Perinatal undernutrition programmes thyroid function in the adult rat offspring

Rosario Ayala-Moreno1,2, Radu Racotta1, Brenda Anguiano3, Carmen Aceves3 and Lucía Quevedo1*

1Departamento de Fisiología “Dr. Mauricio Russek”, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, México City, Mexico
2Grupo de Investigación en Alimentos y Salud, Facultad de Ciencias Químicas, Universidad La Salle, México City, Mexico
3Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico

(Submitted 2 November 2012 – Final revision received 30 April 2013 – Accepted 1 May 2013 – First published online 26 June 2013)

Abstract

Increasing evidence suggests that alterations in early nutrition programme physiological changes in adulthood. In the present study, we determined the effects of undernutrition during gestation and lactation on the programming of thyroid function in adult rat offspring. Perinatal undernutrition was achieved by a 40% food restriction in female Wistar rats from the mating day to weaning. On postpartum day 21, the offspring of the control and food-restricted dams were weaned and given free access to a commercial diet until adulthood. The results showed that undernourished rats exhibited decreased 3,5,3'-triiodothyronine (T3) levels but had normal thyroxine (T4) and thyrotropin (TSH) levels at weaning; on day 90, these rats displayed a significant flip, exhibiting normalised T3 (total and free) and total T4 levels, but low free T4 and persistently higher TSH levels, which were maintained even on postnatal day 140. This profile was accompanied by a scarce fat depot, a lower RMR and an exacerbated sympathetic brown adipose tissue (BAT) tone (deiodinase type 2 expression) in basal conditions. Moreover, when a functional challenge (cold exposure) was applied, the restricted group exhibited partial changes by a scarce fat depot, a lower RMR and an exacerbated sympathetic brown adipose tissue (BAT) over-response (higher noradrenaline levels) in comparison with the control group. The findings of the present study suggest that undernutrition during the perinatal period produces permanent changes in the hypothalamus–pituitary–thyroid axis with consequent low body weight and decreased RMR and facultative thermogenesis. We hypothesise that these changes predispose individuals to exhibiting adult subclinical hypothyroidism.

Key words: Undernutrition: Resting energy expenditure: Thyroid hormones: Facultative thermogenesis: Hypothyroidism

In humans, undernutritional exposure in fetal and/or neonatal life is associated with an increased risk of adult diseases such as obesity, non-insulin-dependent diabetes and hypertension(1–3). It has been suggested that low substrate availability during these critical periods of development represents a structural stressor producing long-term changes in different tissues. The capacity of the developing tissues to adapt to undernutrition causing permanent alterations has been termed ‘metabolic programming’(4,5). Several studies have reported that undernutrition during gestation alters both maternal and fetal levels of messengers such as insulin-like growth factors, growth hormone, insulin, glucocorticoids, leptin, catecholamines, thyroid hormones (TH) and placental hormones, all of which are closely associated with fetal growth and development(6). In rats, the complete functionality of the hypothalamic–pituitary–thyroid (HPT) axis occurs mainly after birth. On the other hand, the thyroid gland begins to differentiate from fetal days 17–18 onwards when the colloid and follicular structures appear, and it reaches its full-grown structure and function on day 10 of lactation(7,8). In this way, the critical period for the development and functional differentiation of the thyroid axis includes both pre- and post-perinatal periods. Extensive literature has demonstrated the crucial role of TH in the development and function of several tissues, besides in those of the brain. In metabolic terms, TH are crucial for maintaining the RMR and obligatory thermogenesis; they also play an important role in facultative thermogenesis, exerting a synergic effect with catecholamines in brown adipose tissue (BAT) by promoting heat production to maintain body temperature in a cold environment(9) and body weight during overfeeding(10). In the last few years, several studies have shown that nutritional conditions can determine thyroid status in humans(11) and animals(12). In adults, severe food restriction suppresses the activity of the

Abbreviations: BAT, brown adipose tissue; Dio2, type 2 deiodinase; HD1, hepatic 5'-deiodinase; HPT, hypothalamic–pituitary–thyroid; NA, noradrenaline; T3, 3,5,3'-triiodothyronine; T4, thyroxine; TH, thyroid hormone; TRH, thyrotropin-releasing hormone; TSH, thyrotropin; TSHR, thyrotropin receptor.

