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Changes in haemostasis during normal pregnancy:
does homocysteine play a role in maintaining homeostasis?
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Homocysteine, derived from the demethylation of the amino acid methionine, is either further
catabolised by trans-sulfuration to cysteine or remethylated to methionine. Remethylation to
methionine requires the cofactors, folate and vitamin Bj,. Folate is an effective homocysteine-
lowering agent and, thus, homocysteine and folate status are inversely related.
Hyperhomocysteinaemia is a strong independent risk factor for venous thromboembolism (VTE)
and is associated with adverse pregnancy outcomes such as pre-eclampsia, placental abruption,
early pregnancy loss and neural-tube defects. Pregnancy is a risk factor for VTE as a result of
prothrombotic changes in levels of haemostatic factors. However, despite this hypercoagulable
state, the incidence of pregnancy-associated VTE is relatively low. Hyperhomocysteinaemia is
associated with abnormalities in markers of coagulation activation, and recent research suggests
that folic acid supplementation, as well as lowering homocysteine, lowers markers of coagulation
activation and increases levels of coagulation inhibitors. Tissue factor (TF) is the initiator of blood
coagulation in vivo, and homocysteine induces TF expression in vitro. During pregnancy,
monocyte TF expression is lower than that in the non-pregnant state, and this lowering of TF may
act to counterbalance increases in coagulation activation. Furthermore, despite a high folate
requirement, several studies have reported that homocysteine is lower in normal pregnancy than
in the non-pregnant state. Although the exact mechanism of homocysteine lowering during
pregnancy is unclear, one possible outcome of lower homocysteine may be the protection of
women from pregnancy complications and VTE, and thus lower homocysteine may contribute to
maintaining homeostasis in haemostasis.

Homocysteine: Haemostasis: Pregnancy

Homocysteine In the absence of renal disease and hyperproliferative
disorders, elevated levels of plasma homocysteine are
generally a result of either a genetic defect in one of
the enzymes involved in homocysteine metabolism or a
nutritional deficiency of one of the vitamins that acts as
a cofactor or co-substrate (folic acid, vitamin B, and
vitamin Bg). Severe elevations in plasma homocysteine
leading to homocystinuria are most commonly the result of
a deficiency of the trans-sulfuration enzyme cystathionine
B-synthase (Mudd et al. 1985), whereas mild elevations in

Homocysteine is a non-protein-forming thiol-containing
amino acid derived from the demethylation of the essential
amino acid methionine. Intracellular metabolism of homo-
cysteine is regulated by two pathways, by which it is either
further catabolised by trans-sulfuration to cysteine or
remethylated to methionine. The trans-sulfuration pathway
involves the enzyme cystathionine -synthase and requires
vitamin B¢ as a cofactor. Remethylation to methionine is
catalysed by methionine synthase, which requires folate in . . X
the form of 5-methyltetrahydrofolate as a co-substrate and homocysteine, known as hyperhomocysteinaemia, are
vitamin By, in the form of methylcobalamin as a cofactor associated with a common mutation in the MTHFR gene
(Finkelstein, 2000). Methylenetetrahydrofolate reductase (Frosst ez al. 1995). This autosomal recessive mutation is a
(MTHFR) is a crucial enzyme in the remethylation pathway, C — T substitution at base pair 677 resulting in an alanine to

and is responsible for converting 5,10-methylenetetrahydro- Val,in_e S‘?bs,titutifm and, as a consequence, in vivo enzyme
folate to the co-substrate 5-methyltetrahydrofolate. activity is impaired. Individuals who are homozygous for
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lebrand factor.
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the 677C — T polymorphism (TT genotype; 5-18 % of the
population) tend to have elevated homocysteine levels when
compared with individuals who are heterozygous for the
mutation (CT genotype) or without the mutation (CC
genotype; Frosst ef al. 1995; Brattstrom ef al. 1998).

