition 2. Since p is not in D, there is some m such that 1 £ m =< #, and
VM (CID — D) #= 0.
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Thus, f. is a continuation of f and @(f,) = Q(f). This means that there
exists an x in V,, M (ClD — D), and hence .f, is in Q(f). Therefore, x is in
w(Q(f)) N (CID — D), which is a contradiction since G:(f) = CID — D.
Thus p is in D.

Now assume that .27 is Hausdorff. We will show that = is one-to-one on
Q(f). Itissufficient to prove thatif ¢ in T'(2Z, D) is such that f(u) = ¢(u) (u),
then ¢(D) = o(f) = Q(f), for 7 is one-to-one on the range of any section.
Since ¢ (D) is contained in Q(f), we take s in Q(f) and show that s
isin o(f). To do this it is sufficient to prove that if s is the germ at x of some
&/ -holomorphic function g over a sufficiently small connected open set V,
then ,8 = .f. Since ;g € Q(f), then Q(f) N 2(g) # @ and this means that
Q(f) = Q(g). Thus by Theorem 1, g is a continuation of f and we have a
connecting chain Vi, ..., V,, g: € A(V;), where Vi =D, g1 =f, V, =V,
=g ViMN V150 and g; = gsy1 on V; M Vg, Further, by the first
part of this theorem and Theorem 1 we have 7(Q(g,)) = =(Q(f)) = D,
1 £ ¢ = 5. Thus, o(g,), contained in 2(g;), implies that

T(Q(g:)) = V. C = (Q(f)) = D.

Now using the quasi-analyticity of .27 (D), we have the following: |V, = g,
thus gz = f on VoM V; which implies that f|V; = g3, ..., f|V = g. Hence,
£ = .8, which implies that = is one-to-one on Q(f), as noted.

The last statement is clearly a consequence of the Hausdorff property on .27

Definition 3. Let D be an open subset of X. Then D is said to be locally
connected at p in C1D — D if and only if p has a base B(p) of open connected
neighbourhoods whose intersections with D are connected.

TuEOREM 3. If D is locally connected at every x in C1D — D, o7 1s Hausdorff,
and there is some f in Z (D) such that Gs(f) is equal to CID — D, then D is an
& -domain of existence for f.

Proof. Suppose that D is not an .2/-domain of existence for f. We show that
in this case there is some p in CID — D which is not a local boundary singu-
larity for f.

Since Q(f) is a connected component in & and Cls(f) is connected, then
Clo(f) CQ(f). IiCle(f) = o(f), theno(f)isequal toQ(f)and 7 (Q(f)) = D

which implies that D is an &7-domain of existence for f. Thus

Cle(f) — o(f) # 0.

Let s be in Clo(f) — o(f) and w(s) = p; then p is in ClD. Suppose that p
is in D; then there exists an open connected W in the filter base of open
neighbourhoods of s such that «|W is one-to-one and (W) = V C D, where
Visopen. Letg, in &/ (V), be such that g(u) = (w|W)~(u)(u);theno(g) = W
and ,8 = s. Since s is in Clo(f), then o(f) M o(g) is not empty; hence, there
exists a v in V such that ,8 = ,f. This means that there is some U C V for
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which g = f on U, U an open neighbourhood of ». Since .2/ is Hausdorff, this
means that f|V = g; thus, ,8 = ,f = s, which means that s is in ¢(f), a
contradiction; thus p is not in D.

Now we have 1 as an open neighbourhood of p, p in C1D — D, and thus there
is some V' in B(p) such that V' C V and V' "N\ D is connected. Since
g|V" is in &7 (V’), then o(g|V’) being a neighbourhood of s implies that
V") N a(f) # @. Thus, there exists » in ¥/ M D such that ,8 = ,f, and
hence f = g on V' M D. Thus, p is not a local boundary singularity for f.

Definition 4. Let D be an open subset of X, and let  be in C1D — D. Then
p is a semi-local boundary singularity for f in &/ (D) if and only if for all open
neighbourhoods V of p and all connected components U of V' M\ D such that
p isin CIU, f| U has no extension to V, and G.(f) is defined to be the set of all
p in C1D — D such that p is a semi-local boundary singularity for f.