* Corresponding author: L. Quevedo, fax +52 55 57296000/52412, email quevedocorona@hotmail.com
HPT axis, decreasing pituitary thyrotropin (TSH) content and plasma $3,5,3'$-triiodothyronine (T_3) and thyroxine (T_4) levels\(^{(13)}\). In the prenatal period, modifications in thyroid status may depend on the period (prenatal or postnatal) and the time when the analysis is carried out, i.e. immediately after food restriction (weaning time) or in adulthood. In general terms, it is known that pups of food-restricted rat dams during gestation, lactation or both exhibit low plasma TSH, T_3 and T_4 levels at weaning\(^{(14–16)}\), but if the analysis is carried out in the post-weaned period or adulthood, rats whose dams were fed protein-deficient diets during the neonatal period consistently exhibit alterations in the thyroid profile such as elevated or normal T_3 levels, elevated TSH levels and/or a persistent BAT tone in basal conditions and attenuated thyroid axis in the adult offspring of undernourished rat dams during gestation and lactation, in resting conditions and in response to a functional challenge (cold exposure). The present study showed that undernourished rats exhibited transitional changes in thyroid function on postnatal day 21, manifested as decreased T_3 levels and normal T_4 and TSH levels, but displayed a significant flip on day 90, which consisted of normalised T_3 (total and free) and total T_4 levels, but lower free T_4 and persistently higher TSH levels, which were maintained even on postnatal day 140. This profile was accompanied by a scarce fat depot, a lower RMR and an exacerbated sympathetic BAT tone in basal conditions and attenuated thyroid axis responses to cold exposure, suggesting permanent alterations in both thyroid function and HPT axis.

Materials and methods

Induction of undernourishment during gestation and lactation

Female Wistar rats initially weighing 240 (SEM 20) g were housed in individual cages in a room under regulated temperature (22 ± 2°C) and 12h dark–12h light cycles. After 2 weeks of adaptation, the rats were randomly assigned to consume a commercial diet (Rodent Laboratory Diet 5001 containing 1 μg iodine/g, which ensures the recommended iodine daily intake in both the groups\(^{(22)}\) and water ad libitum (control group) or a diet representing only 60% of the mean food intake of the control group (restricted group). All rats were mated with male Wistar rats, and the food regimen was started on this day and continued during gestation and lactation. The experiment was carried out using ten control dams and twelve restricted dams. On partum day, considered as the first lactation day, only eight pups (four females and four males) were retained per dam. On postnatal day 140, the male rats were exposed to room (22 ± 1°C) or low (4 ± 1°C) temperature for 24 h. Blood samples were collected before and after cold exposure and plasma leptin, TSH, T_4 and T_3 levels were measured. The rats were euthanised, and their tissues (ventral lobe of the liver and interscapular BAT) were dissected, weighed.
and stored at $-70\,^\circ\text{C}$. Hepatic $5'$-deiodinase (HD1) activity was measured using the radioiodide release method\(^{25}\). BAT weight, catecholamine content and type 2 deiodinase ($Dio2$) mRNA expression were determined in the BAT as indicators of sympathetic response.

Determination of hepatic $5'$-deiodinase activity

Liver samples were homogenised at 1:10 (w/v) in a buffer (pH 7.0) containing 10 mM-HEPES, 0.32 M-sucrose, 5 mM-dithiothreitol and 1 mM-EDTA. Crude homogenates were centrifuged at 12000 rpm for 2 min. 125I-labelled reverse T_3 was purified by passage through a column (Sep-Pak, C-18 Cartridges; Millipore Waters). In the standard assay, 50 nM of the homogenate (5 nM of protein) and 50 nM of a radiolabelled mix (2 nM 125I-labelled reverse T_3, 0.5 nM non-radiolabelled reverse T_3 and 5 nM-dithiothreitol) was incubated for 1 h at $37\,^\circ\text{C}$, the released acid-soluble 125I was isolated by chromatography on Dowex 50 W-X2 columns (Bio-Rad) and measured using a gamma counter. Protein content was measured using the Bradford method (Bio-Rad). Results are given as nmol I released/mg protein per h.

