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CONTINUOUS BOUNDARY VALUES OF 
HOLOMORPHIC FUNCTIONS ON KÀHLER DOMAINS 

BARNET M. WEINSTOCK 

1. I n t r o d u c t i o n . Let M be a complex manifold of dimension n which 
admits a Kâhler metric, and let D be a relatively compact domain on M whose 
boundary B is a C00 submanifold of M of real codimension one. The object of 
this paper is to use the potential theory associated with the Laplace-Beltrami 
operator on M to characterize the continuous functions on B which have 
holomorphic extensions to D. 

For the case M = Cn the author proved [22] tha t a necessary and sufficient 
condition for a continuous function f on B to have a holomorphic extension to D 
is t ha t 

(1.1) f / « = 0 
J B 

for all C°° forms co of bidegree (n, n — \) on D \J B which satisfy dco = 0 in D. 
T h e idea of the proof is to show tha t if (1.1) holds then the harmonic extension 
of / to D is given by the Bochner-Martinelli formula 

(1.2) f(y) = cn f f(x)*d(\x - y\2~2n). 

Differentiation under the integral sign and a second application of (1.1) then 
imply t ha t the harmonic extension is actually holomorphic. The first result of 
the present paper (Theorem 4.1 below) is t ha t this argument remains valid for 
a domain on a Kâhler manifold if the kernel \x — y\2~2n is replaced by the 
Green's function for the Laplace-Beltrami operator relative to the domain. 

In the presence of certain cohomological conditions on M a somewhat 
weaker condition than (1.1) will imply the existence of a holomorphic exten­
sion. Andreott i and Hill [1] proved tha t if D is a domain with C°° boundary B 
on a complex manifold M such tha t 

(1.3) M — D has no compact components, and 

(1.4) H*0,1(M) = 0 (where the subscript * denotes cohomology with com­
pact supports) , 

then every C°° solution of the tangential Cauchy-Riemann equations on B has 
a holomorphic extension to D. 
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For continuous functions on B we introduce the following terminology: 

Definition 1.1. A continuous function / on B is a weak solution of the 
tangential Cauchy-Riemann equations if 

(1.5) f /3„ = 0 

for all C°° forms 77 of bidegree (n, n — 2) in a neighborhood of £ . 

Every smooth solution of the tangential Cauchy-Riemann equations on B 
satisfies (1.5), and every smooth function on B which satisfies (1.5) is a solution 
of the tangential Cauchy-Riemann equations. These are simple consequences 
of Stokes' theorem. 

The second result of this paper (Theorem 4.2 below) is that if M admits a 
Kâhler metric and (1.3) and (1.4) are satisfied then every weak solution of the 
tangential Cauchy-Riemann equations on B has a holomorphic extension to D. 
We recall that (1.4) is always satisfied if M is a Stein manifold by the Serre 
duality theorem [20], and that every Stein manifold admits a Kâhler metric 
[10]. Thus, if M is a Stein manifold, every weak solution of the tangential Cauchy-
Riemann equations on B has a holomorphic extension to D provided only that D 
has no compact complementary components. This was proved for the case M = 
Cn in [23]. 

The techniques used in this paper are potential-theoretic. The theory of the 
Laplace operator on Riemannian and Kâhler manifolds and the associated 
boundary-value problems, as developed by Bidal, de Rham, Kodaira, Spencer, 
Duff, Garabedian and others [3; 6; 7; 9; 18; 21] is used to extend to domains on 
Kâhler manifolds the arguments used in [22] to study holomorphic extension 
from the boundary for domains in Euclidean space. The specific results which 
are required are collected in § 2 and § 3 below. 

The extendability of smooth (Cl) solutions of the tangential Cauchy-
Riemann equations for domains in Cn was first shown by Bochner [4]. (See 
also Martinelli [15].) The extendability of functions satisfying (1.1) was proved 
by Fichera [8] for domains with connected boundary in Cn under the additional 
hypothesis that / be the boundary value of a function with finite Dirichlet 
integral. Royden [19] studied the extendability of integrable functions satis­
fying (1.1) for the case n = 1, i.e., for finite Riemann surfaces. Kohn and Rossi 
[13] gave conditions for the extendability of smooth functions for more general 
complex manifolds. The extendability of weak solutions of the tangential 
Cauchy-Riemann equations has also been treated by Harvey and Lawson [11] 
by other methods, as part of their general study of boundaries of complex 
manifolds. 