Homocysteine and folate status are inversely related
(Kang et al. 1987; Andersson et al. 1992a; Selhub et al.
1993; Ueland et al. 1993), with extensive research showing
that homocysteine can be lowered in response to folic
acid supplementation (Homocysteine Lowering Trialists’
Collaboration, 1998), and that this lowering of homo-
cysteine can be achieved with a dose as low as 200 g folic
acid/d (Ward et al. 1997). In addition, several studies have
demonstrated that vitamin B, and vitamin Bg are effective
in lowering homocysteine, and indeed may enhance the
homocysteine-lowering effect of folic acid (Ubbink et al.
1994; Bronstrup et al. 1998; Homocysteine Lowering
Trialists’ Collaboration, 1998; McKinley et al. 2001;
Quinlivan ef al. 2002).

The normal range of fasting homocysteine in adults is
5-15umol/l (Ueland et al. 1993), although Ubbink ef al.
(1995) proposed a range of 4-9—11-7umol/l, which repre-
sents the normal range in a population with optimum
B-vitamin status. Plasma homocysteine concentrations
increase with age and are higher in men than in women,
with levels becoming more comparable after menopause
(Andersson et al. 1992a; Nygard ef al. 1995). Smoking and
coffee consumption are also associated with elevated
plasma homocysteine (Nygéard et al. 1995, 1997, 1998).
Homocysteine concentrations increase after moderate
consumption of red wine and spirits, but not after moderate
consumption of beer, and it is proposed that the vitamin Bg
in beer prevents the alcohol-induced rise in homocysteine
(van der Gaag et al. 2000).

Folate and homocysteine in normal pregnancy
Folate and pregnancy

Pregnant women have a high folate requirement and are
at an increased risk of folate deficiency as a result of
increased folate catabolism and utilisation (McPartlin et al.
1993). Folate-responsive megaloblastic anaemia is reported
in 2:5-5:0 % of unsupplemented pregnancies in the
developed world, with as many as 25 % of women from
otherwise well-nourished societies developing bone marrow
megaloblastosis, which is indicative of subclinical folate
deficiency (Chanarin, 1985). Folate status of the mother also
has implications for her offspring. Rolschau et al. (1979)
reported a positive correlation between folate status and
birth weight, and between folate status and placental weight.
Furthermore, in a recent study Rolschau et al. (1999)
demonstrated that folic acid supplementation is associated
with increased birth weight and a reduction in incidence of
preterm labour and the number of infants with low birth
weight or who were small-for-gestational age.

Spina bifida and anencephaly are severe congenital
malformations referred to as neural-tube defects, resulting
from incomplete closure of the spinal cord and cranium
respectively in the fourth week of embryonic life.
Confirming previous suggestions, the Medical Research
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Council Vitamin Study Research Group (1991) reported that
periconceptual folic acid effectively prevents the recurrence
of neural-tube defects. A subsequent study by Czeizel &
Dudas (1992) confirmed that folic acid also prevents first-
time occurrence of neural-tube defects. In response to this
evidence national expert committees advised the current
recommendations: 4—5 mg/d folic acid in tablet form for the
prevention of neural-tube defect recurrence; 400 ug folic
acid/d, to be commenced before conception and continued
until the twelfth week of pregnancy for the prevention of
first occurrence (Department of Health, 1992; Public Health
Services, Centre for Disease Control and Prevention, 1992).

Homocysteine and pregnancy

Despite the increased risk of folate deficiency during preg-
nancy, several studies, predominantly of an observational
design, have reported that homocysteine is lower in normal
pregnancy than in the non-pregnant state (Kang et al. 1986;
Anderson et al. 1992b; Bonnette et al. 1998; Walker et al.
1999; Quinlivan et al. 2000).