It is easy to show that if D is open in X and f is in .7 (D), then

G1(f) C Gu(f) CGs(f).

LemMA 2. Let &/ be Hausdorff, D an open connected subset of X, and f in
& (D); then if CID — D = G(f), D is an &/ -domain of existence.

Proof. Suppose that there exists some p in G2(f) such that p is not in G1(f).
Then there exist Vi, ..., V, open connected subsets of X, g; in & (V,),
1=<7=mn,suchthatg,=f, Vi=D,pin V,, and g; = geyron V; M\ V1.
Let j be the least integer such that V, N\ (C1D — D) # @. Then V,_; C D
since the Vs are connected. Further, g; = fon V,for 1 £¢ < j — 1 since &
is Hausdorff. Now V,; /M V,_; meets some component of ;M D. Call this
component U. Since D and V; are connected, V, N\ D = @, V;, Z D,and Uisa
component of D M V, there exists a ¢ in C1D — D such that g is in CIUN V.

We also know thatg; = g;_1 = fon V,; N V,_1 M U, and hence g; = fon U.
Therefore g is in G2(f). Thus, we have shown that if Gi1(f) is contained in
but not equal to G2(f), then Go(f) is contained in but not equal to C1D — D.

Definition 5. Let D be an open subset of X. Then D is &/ -convex if and only if
whenever K is a compact subset of D, the set [x € D: |f(x)| = ||f]|x, for all
f € & (D)), which is denoted by hully K, is a compact subset of D.

If X is a locally compact space, we say that &7 is a c.o. (compact open)
complete sheaf if and only if for all U open in X, & (U) is closed in the c.o.
topology on C(U).

LeEmMMmA 3. Let X be locally compact, locally connected, D an open subset of X,
and [K,] a sequence of relatively compact open subsets of D such that UK, = D,
K, C K,+1, and hully K, is a compact subset of D. Then if [q,] C D is such
that @, is in hulle(pyKu+1 — hully ) K,, then given any sequence [r,] of positive
real numbers, there is some f in & (D) such that | f(g,)| = 7n.

Proof. This is essentially a lemma due to Quigley (4, pp. 85-86).
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Definition 6. Let D be an open subset of X and let B be the topological
boundary of D. A set S C B is said to be countably connected in B if and only if
for all s in S there exists a basis of neighbourhoods [V;: 7 € Z,], where Z,
denotes the positive integers, such that for each 7 in Z, there are at most
countably many connected components [V;;: j € Z4] such that sisin Cl1V ;.

If S'is countably connected in B, then Sis spread in B if and only if for every
p in B and every open neighbourhood V of p, every component of V /" B
meets S, and if W is a component of V /M D such that p is in CIW and s is
some element of S in the component of V' /M D containing p, then for some ¢ in
Z, such that V; C V there exists a j in Z, such that V;; N\ W # 0.

LEmMA 4. Let X be a locally compact, locally connected Hausdorff space, &
a Hausdorff sheaf which is c.o. compleie, D an open 2/ -convex subset of X
countable at 00 such that there exists a countable set S C B, the topological boun-
dary of D, which is countably connected. Then there exists an f in &7 (D) such that
S s contained in Ga2(f).

Proof. Let [w,: u € Z,] be the set .S, and for each u in Z, let [V,i/: kB € Z,]
be a countable nested basis of neighbourhoods of w, and [V;,': 2 € Z;] the
set of components of V' M D such that w, is in C1V,,;’ for each 7 in Z,.

Now let [p;: 7 € Z;] be the sequence w1, w1, W2, W1, Ws, W3, W1, . . ., SO that
each w, occurs infinitely often in [p,]. Whenever p; = w,, let V; = V' and
Vijk = Viuk,-

Now let D = UK,’, where K,/ is a relatively compact subset of D,
CIK,) C K,+1, and define K, to be hully ) K,'. Since V1;; N (CID — D) # @,
there exists a gi1,1’ in Vi1 such that g’ is not in K;. Let K; = K11 and
iy’ = qu1 by definition. Now there exists a v(1) in Z, such that gi1; is in
Kp(l) and a q11u(2)l iIl V112 Sl.lCh that q11u(2)/ iS not in K,,(l). Deﬁne K,(l) to be Kllz
and Q1lu(2), to be qd1i12.