2. Differential forms on complex manifolds. We collect in this section 
various well-known facts about differential forms on complex manifolds. The 
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books by Wells [24] and Morrow and Kodaira [17] are useful references for 
much of this material. 

Let M be a complex manifold of dimension n. If D is a domain on M we 
denote by Apq(D) the space of C00 forms on D of bidegree (p, q) and by AT(D) 
the space of complex-valued C°° forms on D of total degree r. If D has a C°° 
boundary 5 then ,4P,<7(Z) \J B) and ,4r(£> W B) denote the forms which are 
uCœ up to the boundary", i.e., which are the restrictions to D of C°° forms on a 
neighborhood of D \J B. We give Ap,q(D) the C°° topology of uniform conver­
gence on compact subsets of D of all the derivatives of the coefficients (with 
respect to some coordinate covering.) When D is relatively compact we give 
APA(T> \J B) the topology of uniform convergence on D U B of all derivatives. 

We denote by Kp>q(D) the space of currents of bidegree (p, q) on D. (For 
our purposes it suffices to regard currents as differential forms whose coefficients 
are currents of degree 0, or distributions.) We denote by K*p,q(D) the space of 
currents of bidegree (p, q) with compact support in D. 

The dual of the Fréchet space AP>Q(D) is the space K*n-p'n~q(D). The trans­
pose of the mapping 5 : APtQ —> APtQ+1 is the mapping ( — l)p+q+1d acting on 
Kin-v,n-Q-i [20, Props. 4 and 5]. The Dolbeault cohomology groups Hp'q{D) 
and H*p'q(D), * denoting compact supports, can be computed using either 
Cœ forms of bidegree (p, q) or currents of bidegree (p, q) (see [5]). 

The Serre duality theorem [20] implies that if d(Ap'Q~1(D)) and d(Ap'Q(D)) 
are closed then the dual of the Fréchet space Hp,q{D) is the space H*n~p,n~q(D). 
More generally, the argument used to prove the Serre duality theorem implies 
the following result: 

LEMMA 2.1. If H*p'q(D) = 0, then 5(An~p'n-q-1(D)) is dense in 

{co G An~p'n-q(D) : 5co = 0}. 

Suppose that M has a C°° hermitian metric {gap} whose associated differential 
form of bidegree (1,1) is 

Œ = (i/2)T,gapdza A dzp. 

We recall that 12 is a real form (i.e. identical with its complex conjugate) be­
cause of the hermitian symmetry of {gap}. The (nf n) form 12w = 12 A . . . A Œ 
is a real form which is non-vanishing on M and which induces the natural 
orientation of M as a complex manifold. 

The hermitian metric on M induces a hermitian inner product on the space 
of convectors of bidegree (p, q) at each point of M. If this inner product at 
X e M is denoted by (<p, \p)x then in particular (12w, Qn)x = 1 on M. 

The Hodge adjoint * : APA -» An-q'n~p is defined by the identity 

<Px A * fa = (<p, yp)x®>xn f o r <p,\l/ 6 A 
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We extend * to Ar by linearity. The adjoint operator satisfies 
* * -

(2.1) ^ A * ^ = M * ^ 
*V = ( - l ) V if <P € AT. 

\{ <p, yj/ £ AT(D) we define an inner product (<p, yj/)D by the formula 

(<P,$)D= I <P A * £ 

whenever the integral on the right converges. If (<p, cp)D is finite we define | |p| | 
to be (<p, <p)D

1/2. We note that if p + q = s + / and <p 6 ^« (Z? ) , ^ Ç 4 s - r (P ) 
then (<p, \p)D = 0 if (£ — s)2 + (q — t)2 > 0 since p A * $ is of bidegree 
(n -\- p — s, n -\- q — t) and one of these degrees must exceed n. 

The formal adjoints of the exterior differential operators d, d and 3 are the 
operators d', d' and 3' defined by the equations d' = — *d*, d' = — *3*, and 
3' = -*a* . Thus, for example, 3'(4™) C A***-1. If Z? is a relatively compact 
domain on M with nice boundary B, and if <p and \f/ are forms of the appropriate 
degrees then Stokes' theorem implies that 

(<P,à't)D 

(p, dV)i> 

The Laplacian on M is the operator A = dd' + d'd. The complex Laplacians 
• and • are defined by • = dd' + d'd and D = 35' + 3'3. It is easily seen 
that A(Ar) C AT, D (Ap'q) C AP'Q and • (AP'Q) C Ap'q. If <p £ ^ r ( M ) then p 
is called harmonic on a domain Z> C M if Ap = 0 in D. 