The reduction in homocysteine observed in pregnancy
may not simply be attributed to a single factor, but is most
likely to be a physiological effect of pregnancy, with several
factors contributing. It is possible that hormonal changes
in pregnancy play a substantial role in the regulation of
homocysteine, given that hormone-replacement therapy
reduces levels of homocysteine in post-menopausal women
(Mijatovic et al. 1998a,b; van Baal ef al. 1999; Somekawa
et al. 2002). Furthermore, Morris et al. (2000), in the
Third National Health and Nutrition Examination Survey,
concluded that higher oestrogen status is associated with
decreased homocysteine concentration, independent of
nutritional status and muscle mass. For a comprehensive
review of oestrogen and homocysteine, see Dimitrova et al.
(2002).

Another possible cause of lower homocysteine during
pregnancy may be the uptake of homocysteine by the fetus.
Malinow et al. (1998) demonstrated a descending concen-
tration gradient of plasma homocysteine from maternal vein
to umbilical vein and to umbilical artery, suggestive of
the likely incorporation of homocysteine into the fetal
metabolic cycle and, thus, of utilisation by the fetus.
Haemodilution is yet another possible factor resulting in
lower homocysteine, as during normal pregnancy plasma
volume expands, with levels at 12 weeks of gestation
increased by 14 % over follicular-phase measurements
(Bernstein et al. 2001). However, it is unlikely that
haemodilution can account entirely for lower levels of
homocysteine in normal pregnancy, as levels are at least
30 % lower in the first trimester than those of non-pregnant
control subjects (Anderson et al. 1992b; Bonnette et al.
1998; Walker et al. 1999), indicating that some other factors
must be involved. Albumin binds 70 % of the homocysteine
in human plasma (Refsum et al. 1985), and as plasma
albumin levels fall progressively over the duration of
pregnancy (Anderson et al. 1992b; Walker et al. 1999),
decreased plasma albumin may also contribute to lower
homocysteine levels.

As folic acid is an established homocysteine-lowering
agent (Homocysteine Lowering Trialists’ Collaboration,
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1998), it is possible that folic acid supplementation during
pregnancy may also lower homocysteine. However, there
has been little research investigating the effect of folic acid
on homocysteine levels during pregnancy. Although there is
still some debate about which factors contribute, it is
accepted that lower levels of homocysteine are found during
normal pregnancy. The possible advantages of these lower
homocysteine levels are discussed later.

Normal haemostasis

Haemostasis has evolved in order to maintain the integrity
of the vasculature. Although it has been known since the
time of Hippocrates and Aristotle that blood has the ability
to clot, it was not until the 1730s that a Parisian surgeon,
Jean-Louis Petit, related blood clotting to haemostasis
(Owen, 2001). In the 19th century Rudolf Virchow (1860)
first described the phenomena now known as deep-vein
thrombosis and pulmonary embolism. When Morawitz
(1905) reviewed the classic theory of coagulation there were
four coagulation factors: fibrinogen; prothrombin; thrombo-
plastin; Ca. Subsequently, the cascade (Macfarlane, 1964)
and waterfall (Davie & Ratnoff, 1964) theories of blood
coagulation described two alternative pathways, the
‘extrinsic’ and the ‘intrinsic’, which merged to form a
‘common’ pathway. The current revised scheme of blood
coagulation is known as the tissue factor (TF) pathway
(Nemerson, 1988; Rapaport & Rao, 1995; Fig. 1). Normal

481

haemostasis is a complex network of interactions with
positive and negative feedback loops, integrating blood
vessels, platelets, coagulation factors, coagulation inhibitors
and fibrinolysis, so that thrombin generation and subsequent
fibrinolysis and remodelling are focused and finite.

Blood vessels and platelets are essential components of
normal haemostasis. The endothelium of blood vessels has
anticoagulant and fibrinolytic properties, as well as the
ability to prevent platelet aggregation, and thus plays a vital
role in maintaining blood flow. Platelets are activated in
response to blood vessel damage or exposure to foreign
surfaces, leading to shape change, secretion of platelet
granule contents, platelet adhesion and platelet aggregation.
Coagulation factors assemble and interact on the surface of
the activated platelets, reinforcing the platelet plug with
fibrin. George (2000) and van Hinsbergh (2001) reviewed
the roles of platelets and the endothelium in normal
haemostasis.