Determination of brown adipose tissue type 2 deiodinase expression

$Dio2$ and β-actin mRNA expression was determined using a semi-quantitative RT-PCR. Total RNA was isolated using the TRIzol reagent (Invitrogen). Single-strand complementrary DNA was synthesised using 20 nM of total RNA using oligo d(T) as the primer. The reverse transcription product was amplified in 50 nL of PCR buffer containing 10 pmol of each oligonucleotide primer, 0.2 nM of dNTP and one unit of DNA polymerase. The sequences of the oligonucleotides used were (s) act cgg tca ttc, tgc, tgc tca ag and (as) ttg ccc ata ag for $Dio2$ and (s) aca gag tac tgg cgc tca gga and (as) cca tca tga agtg ggg acg tgg for β-actin. The samples were subjected to twenty-eight or forty cycles (β-actin and $Dio2$, respectively), consisting of 45 s at $95\,^\circ\text{C}$, 45 s at $55\,^\circ\text{C}$ and 45 s at $72\,^\circ\text{C}$. The last extension was carried out for 10 min. As a control, a reaction mixture containing an RNA sample with the appropriate primers, but without the RT, was included. The reaction products were analysed by 2% agarose gel electrophoresis, and the resulting bands were visualised by ethidium bromide staining. Band sizes were confirmed with a 1 Kb DNA ladder (Invitrogen). Relative changes in $Dio2$ expression were normalised to those in β-actin (housekeeping gene) expression. Polaroid pictures were taken; the pictures were digitised using a Hewlett Packard Scanner Jet 11CX (Hewlett-Packard Company), and the signals were analysed using an editing version of the NIH-ImageJ 14.7 m program.

Determination of catecholamine content in brown adipose tissue

Noradrenaline (NA), adrenaline and dopamine concentrations were determined according to the method of Villanueva et al.\(^{26}\), using HPLC and an electrochemical detector (ESA Coulochem II). Briefly, BAT was homogenised (1:10, w/v) in ice-cold 0.4 M-perchloric acid and centrifuged, and the supernatant was frozen until catecholamine content determination. Catecholamines were extracted by adsorption on acid-washed alumina at pH 8.6, washed with deionised water several times and eluted in a 0.1 M-perchloric acid solution.

Statistical analysis

All results are expressed as the means with standard errors. Data were analysed using Student’s two-tailed t test or two-way ANOVA with Tukey’s post hoc test. Plasma TH levels, HD1 activity and BAT deiodinase expression evaluated in the cold exposure study were analysed using a two-way ANOVA with temperature and state of nutrition as factors. $P<0.05$ was considered to be statistically significant. Data were analysed with the Sigma Stat software version 3.5 (Systat Software, Inc.).

![Fig. 1](https://www.cambridge.org/core/terms). © 2019 Cambridge University Press. Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 07 Sep 2019 at 21:35:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. DOI: 10.1017/S0007114513001736
The first consequences observed in the offspring of undernourished dams were changes in their body weight and length in comparison with the control group. Although both the groups of rats had the same body length, body weight of the restricted rats was significantly lower on the day of birth. These results are in agreement with the lower body-weight gain observed in the restricted dams (88 (SEM 6·6) g) in comparison with the control dams (168 (SEM 3·7) g) during gestation. Although lower body weight and length (since day 7) were maintained in the restricted offspring at 90 d of age (Fig. 1), the slope in the growth rate was similar in both the groups. In addition, carcass protein contents were not different between the two groups, but relative lipid content (9·8 (SEM 0·6) % v. 7·7 (SEM 0·6) %, \(P = 0·035 \)) and retroperitoneal fat content were significantly lower in the restricted offspring (Table 1). Since this metabolic phenotype showed no sex differences, subsequent analyses were carried out in the male or female offspring indistinctly.

Table 1. Metabolic parameters in adult female offspring (postnatal day 90) of the control dams or restricted dams during gestation and lactation (Mean values with their standard errors of offspring of the control and restricted rat dams per group (\(n = 5 \) and \(n = 6 \), respectively))