Now we continue in this fashion and exhaust the set of indices

Q=1Gjk):djkinZ,i<j<Ek

using the following ordering; if (i,7, k) and (I, m,n) are in Q, then
(¢, 4, k) = (}, m, n) if and only if £ <, and if £ = n, then j < m and if
j = m, then ¢ £ I. Now define o: Q — Q by the rule

(1,1,k+ 1) ifi=7=E,
o(ij b)) =G, j+ 1,k) ifi<j<k,

G+ 1,7,k ifi<j=EF

Then it follows that for the set [g;n, Ki: (2, j, k) in Q], ¢ is not in K iy,
if (0, m,n) = (4,7, k) and ¢4 is in Ko, . Since UK,y = D, there exists f
in &/ (D) such that f(g;z) — © by Lemma 3. Now suppose that there is some
% in Z4 such that w, is not in G2(f). Then there is an open neighbourhood V
of w, and some component W of V M D such that f|W has an extension to V.
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Let K in Z, be such that V,;’ C V for k 2 K and let the set [j(k): & = K]
be a subsequence of Z; such that j(k) < k and p,@ = w, for all k. Since W
is a component, we know that for each 2 = K there issome 2(k) in Z, such that
i(k) = j(k) and Vg, jm.x C W. Thus, [qim,im.x: B = K] is a subsequence of
[gis: (4, 7, k) in Q] contained in W with the property that q:u,w .5 — Wa.
Since f(qim, m.5) — ©, we have a contradiction. Thus .S C G.(f).

THEOREM 4. Let X, o, and D be as in Lemma 4. If there exists a countable
set S spread in B, then D is an 2/ -domain of existence.

Proof. LetS = [pi: kin Z.]. Suppose that there exists a p in B such that p
is not in G2(f). Then there exists an open neighbourhood V of $ and a com-
ponent Wof VM D such that p isin CIW and f|W has some extension f’ to V.
Now let p be an element of .S which is in the same component of V' B as p
and V., a component of Vi, M D such that p;isin C1V ., and Vi, M W £ 0.
Thenf = f on Vi M W;thusf = f on Vi since & is Hausdorff, and thus
prisnotin G2(f). Thisis a contradiction to Lemma 4, and thus B = G2(f) and
by Lemma 3, D is an %/-domain of existence.

THEOREM 5. Let X and < be as in Theorem 4, D open, S/ -convex, countable
at oo, separable and such that C1D — D is second countable. Then D is an -
domain of existence.

Proof. Let [V, (CID — D): j € Z,] be a countable basis for the topology
of CID — D. Since D is separable, each V; /M D has at most countably many
components V. For each jand % in Z, there exists a ¢;; in

Clek n (CID - D) m V]'.

Clearly, the set [g;: j, k in Z,] is a countable, countably connected subset of
ClD — D, and thus Lemma 4 implies that there is some f in & (D) such that
[gsx: j, kin Z4] C G2(f).

Assume that there is some p in C1D — D such that p is in G2(f). Let V be
an open neighbourhood of p and let W be a component of V /M D such that p
is in CIW and f|W has some extension to V. Then there is some V; C V and
some component Vy of V,; M D such that V; C W. Thus, ¢ is in

ClV, N (CID — D) C Clw N (CID — D),

which means that f cannot be extended across CIW; hence, p is in G3(f). As in
Theorem 4, this implies that D is a domain of existence.

Definition 7. Let D be open in X and let p be an element of C1D — D. Then
p is said to have property g; if and only if for all V' (an open neighbourhood of
p) there is some f in & (D) which has no extension to D \U V.

Definition 8. o is said to be Montel if and only if whenever U is an open set
in X and H is a subset of %/ (U) with the property that for every compact
subset K of U there is some M > 0 such that ||f||x < M for all fin H, then H
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is relatively compact in &7 (U). & is Baire if no &/ (U) is a countable union of
closed nowhere dense subsets for any U open in X.

LemMmA 5. Let X be a locally compact, locally connected Hausdorff space,
& Hausdorff, c.o. complete, Montel, and Baire, D open in X, and p an element of
ClD — D such that X is first countable at p. Then if p has property gs, there
exists an f in 7 (D) such that p is in Gs(f).