Coagulation factors and blood coagulation

Blood coagulation is initiated by TF, a transmembrane
glycoprotein constitutively expressed by non-vascular cells
such as alveolar epithelial cells of the lung (Drake et al.
1989), thus forming a haemostatic envelope. Within the
vasculature, TF expression can be induced on monocytes
and endothelial cells by the inflammatory cytokines tumour
necrosis factor-a, interferon-y and interleukin-1f (Schwagner
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Fig. 1. Coagulation cascade: Tissue factor (TF) — factor Vlla complex initiates the coagulation cascade,
activating factor X (X — Xa) and leading to thrombin generation. Thrombin activates factors XI, XIll, V
and VI, releasing factor VIII from its inactive complex with von Willebrand factor (vVWF). Factor Xla
activates IX, and sequentially the Vllla—IXa and Va—Xa complexes result in further thrombin generation.
Thrombin converts fibrinogen to fibrin, while Xllla cross-links fibrin to stabilise the clot. Coagulation
inhibitors: TF pathway inhibitor (TFPI) inactivates the TF—VIla—Xa complex, while antithrombin (AT)
inactivates thrombin and IXa. Thrombin binds thrombomodulin (TM), activating protein C (PC — APC).
APC binds protein S (PS), degrading Va and Vllla (Va— Vi; Vllla— VIlli). Fibrinolysis: Fibrin binds
tissue plasminogen activator (t-PA), converting plasminogen to plasmin, which degrades fibrin to fibrin
degradation products. Plasmin is inactivated by op-antiplasmin (02AP), while plasminogen activator
inhibitor (PAI-1) inactivates t-PA. Inhibited complexes are represented in boxes (=), changes of state;
(= —), proteolytic activation—inactivation. (Modified from Hutton et al. 1999.)
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& Jungi, 1994) and interleukins 6 and 8 (Neuman et al.
1997), and by endotoxin (Colucci et al. 1983), C-reactive
protein (Cermak et al. 1993) and homocysteine (Khajuria &
Houston, 2000). When TF is exposed to blood, following
vessel injury or possibly following cytokine induction of
TF, it forms a proteolytically-active complex with factor
VII Factor VII, an inactive zymogen, circulates in plasma
and is activated to VIla when complexed with TF. The
TF-VIla complex catalyses the activation of factor IX to
IXa, as well as catalysing a marked amount of factor X to
Xa. Factor Xa activates factor V in sufficient amounts to
activate prothrombin to thrombin, which in turn activates
factors V, VIII and XI. Factor VIIla forms a complex with
IXa, which further activates X to Xa, resulting in the gener-
ation of more thrombin, leading to fibrin clot formation
(Hutton et al. 1999; see Fig. 1).

Inhibitors of blood coagulation

Coagulation inhibitors are necessary to ensure that thrombin
generation remains limited and localised. Antithrombin III
(AT), heparin, heparin cofactor II, o -antitrypsin, o-
macroglobulin and TF pathway inhibitor inhibit the serine
proteases of the coagulation cascade, such as thrombin, Xa
and TF—VIIa. Protein C, thrombomodulin (TM), protein S,
C4b-binding protein and activated protein C inhibitor are all
components of the protein C system. TM bound to thrombin
activates protein C, which rapidly degrades factors VIlla
and Va on the phospholipid surface of activated platelets, a
reaction that increases 10—20-fold when protein C combines
with its cofactor protein S.

Fibrinolysis

Fibrinolysis controls fibrin deposition, thus maintaining
a controlled procoagulant response. Fibrinolysis involves
the conversion of plasminogen to plasmin by tissue
plasminogen activator (t-PA). Plasmin cleaves fibrin and
fibrinogen, yielding fibrin degradation products. 0,-
Antiplasmin, a plasmin inhibitor, and plasminogen activator
inhibitor (PAI) types 1 and 2 prevent excess fibrinogen
degradation by plasmin. Endothelial cells are regulators of
fibrinolytic activity, as they synthesise t-PA and PAI-1
(Hajjar, 1993).