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>SEM</th>
<th>Restricted</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcass components (% BW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>17.87</td>
<td>0.44</td>
<td>17.88</td>
<td>0.23</td>
</tr>
<tr>
<td>Fat</td>
<td>9.84</td>
<td>0.59</td>
<td>7.76*</td>
<td>0.58</td>
</tr>
<tr>
<td>Retroperitoneal fat mass (% BW)</td>
<td>1.62</td>
<td>0.17</td>
<td>0.97**</td>
<td>0.13</td>
</tr>
<tr>
<td>RMR (kcal/kg(^{0.75}) × h)</td>
<td>5.78</td>
<td>0.2</td>
<td>4.48**</td>
<td>0.1</td>
</tr>
<tr>
<td>RMR (kJ/kg(^{0.75}) × h)</td>
<td>24.18</td>
<td>0.8</td>
<td>18.74**</td>
<td>0.4</td>
</tr>
<tr>
<td>Respiratory quotient</td>
<td>0.74</td>
<td>0.01</td>
<td>0.75</td>
<td>0.01</td>
</tr>
</tbody>
</table>

% BW, percentage of body weight. Mean values were significantly different from those of the control group: * \(P < 0·05 \), ** \(P < 0·01 \) (Student’s t test).

Results

The first consequences observed in the offspring of undernourished dams were changes in their body weight and length in comparison with the control group. Although both the groups of rats had the same body length, body weight of the restricted rats was significantly lower on the day of birth. These results are in agreement with the lower body-weight gain observed in the restricted dams (88 (SEM 6·6) g) in comparison with the control dams (168 (SEM 3·7) g) during gestation. Although lower body weight and length (since day 7) were maintained in the restricted offspring at 90 d of age (Fig. 1), the slope in the growth rate was similar in both the groups. In addition, carcass protein contents were not different between the two groups, but relative lipid content (9·8 (SEM 0·6) % v. 7·7 (SEM 0·6) %, \(P = 0·035 \)) and retroperitoneal fat content were significantly lower in the restricted offspring (Table 1). Since this metabolic phenotype showed no sex differences, subsequent analyses were carried out in the male or female offspring indistinctly.

RMR

The respiratory quotient – the relationship between \(V_{\text{O}_2} \) and \(CO_2 \) production – of the fasted rats showed similar values (0·75) in both the groups, but resting energy expenditure was significantly lower in the restricted rats (24·18 v. 18·74 kcal/kg\(^{0.75}\) × h (5·78 v. 4·48 kcal/kg\(^{0.75}\) × h), \(P < 0·001 \) (Table 1).

![Fig. 2. Effects of undernutrition on plasma thyrotropin (TSH), thyroxine (T\(_4\)) and 3,5,3'-triiodothyronine (T\(_3\)) levels in the female offspring (postnatal day 21) and free T\(_4\) and free T\(_3\) levels in adult rats (postnatal day 90). Values are means of the control (○) and 40% food-restricted (□) rats, with their standard errors represented by vertical bars. Numbers of rats per group are shown in parentheses. *Mean values were significantly different from those of the control group (\(P < 0·05 \); Student’s t test).](https://www.cambridge.org/core/journals/british-journal-of-nutrition/issue)
Plasma thyroid hormone levels in the offspring

Pups whose dams were restricted during gestation and lactation compared with those of the control dams exhibited no changes in T₄ or TSH levels, but significantly lower T₃ levels (28.5%, \(P < 0.001 \)) at weaning (postnatal day 21). In adulthood (postnatal day 90), the pattern of T₃ and TSH levels was reversed, i.e. normal T₃ and T₄ levels with elevated concentrations of TSH were observed in the restricted rats (22.1%, \(P < 0.05 \)) (Fig. 2). To analyse the availability of TH, levels of free T₄ were measured on day 90. The restricted rats exhibited lower plasma free T₄ levels in comparison with the control rats (\(P = 0.029 \)), whereas both the groups exhibited no differences in plasma free T₃ levels (Fig. 2).

Cold exposure response

As shown in Fig. 3, leptin levels were not different between the groups at room temperature, but a significant reduction in leptin levels was observed in the restricted rats during cold exposure. The control rats exhibited classical thyroid activation with increases in circulating TSH, T₄ and T₃ levels, as well as a rise in HD1 activity. Conversely, the restricted rats exhibited a partial and dissociated response, showing significant but attenuated increases in TSH and T₃ levels and HD1 activity, but no changes in T₄ levels.