A complex manifold M is called a Kâhler manifold if there exists a Hermitian 
metric on M whose associated (1,1) form Q, satisfies dX2 = 0 on AT. The basic 
property of Kàhler manifolds which we utilize in this paper is the following: 

THEOREM 2.2 ([24, V, Theorem 3.7]). If M is a Kdhler manifold then • = 
• = |A. In particular, A(AP,Q) C AVA and A commutes with d, 5 and *, so that 
every function which is holomorphic in a domain D C AT is harmonic in D. 

If we consider the Laplacian A acting on functions (this operator is often 
referred to as the Laplace-Beltrami operator) then in local coordinates A = 
d'd has the form 

dxadxe dXi 

where {haf>\ is positive-definite (cf. [18, § 26]). In particular, A is elliptic and 

(2.2) 

(2.3) 

(2.4) 

J. 
/ . 

<P A * if = (dp, ^)z> 

<p A * \p = (d<p, \p)D 

<p A * i// = (dp, T/OP -
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annihilates constants, so that the maximum principle of E. Hopf for second-
order elliptic operators ([16, Theorem 2.8.1; 25, Theorem 2.1]) can be used to 
deduce the following result: 

THEOREM 2.2. / / D is a relatively compact domain on M and if a complex-
valued function f is harmonic in D and continuous on D\J B then \f\ takes its 
maximum on B. 

3. Potential theory on manifolds. The purpose of this section is to recall 
some results from the potential theory associated with the Laplacian A on a 
Kâhler manifold. Some of these facts are valid, more generally, on any Rieman-
nian manifold, and so we state them in that context. 

Let D b e a relatively compact domain with C00 boundary B on a Riemannian 
manifold M. If x £ B let {xi, . . . , xm) be a local coordinate system in a neigh­
borhood of x on M such that {xi, . . . , xm_i} is a coordinate system for a 
neighborhood of x on B and such that xm is a defining function for B near x. 
If <p — X!a/ dxIy I = (ii, . . . , ir), is an r-form defined near B then <p = tip + 
n<p where tip, the tangential component of <p, is the sum of those monomials 
aT dxj for which m d I. The summand n<p is called the normal component of <p. 
This decomposition of ip is independent of the choice of coordinates \x\, . . . ,xm\ 
having the above properties. If ip is a function then by definition tip = ip and 
nip = 0. Finally, it is easily shown that *t = n*. 

The Dirichlet problem for r-forms on D is to find a harmonic r-form w o n D 
with given tangential and normal components on B. 

Garabedian and Spencer [9] showed that if the only r-form co of class C1 on 
D\J B satisfying Aco = 0 in D and /co = nu = 0 on B is the form co = 0 then 
the Dirichlet problem has a unique solution. Indeed, for a domain D satisfying 
this uniqueness condition they constructed a Green's form Gr(x, y), a double 
form of degree r in x and y, such that 

(i) AxGr(x,y) = Oif x 7±y, 
(ii) txGr(x, y) — nxGr(x, y) = 0 on B, 

(iii) Gr(x,y) = Gr(y,x), 
(iv) Gr(x, y) = 0(s2~m) for x in a small neighborhood of y, where s(x, y) is 

the geodesic distance between x and y. 
In particular, for fixed y £ D, Gr(x, y) is of class C°° on D \J B — {y}. 

In terms of this Green's form the solution to the Dirichlet problem with 
smooth boundary data <p(x) is given by (cf. [9, § 8]) 

(3.1) «0y) = - I \ip(x) A *dapr(x,y) -d'Gr(x,y) A * <p(x)}. 
J B 

Soon thereafter Spencer [21] established the uniqueness property for forms 
of bidegree (p, 0), (0, q), (n, q) or (p} n) on an ^-dimensional Kàhler manifold, 
and thus proved the existence of the Green's form of those bidegrees. 
Although this result of Spencer's suffices for the applications in the present 
paper we note for the sake of completeness that the unique continuation 
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theorem of Aronszajn, Krzywicki and Szerski [2] implies that the above 
uniqueness property holds for forms of any degree on any Riemannian mani­
fold (cf. [16, Theorem 7.8.3]). 