Markers of haemostasis activation

Normal haemostasis requires a balance between coagulation
and fibrinolysis. A shift in the haemostatic balance can
result in either a tendency to bleed or hypercoagulability
with increased risk of thromboembolism. The hypercoagu-
lable condition is difficult to detect with routine laboratory
assays, and requires the use of sensitive activation markers
of coagulation and fibrinolysis such as prothrombin frag-
ments 1+2 (F1+2), thrombin—antithrombin (TAT) complex
(Bauer, 1999) and D-dimers (Whitaker et al. 1985). F1+2,
cleaved from prothrombin after its activation by factor Xa,
and TAT, formed during inactivation by its main inhibitor
antithrombin, are markers of coagulation, whereas D-dimers
are products of fibrin breakdown by plasmin and thus are
markers of fibrinolysis.
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Haemostasis in normal pregnancy

Normal pregnancy is associated with substantial changes in
the haemostatic system, with pregnancy often referred to as
a hypercoagulable state. Traditionally, it is thought that
these changes are in preparation for the haemostatic
challenge of delivery, with the haemostatic system returning
to that of the non-pregnant state at approximately 4 weeks
post delivery (Greer, 1994). In the present review alterations
in coagulation factors, coagulation inhibitors, fibrinolysis
and markers of haemostasis will be discussed in turn. Greer
(1994) and Lyall & Greer (1996) reviewed alterations in
platelets, platelet function and the endothelium during
normal pregnancy.

Coagulation factors

During normal pregnancy factor XIII, fibrin-stabilising
factor, increases in the early stages of pregnancy, returning
to non-pregnant values in the third trimester (Persson et al.
1980; van Wersch et al. 1997). Levels of factor XII rise
progressively during the gestation period (Hellgren &
Blombick, 1981; de Moerloose et al. 1998a; Donohoe et al.
2002), as do levels of factor X (Hellgren & Blombéck, 1981;
Stirling et al. 1984). Conversely, levels of factor XI
decrease during pregnancy (Hellgren & Blombéck, 1981),
possibly as the result of increased factor XI consumption
(Blombéck, 1991). However, given that activation of factor
XI by thrombin is required to activate factor IX leading to
further thrombin generation, it is possible that in normal
pregnancy levels of factor XI are physiologically lowered to
counterbalance the increases in other coagulation factors.

Factor VIII levels and coagulation activity rise progres-
sively during pregnancy (Hellgren & Blombiack, 1981;
Stirling ef al. 1984; Chan et al. 1985; Bokarewa et al. 1997,
Walker et al. 1997; Clark et al. 1998; Kjellberg et al. 1999),
as do levels of von Willebrand factor (vWF) (Hellgren &
Blomback, 1981; Stirling et al. 1984; Chan et al. 1985).
The vWF:VIII coagulation activity value remains constant
until the third trimester, after which the value increases,
suggesting an increase in proteolytic degradation of
activated VIII in the later stages of pregnancy (Hellgren &
Blomback, 1981; Stirling et al. 1984). There is a gradual
increase in factor VII during normal pregnancy (Stirling
et al. 1984; de Moerloose et al. 1998a; Wright et al. 1998;
Donohoe et al. 2002). The increase in factor V concentration
in early pregnancy is followed by a decrease and stabili-
sation (Stirling et al. 1984), while factor V coagulation
activity shows a gradual rise throughout gestation (Clark
et al. 1998). Studies of prothrombin (factor II) levels in
pregnancy have yielded inconclusive results, showing both
increases (Stirling, 1984) and no change (Clark et al. 1998)
during pregnancy. Fibrinogen levels show a steady increase
during pregnancy (Hellgren & Blombéck, 1981; Stirling
et al. 1984; Gatti et al. 1994; Francalanci et al. 1995;
Cerneca et al. 1997; Kjellberg et al. 1999).