BAT Dio2 is highly sensitive to sympathetic stimulation and is considered as a marker of sympathetic basal tone. When both the groups of rats were exposed to cold, only the control group exhibited a typical BAT Dio2 response to cold, with raised values similar to those observed in the restricted rats (Fig. 4). During cold exposure, the restricted rats also exhibited significantly high NA concentrations and a clear tendency of increasing BAT weight and dopamine and adrenaline concentrations (Table 2).
undernutrition during both gestation and lactation produces the most drastic alteration in the body weight of pups. In the present study, a 40% maternal food restriction during pregnancy and lactation in rats induced perinatal growth retardation with lower birth weight and smaller body size and review expression. a,b Mean values with unlike letters were significantly different (P<0.001; two-way ANOVA).

Table 2. Effects of perinatal undernutrition (40% food restricted) on weight and catecholamine content in the brown adipose tissue (BAT) obtained from the male offspring (postnatal day 140) before and after being exposed to cold (4 ± 1°C for 24 h) (Mean values with their standard errors)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT weight (% BW)</td>
<td>Mean ± SEM</td>
<td>Mean ± SEM</td>
</tr>
<tr>
<td>Adrenaline (ng/g tissue)</td>
<td>16.3 ± 2.2</td>
<td>23.6 ± 4.3</td>
</tr>
<tr>
<td>Noradrenaline (ng/g tissue)</td>
<td>313.8 ± 35.5</td>
<td>527.0 ± 32.5</td>
</tr>
<tr>
<td>Dopamine (ng/g tissue)</td>
<td>8.3 ± 2.9</td>
<td>15.2 ± 4.8</td>
</tr>
</tbody>
</table>

% BW, percentage of body weight.
* Mean value was significantly different from that of the control group (P<0.01; Student’s t test).

Fig. 4. Effects of perinatal undernutrition (40% food restricted) on Dio2 expression in the brown adipose tissue obtained from the male offspring (postnatal day 140) before and after being exposed to cold (4 ± 1°C for 24 h). Values are means (n 5 rats per group), with their standard errors represented by vertical bars. Dio2 expression is normalised to β-actin expression. ± Mean values with unlike letters were significantly different (P<0.001; two-way ANOVA).

Discussion

In order to maintain a dynamic energy balance, food intake, thermogenesis and activities need to be regulated by systems that defend the stability of the energy reserves and body weight (27). Previous studies (28,29) have shown that maternal undernutrition during both gestation and lactation produces the most drastic alteration in the body weight of pups. In the present study, a 40% maternal food restriction during gestation and lactation in rats induced perinatal growth retardation with lower birth weight and smaller body size and lower body weight until adulthood, confirming the results obtained under similar conditions by Holemans et al. (30,31) and Mirana-Solis & Escobar (32). Undernourished rats fed ad libitum after weaning ingested less food, accumulated fewer lipids and maintained a lower RMR as adults. When we correlated food intake with these factors, only body weight and catecholamine content in the brown adipose tissue obtained from the male offspring (postnatal day 140) before and after being exposed to cold (4 ± 1°C for 24 h) were accompanied by significantly lower levels of free T4 and TSH, while those of the brain. In metabolic terms, TH are crucial for maintaining RMR and obligatory thermogenesis and play an important role in facultative thermogenesis by exerting a synergic effect with catecholamine in BAT, promoting heat production in a cold environment (39) and decreasing metabolic efficiency to control body weight during overfeeding (10). Moreover, TH are critical for stimulating lipogenesis and maintaining fat deposits in adulthood (37). In addition, a significant reduction in fat mass has been observed in perinatal hypothyroid animals, which tend to be leaner with reduced retroperitoneal fat depot and adipocyte volume (38). Although there are studies that have demonstrated that energy balance can be programmed by prenatal and neonatal food restriction (39), the effect of this disruption upon the thyroid system has not been explored completely. In the present experiment, the offspring of undernourished dams exhibited lower T3 and TSH levels at weaning, but on postnatal day 90 and maybe for the rest of their lives (the remaining 140 d), apparent normal T3 and T4 levels were accompanied by significantly lower levels of free T4 and persistently higher levels of TSH, thus providing evidence that perinatal undernutrition might induce functional changes in the thyroid gland.