Proof. Let [V, ] be a basis of nested, open, relatively compact neighbourhoods
of p. Fornin Z, define & (V,,, n) to be the set of all f in .27 (D) such that there
exists some f' in /(DU V,) extending f to DUV, and such that
[1/]lvm < n. Let [f;] be any net in &7 (V,, n) converging c. o. to some f. Each
fr is uniformly bounded on compact subsets of D and since [fy] is c. 0. conver-
gent, [fx] is uniformly bounded on compact subsets of D. For f; in & (V,,, n)
let g; be an element in &7 (V,, \U D) such that ||g||y, < 7 and g; = fz on D.
Then [g;] is uniformly bounded on compact subsets of D \U V,, and since .&/
is Montel, [g;] is relatively compact in .o/ (D U V,,).

Thus, there is a subnet [gy;] of [gx] which converges c. 0. to some g in
K (DU Vy). Now gpy|D = fuc; thus lim gD = lim foy = g|D = f|D,
and ||gr(s||vm < n implies that ||g||,, is at most #. Hence, f is in &7 (V,,, #) and
& (Vn, n) is closed in the c. o. topology of &7 (D).

Now by hypothesis there is some % in &/ (D) which has no extension to
& (D \J V,). Define f; = f — (1/) (k), where f is any element of & (V,, n).
Then f; does not extend to D \JU V,, for if it does then we let g, and g. be
elements of &7 (D \U V,,) such that g;|D = f and g.|D = f;. Since

h = j(f —f) = j(@|D) — j(g:D)
and jg, — jge is in & (D U V,), we have a contradiction. Now
limf; = limf — lim(1/7) (k) = f,

however f; is not in &7 (V,,, n); thus f is not in the interior of &7 (V,, #), and
we have shown that the interior of & (V,, #) is empty.

If B=U[Y(Vn, n): m, nin Z,], then B is a countable union of closed
nowhere dense subsets of .27 (D), and hence B is contained in but not equal to
& (D). Now define B’ = [fin &/ (D): p is not in G3(f)], then for f in B’ there
exists an open neighbourhood V of p and f’ extending f to D \U V. Let V,, be
an open neighbourhood of p such that C1V,, C V, and let # in Z, be such that
[1f'llvm < n. Since f'|V, N\ D is in & (V,, N D), f is in B, and thus B’ C B.
Now let % in &/ (D) be such that % is not in B; then % is not in B’, and thus
pisin Gs(h).

CorROLLARY 1. Let X, &, D, and p be as in Lemma 5. Then if f in S (D)
implies that p is not in G3(f), there is some open neighbourhood V of p such that
every g in &/ (D) has an extension to D \U V.
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Definition 9. Let D be an open subset of X and let p be an element of
ClD — D. Then p has property g; if and only if for all open neighbourhoods V'
of p and every component U of V' /M D such that p is in ClU there exists an f
in &7 (D) such that f| U has no extension to V.

LeEMMA 6. Let X and o/ be as in Lemma 5, D an open, separable subset of X
and p in C1D — D such that X is first countable at p. Then if p has property g,
there exists an f in & (D) such that p is in Gz(f).

Proof. Let [V,] be a countable nested basis of open relatively compact
neighbourhoods of p. There is at most a countable number of components of
V. M D for each n. Let [U,: n in Z,] be the subset of these for which p is in
ClU. If V is an open neighbourhood of » and U is a component of V' N\ D
such that p is in C1U, define & (V, U, m) to be the set of all g in .27 (D) such
that there is some g’ in &7 (V) which extends g|U and ||g’||v < m. Now the
method used in Lemma 5 may be applied here to show that &7 (V, U, m) is
closed and nowhere dense in .27 (D).

If Bisdefined tobe U [ (V,, U,,n): m, j,nin Z,], then B is contained in but
not equal to & (D). Let B’ be the set of all f in &/ (D) such that p is not in
Gs(f). Then B’ C B, and as before we let & in 27 (D) be such that % is not in B.
Thus % is not in B’ and p is in Ga(h).

COROLLARY 2. Let X, &, D, and p be as in Lemma 6. If f in & (D) implies
that p is not in Go(f), then there is some open neighbourhood V of p and some
component U of V.M D with p in C1U such that for all g in &/ (D), g|U has some
extension to V.