Finally, while levels of soluble TF remain constant
during normal pregnancy (Bellart et al. 1998), monocyte TF
activity and expression are lower in normal pregnancy than
in non-pregnant control subjects (Qian et al. 1985; Holmes
et al. 2002). As TF is the initiator of blood clotting in vivo,
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lower TF expression and activity on circulating monocytes
may play an important role in protecting pregnant women
from venous thromboembolism (VTE), despite increases in
many of the clotting factors and the hypercoagulable state
described earlier (Holmes et al. 2002).

Coagulation inhibitors

Levels of AT remain stable during pregnancy (Hellgren &
Blombick, 1981; Stirling et al. 1984; Gerbasi ef al. 1990;
Bremme et al. 1992; Gatti et al. 1994; Francalanci et al.
1995; Bellart et al. 1997; Cerneca et al. 1997), while heparin
cofactor II, TM, o;-antitrypsin and o,-macroglobulin levels
are raised during normal pregnancy (Stirling et al. 1984;
Massouh et al. 1989; Bellart et al. 1997; de Moerloose et al.
1998b). Little is known about levels of TF pathway inhibitor
during normal pregnancy. However, levels are lower during
labour than in non-pregnant controls (Uszynski et al. 2001).
Levels of total and free protein S gradually decrease
throughout pregnancy (Comp et al. 1986; Malm et al. 1988;
Fernandez et al. 1989; Bremme et al. 1992; Gatti et al.
1994; Faught et al. 1995; Cerneca et al. 1997; Clark et al.
1998; Kjellberg et al. 1999). The majority of studies report
that levels of protein C remain constant during normal preg-
nancy (Bremme et al. 1992; Gatti et al. 1994; Faught ef al.
1995; Cerneca et al. 1997, Clark et al. 1998; Kjellberg et al.
1999), yet acquired activated protein C resistance is reported
in up to 57 % of normal pregnancies (Cumming et al. 1995;
Mathonnet et al. 1996; Schlit et al. 1996; Bokarewa et al.
1997; Peek et al. 1997; Walker et al. 1997; Clark et al. 1998;
Kjellberg et al. 1999; Shu et al. 2000). This increase in
activated protein C resistance corresponds with increases
in factor VIII and decreases in protein S and activated
protein C inhibitor (Bokarewa et al. 1997; Walker et al.
1997; Clark et al. 1998; Shu et al. 2000). Normal pregnancy
appears to be associated with bi-directional changes in
levels or activity of coagulation inhibitors, and it is possible
that these complex changes occur in order to maintain the
coagulation—fibrinolysis balance during normal pregnancy.

Fibrinolysis

Lower levels of t-PA have been reported in normal pregnancy
compared with the non-pregnant state (Wright et al. 1988;
Cerneca et al. 1997; Kjellberg et al. 1999). In addition, levels
of endothelial-derived PAI-1, the primary inhibitor of t-PA,
are increased during the later stages of pregnancy, while
placenta-derived PAI-2, detectable in the plasma during the
first trimester, increases substantially throughout pregnancy
(Wright et al. 1988; Estelles et al. 1989; van Wersch &
Ubachs, 1991; Cerneca et al. 1997; Kjellberg et al. 1999).
Plasminogen levels are increased during pregnancy, as are
levels of the plasmin inhibitor o,-antiplasmin (Hellgren &
Blombick, 1981; Wright et al. 1988; van Wersch & Ubachs,
1991). Overall, these changes suggest that the fibrinolytic
system is impaired during normal pregnancy.

Markers of haemostasis activation

During normal pregnancy the changes in coagulation
factors, coagulation inhibitors and components of the
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fibrinolytic system, as outlined earlier, are suggestive of a
hypercoagulable state, with impaired fibrinolysis. Recent
studies have concentrated on measuring markers of haemos-
tasis activation, where TAT and F1+2 are measures of
coagulation activation and fibrin degradation products and
D-dimers are measures of fibrinolytic activation. During
normal pregnancy, levels of TAT and F1+2 increase
progressively, indicative of a substantial increase in coagu-
lation activation (Bremme ef al. 1992; Comeglio et al. 1996;
Schlit et al. 1996; Cerneca et al. 1997; Clark et al. 1998;
Reber et al. 1998; Eichinger et al. 1999; Kjellberg et al.
1999; Donohoe et al. 2002). Similarly, fibrinopeptide A,
another marker of coagulation activation, is increased
during pregnancy (Douglas et al. 1982; Gerbasi et al. 1990;
Schlit et al. 1996; Bellart et al. 1998).