Normally, binding of TSH to the TSH receptor (TSHR) stimulates both growth and function of thyroid cells, promoting cell proliferation (40,41) and TH production (42,43). With regard to metabolic disorders, in recent years, TSH have been identified in a number of tissues including the brain, testes, kidney, heart, bone, thymus, lymphocytes, adipose tissue and fibroblasts, suggesting that TSH may have a wider functional role than is traditionally recognised (43). In normal and hypothyroid conditions, TSH exhibits lipolytic and thermogenic effects in white adipose tissue and BAT, respectively, during the postnatal period (44,45). Studies showing whether these adipose tissue TSH sensitivities are modified by a neonatal food-restricted regimen have not been documented, but could
explain in part the present results, showing that although TH (T₄ and T₃) levels are normal, the white adipose depot is scarce, whereas BAT sympathetic tone is exacerbated (BAT Dio2).

Another objective of the present study was to determine the functional integrity of the HPT axis of food-restricted animals on postnatal day 140. The moderate pituitary response to release TSH in a cold environment with a preferred formation/secretion of T₃ over T₄, as well as discrete increases in HD1 activity, is accompanied by the maintenance of an exacerbated sympathetic BAT response (a significant increase in NA concentrations) and suggests the existence of a state resembling subclinical hypothyroidism in these animals.[47] Thermogenesis is mainly controlled in a synergistic way by sympathetic NA release and local T₃ generation (Dio2 activity) in the BAT of small mammals.[59] The BAT response to both signals is due to an increase in the synthesis of uncoupling protein 1, which allows protons to leak into the mitochondrial matrix, reducing ATP synthesis, and, as a consequence, energy is lost as heat (for a review, see Harper & Seifert[48]). It is well known that thyroid dysfunctions are accompanied by opposite alterations in sympathetic nervous system responses. Cvijic et al.[59] have reported increased serum dopamine-B-hydroxylase and BAT monoamine oxidase levels in thyroidectomised rats in response to a cold environment. Higher plasma NA levels have been reported in hypothyroid subjects.[50] Moreover, it has been shown that in rats under intrauterine food restriction, thermoregulation during cold acclimatisation is altered in the offspring on postnatal day 90.[51] On the other hand, recent studies have reported that TSHR-deficient hty/hty mice become hypothyroidic in cold conditions despite T₄ administration. Transfection of TSHR into the BAT of these mice resulted in a marked improvement in core temperature, leading to the conclusion that both functional TSHR and adequate free TH are required for normal temperature regulation[45]. Association of TSH with sympathetic activation in BAT has not been documented, but studies on TSHR in thermogenesis have demonstrated that TSH/TSHR activation is accompanied by an increase in cyclic AMP content in BAT, suggesting that the stimulated uncoupling protein 1 expression is mediated via cyclic AMP response element (CRE)[45].

The stimulus produced by cold environment exposure is conducted by adrenergic signals from the medulla, which projects its afferents to the hypothalamic paraventricular nucleus, where the TRH-release neurons are stimulated[52]. It has been suggested that catecholamines released by this pathway increase the set point for negative feedback regulation of TRH gene expression by T₃ through adrenergic-stimulated cyclic AMP response element binding protein (CREB) phosphorylation, which activates the TRH promoter, thus increasing TRH release in the median eminence, and subsequently activates the thyroid axis. Additionally, leptin in the arcuate nucleus inhibits the production of neuropeptide Y, which is a potent transcription inhibitor of the TRH gene in the paraventricular nucleus.[52,53] Leptin levels were lower in the perinatal restricted rats in adulthood during cold exposure, suggesting that neuropeptide Y production in the arcuate nucleus is less inhibited and partially antagonises the adrenergic stimulatory effect reducing the paraventricular nucleus release of TRH and, as a consequence, lowers TSH and TH production. On the other hand, the increased TSH levels that we found in the restricted rats in basal conditions are controversial. In the pituitary gland, brain and BAT, there is additional T₃ generation by Dio2-catalysed T₄ deiodination. In the feedback regulation of TSH, this mechanism correlates better with plasma T₄ or T₃ produced locally by Dio2 activity than with plasma T₃. Interestingly, a lower RMR is correlated with lower free T₄ and higher TSH and T₃ levels and not with serum T₃ levels.[54]. In recent years, Dutra et al.[55] have found that adult rat offspring whose mothers were protein restricted during lactation show some aspects of hyperthyroidism with increased serum T₃ and higher leptin levels at weaning, suggesting that leptin could contribute to higher plasma T₃ levels by an enhanced HD1 activity. In the same model, they also found a lower in vitro TSH-releasing response to TRH, lower plasma TSH levels and a higher pituitary Dio2 activity, indicating that higher T₃ local generation lowers TSH production and plasma levels.[59]. We hypothesise that in the present study in the offspring of energy-restricted rat dams throughout gestation and lactation, in contrast to that observed in dams protein restricted during lactation, the lower plasma free T₃ levels reduce T₃ production in the pituitary and the hypothalamus and the T₃ feedback mechanism causes an increase in plasma TSH levels.