THEOREM 6. Let X be a locally compact, locally connected, Hausdorff space,
D an open subset of X such that C1D — D 1s separable and X is first countable on
ClD — D,/ Hausdorff, c. o. complele, Montel, and Baire. Then if for each p in
ClD — D there exists an f, in & (D) such that p is in Gs(f), there exists an f in
(D) such that C1D — D = G3(f).

Proof. As in Lemma 5, for  in CID — D we let [V,] be a countable basis of
nested, relatively compact, open neighbourhoods of p. Let &7 (p, V,, m) be the
set of all fin & (D) such that there exists some extension g of f to D \U V,, such
that ||g||v. = m, where m is in Z,. Then the same proof as in Lemma 5 shows
that & (p, V,, m) is closed in &/ (D) and that if there is some & such that p
is in Gs(h), & (p, V,, m) is nowhere dense in &7 (D).

Now let [p,] be a countable dense subset of CID — D and let & ; be an element
of &/ (D) such that p; is in G3(k;) for j in Z,. Then for each p; define
& (ps, Vat, m) as above and define

B = Ul (py, Vo', m): 4, m,min Z,].

Then B is contained in but not equal to 27 (D). Now let B’ be the set of all f
in &7 (D) which have an extension to a neighbourhood of D, then B C B’ by
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definition. Now if f is in B’, there are p in CID — D, an open neighbourhood
V of p, and a g in & (DU V) which extends f to D \U V. Let p; be in
VN (CID — D) and V,* an open neighbourhood of ¢; such that C1V,) C V
and let m be the least integer such that ||g||v,: < m. Thus, fisin & (p;, V,.}, m)
and we have shown that B = B’. Thus there is some f in &/ (D) — B’ and we
have CID — D equal to G;(f).

TurOREM 7. Let X be a locally compact, locally connected, Hausdorff space,
D open in X, o -convex, countable at o, C1D — D separable and first-countable,
and &/ c.o. complete. Then there exists an f in &/ (D) such that CID — D = G;3(f).

Proof. Let [w;] be a countable dense subset of CID — D and [p,] a sequence
such that each wy occurs infinitely often in [p;]. Let [U,!] be a countable nested
basis of open relatively compact neighbourhoods of p; and when p; = py,
let [U;%: lin Z;] and [U;™: jin Z.] be the same system. Now let D = UK},
where K; = hully K, which is compact in D, K; C K;41; and let [¢;] be a
sequence in D such thatg; € K;1, — K, ¢; € U,;7. We also let f; be an element
of &7 (D) such that ||fy||x; £ 1, |f;(g;)] > 1. Then there is some f in 7 (D)
such that | f(g,)| — 0.

Now each w, occurs infinitely often in [p,], so we let p,(; = w, and we have
Guiiy In Uppy® P = U9, Thus guey — w, and [f(ga»)| — ©. Consequently, f
is unbounded on a dense subset of ClD — D, and thus on all of ClD — D;
thus C1D — D = G3(f).

Definition 10. For U open in X and f in C(U), we say that f belongs
& -locally to £/ (U) if and only if for all x in U there is some open neighbour-
hood V of x and g in &/ (V) such V C U and f|V = g.

Now it is immediate from the definition that f belongs .%7-locally to .27 (U)
if and only if f belongs to &7 (U).

LemMmA 7. If X is locally compact, locally connected, and S is c. o. complete,
then for each U open in X, & (U) is inverse closed.

Proof. Let U be an open set in X and f an element of &/ (U) such that the
zero set of f, Z(f), is empty. It is sufficient to show that f~! belongs .27 -locally
to & (U).

Let x be in X, ¢ = 271(|f(x)]) and D(c) = [s in C: |s — f(x)| < ¢]. Now
271 belongs to the boundary-value algebra on D(c); thus for any e > 0 there is
some polynomial P(z) such that

[|1P(2) — 2 Y|cipo < e

Since f is continuous on U, there is some open neighbourhood V of x such that
Ff(V) C D(c). Let K be a compact subset of V; then f(K) is contained in f(V)
which is contained in D(c), and thus

1P(f) = fllx <e
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Since P(f)|V isin & (V) and &7 (V) is c. 0. complete, we have shown that
Y Visin (V).