Despite the apparent impairment in fibrinolysis discussed
earlier, normal pregnancy is associated with increases in
fibrin degradation products and D-dimers (Gerbasi et al.
1990; Bremme et al. 1992; Francalanci et al. 1995; Schlit
et al. 1996; Bellart et al. 1998; Eichinger et al. 1999;
Kjellberg et al. 1999; Donohoe ef al. 2002), indicative of a
substantial increase in fibrinolytic system activation. As
previously stated, normal haemostasis requires a balance
between coagulation and fibrinolysis, and despite the
marked changes in haemostasis associated with normal
pregnancy, the incidence of VTE remains relatively low.
According to Eichinger et al. (1999), levels of coagulation
and fibrinolytic indices in healthy pregnant women in the
third trimester are similar to, or higher than, those found in
patients following a deep-vein thrombosis or pulmonary
embolism, yet none of the women in this study developed
clinical symptoms of VTE. Eichinger et al. (1999) also
demonstrated that the endogenous thrombin potential, an
indicator of the potency of plasma to generate thrombin
in response to a thrombogenic stimulus (Hemker &
Beguin, 1995), remained unchanged throughout pregnancy.
Moreover, the fibrinopeptide A:D-dimer ratio also remains
constant throughout pregnancy, demonstrating a constant
coagulation—fibrinolysis balance during normal pregnancy
(Bellart ef al. 1998). In contrast, a high fibrinopeptide A:D-
dimer ratio, suggestive of hypofibrinolysis, was observed in
women with pre-eclampsia (Bellart ef al. 1999), thus high-
lighting the importance of the coagulation—fibrinolysis
balance during normal pregnancy.

Thrombosis in pregnancy
Venous thromboembolic disease in pregnancy

Pregnancy and the puerperium are known risk factors for
venous thrombosis (Rosendaal, 1999). Virchow’s (1860)
triad postulates that the principal factors underlying venous
thrombosis are hypercoagulability, venous stasis and
vascular damage, all of which occur during pregnancy
(Greer, 1999). The hypercoagulable state is evident
throughout pregnancy, venous stasis of the lower limbs
occurs by the end of the first trimester (Macklon et al.
1997), and the potential for vessel damage is present during
delivery. Although maternal death is rare, pulmonary
embolism remains the leading cause of maternal death in the
UK (Confidential Enquiries into Maternal Deaths, 2000).
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The incidence of VTE during normal pregnancy is estimated
to be 5-5-6-0 times higher than that in the general female
population of child-bearing age (McColl ef al. 1997), with
the reported incidence of pregnancy-associated VTE
estimated at between 0-62 and 1-88 per 1000 deliveries
(Macklon & Greer, 1996; McColl et al. 1997; Gherman
et al. 1999; Lindqvist et al. 1999; Chan et al. 2001;
Simpson et al. 2001). The incidence of deep-vein
thrombosis and pulmonary embolism is estimated at 0-71
and 0-15 per 1000 deliveries respectively, with the majority
of deep-vein thrombosis events occurring in the antenatal
period (McColl et al. 1997; Gherman et al. 1999). Although
Gherman et al. (1999) reported that almost half antenatal
deep-vein thrombosis events were detected before 15 weeks
of gestation, the puerperium should be regarded as the
period of greatest risk (McColl et al. 1997).