Persistent increases in plasma TSH levels have been described in the so-called subclinical hypothyroidism, which exhibits a world prevalence between 3 and 8% and is correlated with lipid abnormalities, principally dyslipidaemia and, in some cases, insulin resistance and cardiac failure[42,56,57]. Although the origin of this syndrome has not been elucidated, an epidemiological analysis has pointed out that women who develop spontaneous hypothyroidism in adulthood are characterised by low birth weight and short length at birth, short height during early childhood and low RMR during late childhood. Moreover, many of these women exhibited previous subclinical hypothyroidism and positive thyroperoxidase antibodies, suggesting that spontaneous hypothyroidism must be included among those adult disorders whose development is initiated during early life.[20]

Further studies are needed to clarify the role of persistently higher TSH levels in the development and function of adipose tissue and other organs, but the present data suggest that perinatal undernutrition programmes permanent alterations in both thyroid function and HPT axis, which could be implicated in the predisposition to developing metabolic illnesses associated with perinatal undernutrition.

Acknowledgements

The authors are grateful to Guadalupe Delgado for technical assistance and Marcela Sánchez for proofreading in the preparation of the article. L. Q. is a fellow of Comisión de Operación y Fomento de Actividades Académicas-IPN. The present study was supported by the Instituto Politécnico Nacional (SIP 20110605). L. Q. designed and implemented the study with assistance from R. A.-M., C. A. and R. R.;
B. A. conducted the experiment to determine HD1 activity. L. Q. wrote the first draft of the manuscript with assistance from C. A., R. A.-M. and B. A. The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

References

1. Hales CN & Barker DJ (2001) The thrifty phenotype hypoth-

peripheral monodeiodination in lactating rats. Endocrinology 124,

59–68.

ming of hypothalamic–pituitary–thyroid axis reactivity to hyper-

trophic and hyperthyroidism in the perinatal period: ontogeny of

regulation of thyrotropin receptor gene expression in

and postnatal amplification by hypercaloric nutrition. J Physiol

Endocrinol Metab 279, E85–E87.

thyroid axis reactivity to hyper- and hypo-

thyroidism in the perinatal period: ontogeny of regula-

tion and long-term programming of responses. J Dev Physiol

26, 29–37.

tal thyroid hormone and 5’-deiodinase activity in newborn

infants undernutrition during critical windows of development

or moderate or severe early malnutrition. Int J Biol Sci

7, 12–19.

(2002) Postnatal somatic growth and insulin contents in moderate or severe

intrauterine growth retardation in the rat. Biol Neonate 73,

89–98.

to metabolic alterations in young adult females exposed to

somatic growth and insulin contents in moderate or severe

intrauterine growth retardation in the rat. Biol Neonate 73,

89–98.

term effects of malnutrition during lactation on the thyroid function of offspring. Horm Metab Res 34, 40–43.

thyroid function by alcohol and thyroid hormones. J Physiol

Endocrinol Metab 287, E318–E326.

natal food restriction in the second half of pregnancy on glucose uptake by peripheral

restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr 81, 73–79.

taneous hypothyroidism in adult women is predicted by body mass index at birth and during childhood. J Clin Endo-

crinol Metab 91, 4953–4956.

20. Villanueva I, Pinto M, Quevedo-Corona L, et al. (2002) Chemical sympathectomy alters food intake and thermo-

21. Remmers F & Delemarre-van de Waal HA (2011) Developmen-

natal maternal food restriction on pituitary–gonadal axis and plasma leptin level in rat pup at birth and weaning and on timing of puberty. Biol Reprod 68, 390–400.

semistarvation and streptozotocin-diabetes in rats have different effects on the in vitro glucose uptake by peripheral tissues in their female adult offspring. J Nutr 127, 1371–1376.

restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr 81, 73–79.