ProprosiTioN 1. Let X be a locally compact, locally connected Hausdorff
space, D an open subset of X which is S/ -convex and countable at 00 and such that
CID — D is separable, and X is first-countable at C1D — D and let o/ be c. o.
complete, Montel, and Baire. Then if there is some f in (D) such that
D = X — Z(f), there is some h in & (D) such that C1D — D = Gs(h).

Proof. Since f~'isin &/ (D) for every p in CID — D, define f, = (f — f,)~L
Then f, is in & (D) and p is in G3(f,). Thus by Theorem 7 we have the desired
conclusion.

ProrositioN 2. Let X be a locally compact, locally connected, separable and
second-countable space which is countable at 00 and whose topology is given by the
Gelfand topology relative to S/ (X), where &/ is c. o. complete and Hausdorff.
Then for every x in X there is some open netghbourhood V of x such that V is an
& -domain of existence.

Proof. 1t is sufficient by Theorem 5 to demonstrate, for each x in X, the
existence of some open neighbourhood V of x which is .%/-convex.

Since the topology on X is the Gelfand topology, for x in X there exist
fur oo, foin & (X) such that if we let

V=I[yinX:|fi(y)] <1,1=1=mn],

then V is a relatively compact, connected neighbourhood of x.
Let K be a compact subset of V, and let

K =[yin X: |fi(y)| Sm, 1 24 =nl,

where m = max[||fi|x: 1 <7 = n]. Clearly, m < 1. Now » in hullypnK
implies that |f;(y)| = ||fi|x = m, hence y is in K’. Since m < 1, K’ C V,
and thus hully;nK is a compact subset of ¥, and hence V is .27-convex.

Many of the following results have the same proof as the corresponding
results in the case of analytic functions. When this is the case, the proofs are
omitted.

Definition 11. Let D be an open subset of X, S C &/ (D), and D, C D.
Then if B is defined to be the following set:
[x in Do: |f(x)] < 1, for all f in S],
we say that B is the .&/-holomorphic polyhedron in D defined by D, and S.
We call B finite if .S is finite.

PROPOSITION 3. Let D be an open subset of X, B an S -holomorphic polyhedron
in D defined by D and S C S/ (D) such that B is open and C1B C D, and let
be Hausdorff and c. o. complete. Then for every p in C1B — B there exists some g
in & (B) such that if [g,] is any net converging to p, then |g(g,)| — .
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Proof. B = [sin D: |f(s)| < 1 for all f in S] by hypothesis. Thus for p in
ClB — B there exists some f in .S such that |f(p)| = 1 and therefore the zero
set of the function g = (f|B) — f(p) is empty, and hence g~! is in A4 (B).
Clearly, g~! is unbounded on any net [g,] converging to p in the sense that
|g(ga)| — 0.

ProprosITION 4. Let D be open in X with the property that whenever [q,] is a
net with no convergent subnet then there is some f in S (D) such that | f(g,)| — .
Then D is S/ -convex.

Proof. Let K be compact in D such that hully K, which we denote by K*,
is not compact. Then there is some net [g,] in K* which has no convergent
subnet. Since [g,] C K* and for any f in &Z (D), ||fllx = ||fl|x*, we have that
no f in &7 (D) is unbounded on [g,].

COROLLARY 3. Let D be an open subset of X. Assume also that B 1is an
& -holomorphic polyhedron in D defined by D and some S C ./ (D). Then B is
& -convex.

PROPOSITION 5. Let D be an open subset of X, Do an open subset of D which is
A -convex and B a finite o -holomorphic polyhedron in D defined by D, and
fi, o ..y foin (D). Then B is o/ -convex.

LEMMA 8. Let D be an open subset of X which is S/ -convex, and K a compact
subset of D. If Dy is an open subset of D such that

hu“d(D)K < Do < D,
then there exists an analytic polyhedron B such that B is o/ -convex and
hullg (K < B K D.

THEOREM 8. Let X be a locally compact, locally connected Hausdorff space, and
D an open subset of X which is o/ -convex and countable at o . Then there exists a
sequence |B;] of &7 -convex subsets of D such that B; < B ;1 < D for jin Z, and
.D = UB]'.
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