Using the classical technique of integral equations on the boundary Duff [6] 
showed that the Dirichlet problem for r-forms on a relatively compact domain 
D with C°° boundary B has a solution for arbitrary continuous boundary data 
on B. In particular every continuous function on B is the boundary value of 
a harmonic function in D. Taking Theorem 2.1 and (3.1) into account we can 
thus state the following result: 

THEOREM 3.1. Let D be a relatively compact domain with Cœ boundary B on a 
Riemannian manifold M. Let f be a continuous function on B. Then there is a 
unique function F which is continuous on D \J B} harmonic in D, and which 
satisfies F — f on B. Moreover, F is given by 

• / . 
(3.2) F(y) = f(x)*dGo(x,y). 

J B 

The Green's forms Gr enjoy several other properties which generalize those 
of the familiar Green's function for a domain in Euclidean space. 

From (2.4) one derives easily the following Green's identity: 

( 3 3 ) (A*,*) - (?, A*) = JB{<pA*d$-1,A*d<p + d'<pA*$ 

d'f A * <p). 

Also, the Green's form Gr satisfies 

(3.4) lim I <p A * dGr - d'Gr A * <j> = - <p(y) 
o_^0 J dA(n.n) p_>0 *J dA(y,p) 

and 

(3.5) lim I Gr A*dip-d'<p A*Gr = 0. 
p->0 «/ dA(y.p) 

where A(y, p) is the geodesic ball of radius \ about y. (Formula (3.5) is a 
simple consequence of the fact that Gr = 0(s2~n), while (3.4) follows from 
[3, pp. 27-31]). 

If we apply (3.3) to the domain D — A(y. p) with p small, with \p = Gr, and 
use (3.4) and (3.5), we obtain 

THEOREM 3.3. If <pis a smooth form of degree r on D\J B such that <p = 0 on B 
then 

(3.6) <p(y) = f (*<p)(x)*Gr(x,y). 

If AT is a Kâhler manifold then A(Ap'q) C AVA. It follows that the Green's 
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form Gr for a domain D C M can be written as a sum 

Gr = 2^ ^P'« 

where GPtQ(x, y) is of bidegree (£, g) in x, and of bidegree (q, p) in 3/, so that 
if <p £ ^4P,(Z, and <p = 0 on B, (3.6) takes the form <p(y) = (Ax<p, GPtQ(x, y))D> 

From the fact that A commutes with 5 and 5' when M is Kâhler we obtain 
the following identity: 

THEOREM 3.4. If D is a relatively compact domain with Cœ boundary on a 
Kâhler manifold then for each y Ç D there is a C°° function Hv(x) on DUB 
such that 

(3.7) dx'Gi,o(x,y) — dyGo(x,y) = Hv(x) 

and 

(3.8) AxHy(x) = 0 inD. 

Proof. Since A commutes with d\ (3.8) follows from (3.7). To prove (3.7) 
let / be a smooth function in a neighborhood of D \J B. By Theorem 3.3, 

A,(/,Go)z>=/0y) 

so that 

dyf ~ dyAv(f>Go)D = Aydy(f,Go)D = Ay(f,dyGo)D. 

But the same theorem also implies that 

(3.9) d , /= Ay(dxfJG1,o)D 

and, since Gifo = 0 on B, we conclude from (2.2) that 

dyf = Ay(f, d/Gi,o)z), 

the integration by parts being justified by the nature of the singularity of the 
Green's form. 

Now (/, dx'Gito)D — (/, dyGo)D is a harmonic (1, 0) form on D, and from (3.9) 
we see that (/, dxGito) = 0 for y Ç B. Using (3.1) and interchanging the order 
of integration we obtain 

(/(*), [d,'Gii0 - 3*G](* ,30)D 

= (/(*), I {<*/Gi(*,30 A *dzG0(x,z) -dzGo(x,z) A *d,Gi(2;,y)})i,. 
J B 

This proves (3.7) if we define Hy(x) to be the boundary integral in the previous 
line, since Hy(x) is clearly C°° in D for fixed y £ D, and since the left side of 
(3.7) is smooth up to the boundary for fixed y. 
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4. Boundary values of holomorphic functions. 

THEOREM 4.1. Let M be a Kahler manifold of dimension n and let D be a 
relatively compact domain on M whose boundary B is a C00 submanifold of real 
codimension one. A continuous function f on B has a continuous extension F to 
DUB which satisfies 5 F = 0 in D if and only if 

J. fa = 0 
' B 

for all w G An'n~l(D U B) such that 5co = 0 in D. 

Proof. The necessity follows immediately from Stokes' theorem since if F is 
continuous on D VJ B, dF = 0 in D, and dco = 0 in D, then 

I Fco = J d(Fu) = I d(Fa>) = 0. 
J g J £, J J) 

To prove the converse, let F be the harmonic extension of / to D. By Theorem 
3.2, 

F(y) = f /(: 
** B 

pc) *dzGo(x,y). 

But *dGo and 2*dG0 define the same 2n — 1 form on B. This follows from the 
fact that *dG0 - 2*dG0 = *5G0 - *dG0 and the identity 

dG0 A (*5Go - *dGo) = dGo A *5Go - 5G0 A *dG0 

together with (2.1) since Go is real and is constant on B. Thus 

= 2 f /(«• W = 2 I /(*) * dxG0(x, y) 
^ B 

(cf. Royden [19] and Weinstock [22]). 
Now by Theorem 3.4, 

dvF(y) = 2 [ f(x)*dxdyGo(x,y) 
J B 

= 2 \ /(*) * a,(d,'Go.i(*, y) + # ( * , y)) 

But for fixed y £ D, dx*dxH = 0 since H is harmonic, i.e., *dxH is a d-closed 
(w, w — 1) form on D VJ B, so JB f*dH = 0 by hypothesis. Also, L70,I(X, 3/) is 
harmonic so 

0 = dd'Go.i + d'dGo,i. 
Thus, 

dvF(y) = 2 I f(x)*dsdx'Go,i(x,y) = - 2 I / (a) * dx'dxG,,x(x, y) 
J B J B 

= - 2 I /(*)3,*a^o.i(*,y). 
^ B 

since d' = - * 3 * . Now for fixed y £ D, choose Qv(x) G ^n n-2(^> ^ £ ) which 
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agrees with *dxGoti(x, y) in a neighborhood of B. Then 

dvF(y) = - 2 Jf{x)dQv(x) = 0, 

since d2 = 0, i.e. F is holomorphic. 

T H E O R E M 4.2. Le£ M be a Kàhler manifold of dimension M and let D be a 
relatively compact domain on M whose boundary B is a C°° submanifold of real 
codimension one. Suppose that conditions (1.3) and (1.4) are satisfied. Then a 
continuous function f on B has a holomorphic extension to D if and only if f is a 
weak solution of the tangential Cauchy-Riemann equations on B. 

In view of Definition 1.1, it is clear tha t Theorem 4.2 is an immediate conse­
quence of Theorem 4.1, Lemma 2.1, and the following approximation theorem 
(cf. [23]). 

T H E O R E M 4.3. Let D be a relatively compact domain on a complex manifold M 
of dimension n whose boundary B is a C1 submanifold of real codimension one. 
Suppose that (1.3) and (1.4) are satisfied. Then every co (E An,n~1(D VJ B) such 
that <3o> = 0 in D can be approximated in An,n~1(D U B) by a sequence {Qv} 
where 12, G An'n~1(M)J and 5tiv = 0 in M. 

Proof. Let E = {Q Ç An'n~1(M) : dti = 0}. We must show tha t E\D VJ B is 
dense in F = {co £ An'n~1(D\J B) : dœ = 0 in D). 

Now every continuous linear functional on An'n~1(D \J B) can be regarded 
as a current on M with support in D \J B, i.e., as an element of K*0,1(M). 
HT G K**'l(M) and T(Q) = 0 for Q G E then in particular T is orthogonal to 
the kernel of the mapping B : An'n~1(M) —> An'n(M), hence T is in the weak* 
closure of the image of the transpose ld, which is the mapping 5 : K*0,0(M) —» 
K*0A(M). But this mapping has closed image since H*°}{M) = 0, thus T = 
dS, S e K*Q-°(M). T o see t ha t S is supported in D U B, observe tha t dS = 0 
in M — (DVJ B) hence 5 is an analytic function in M — (D \J B). Bu t 5 has 
compact support , and M — D has no compact components. Thus 5 = 0 in 
M - D. 

T o complete the proof, use a parti t ion of uni ty to write 5 = So + J2$i where 
So has compact support in D and each St is supported in a small coordinate 
neighborhood of some boundary point. Clearly 50(co) = 0 for all co G F, and 
the same holds for each St since each S* can be approximated by a t ranslate in 
the direction of a suitable outward normal. 

We remark tha t Theorem 4.3 is valid under weaker hypotheses. In particular, 
it suffices to assume tha t Hn,n(M) = 0, since this implies tha t the mapping 
d : An,n~l(M) —* An'n(M) has closed range, which by a well-known property of 
Fréchet spaces (cf. [12]) guarantees tha t its adjoint 5 : K*°-°(M) —• K*0A(M) 
has closed range. Moreover, by a theorem of Malgrange [14] the condition 
Hn'n{M) = 0 is satisfied by every non-compact manifold which admits a real-
analytic Kàhler metric, so in particular by every Stein manifold [10]. 

https://doi.org/10.4153/CJM-1976-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-051-1


522 BARNET M. WEINSTOCK 

REFERENCES 

1. A. Andreotti and C. Denson Hill, E. E. Levi convexity and the Hans Lewy problem, Part I: 
Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363. 

2. N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior 
differential forms on Riemannian manifolds, Arkiv Mat. 4 (1962), 417-453. 

3. P. Bidal and Georges de Rham, Les formes différentielles harmoniques, Comm. Mat. Helv. 19 
(1946), 1-49. 

4. S. Bochner, Analytic and meromorphic continuation by means of Green's formula, Ann. 
Math. U (1943), 652-673. 

5. P. Dolbeault, Formes différentielles et cohomologie sur une variété analytique complexe, I, 
Ann. Math. 64 (1956), 83-130. 

6. G. F. D. Duff, Boundary value problems associated with the tensor Laplace equation, Can. J. 
Math. 5 (1953), 196-210. 

7. G. F. D. Duff and D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, 
Ann. Math. 56 (1952), 128-156. 

8. G. Fichera, Caratterizzazione delta traccia sulla frontier a di un campo di unafunzione analitica 
di pitl variabili complesse, Atti Accad. Nat. Lincei Rend. (8) 22 (1957), 706-715. 

9. P. R. Garabedian and D. C. Spencer, A complex tensor calculus for Kàhler manifolds, Acta 
Math. 89 (1953), 279-331. 

10. H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollstàndige Kàhlersche 
metrik, Math. Ann. 131 (1956), 38-75. 

11. F. R. Harvey and H. Blaine Lawson, Jr., Boundaries of complex analytic varieties, Bull. 
Amer. Math. Soc. 80 (1974), 180-183. 

12. J. L. Kelley and Isaac Namioka et al., Linear topological spaces (D. Van Nostrand, Princeton, 
N. J., 1963). 

13. J. J. Kohn and Hugo Rossi, On the extension of holomorphic functions from the boundary of 
a complex manifold, Ann. Math. 81 (1965), 451-472. 

14. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles 
et des équations de convolution, Ann. Inst. Fourier Grenoble 6 (1955-56), 271-355. 

15. E. Martinelli, Sopra una dimonstrazione di R. Fueter per un teorema di Hartogs, Comm. Mat. 
Helv. 15 (1942), 340-349. 

16. C. B. Morrey, Jr., Multiple integrals in the calculus of variations (Springer-Verlag, New 
York, 1966). 

17. J. Morrow and K. Kodaira, Complex manifolds (Holt, Rinehart and Winston, New York, 
1971). 

18. G. de Rham, Variétés differentiables (Hermann, Paris, 1960). 
19. H. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 

1-24. 
20. J.-P. Serre, Une théorème de dualité, Comm. Mat. Helv. 29 (1955), 9-26. 
21. D. C. Spencer, Cauchy's formula on Kàhler manifolds, Proc. Nat. Acad. Sci. 38 (1952), 

76-80. 
22. B. Weinstock, Continuous boundary values of analytic functions of several complex variables, 

Proc. Amer. Math. Soc. 21 (1969), 463-466. 
23. An approximation theorem for d-closed forms of type (n, n — 1), Proc. Amer. Math. 

Soc. 26 (1970), 625-628. 
24. R. O. Wells, Jr., Differential analysis on complex manifolds. (Prentice-Hall, Englewood Cliffs, 

N. J., 1973). 
25. K. Yano and Salomon Bochner, Curvature and Betti numbers, Annals of Mathematics 

Studies 32 (Princeton University Press, Princeton, N. J., 1953). 

University of Kentucky, 
Lexington, Kentucky 

https://doi.org/10.4153/CJM-1976-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-051-1