Clinical risk factors linked with pregnancy-associated
VTE include advanced maternal age, high parity, weight,
multiple birth, major current illness, operative delivery and
pre-eclampsia (Macklon & Greer 1996; McColl et al. 1999;
Simpson et al. 2001). Personal or family history of thrombo-
embolic disease is a recognised risk factor for VTE, with
evidence of a genetic predisposition to VTE emerging. In
one study approximately 30 % of patients with confirmed
VTE associated with pregnancy were found to have a
heritable thrombophilia (McColl et al. 1997). Inherited or
congenital thrombophilia, discussed by Rosendaal (1999),
includes deficiencies of AT, protein C and protein S, and the
presence of factor V Leiden, prothrombin 20210, and
homozygosity for the thermo-labile variant of MTHFR.
McColl et al. (1999) reviewed the role of inherited thrombo-
philia in pregnancy-associated VTE. Venous thrombosis is a
multicausal disease, with interaction between genetic and
acquired risk factors (Rosendaal, 1999), yet 28 % of preg-
nancy-associated VTE are not related to either a clinical risk
factor for thrombosis or a thrombophilic defect (McColl
et al. 1997). Thus, it is possible that other unknown factors
may contribute to the increased risk of VTE in pregnancy,
highlighting the need for further research into changes in
haemostasis during pregnancy.

Homocysteine, methylenetetrahydrofolate reductase status
and venous thromboembolism in pregnancy

Hyperhomocysteinaemia is a known risk factor for venous
thrombosis (Falcon et al. 1994; den Heijer et al. 1996;
Eichinger et al. 1998; Ray et al. 2001). Little is known about
the relationship between homocysteine and pregnancy-
associated VTE, and given that homocysteine can be
lowered by folic acid supplementation (Homocysteine
Lowering Trialists’ Collaboration, 1998), it is apparent that
further studies investigating homocysteine and pregnancy
associated-VTE are required.

In relation to the 677C — T MTHFR polymorphism and
risk of VTE, it is still unclear if homozygosity for this
mutation is a risk factor, with some studies reporting
an association (Gemmati et al. 1999a; Salomon et al.
1999; Couturaud et al. 2000), while others found no
association (Kluijtmans ef al. 1998; Gemmati et al. 1999b;
Alhenc-Gelas et al. 1999; Ray et al. 2001). Given that
hyperhomocysteinaemia is a risk factor for VTE, it is not yet
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apparent why the relationship between the 677C > T
MTHEFR polymorphism and risk of VTE remains contro-
versial. Kluijtmans et al. (1998) discussed several possible
explanations; however, a meta-analysis of the data would be
beneficial in determining any relationship. Similarly, in
pregnant women it is unclear whether the 677 - T MTHFR
polymorphism confers a risk of VTE, with McColl et al.
(2000) finding no association, while Grandone et al. (1998)
reported an increased risk of pregnancy-related VTE in
homozygous individuals, thus highlighting the need for
further studies.

Thrombophilia and pregnancy complications

Complications of pregnancy such as pre-eclampsia, fetal
loss, placental abruption and intrauterine growth retardation
are associated with both acquired and congenital thrombo-
philia (Dekker et al. 1995; Preston et al. 1996; Grandone
et al. 1998; Greer, 1999; Gris et al. 1999; Kupferminc et al.
1999). Evidence that heparin and low-dose aspirin therapy
are effective in increasing rates of live births in women
with a history of recurrent miscarriage (Rai et al. 1997)
highlights the importance of procoagulant changes in the
pathophysiology of recurrent miscarriage (Greer, 2001).
Furthermore, in anti-phospholipid syndrome, a hyper-
coagulable state, intrauterine growth retardation and fetal
distress leading to premature birth or fetal death are
attributed to utero-placental insufficiency that is the result of
multiple placental thrombi and infarcts (Gharavi et al.
2001). The role of inherited and acquired thrombophilia in
severe pregnancy complications has been investigated with
conflicting results. Many et al. (2001) reported an increased
rate of placental vascular lesions in women with severe
complications and thrombophilia, whereas other researchers
found no significant difference between the placentas of
women with adverse pregnancy outcomes with or without a
thrombophilic defect (Mousa & Alfirevicl, 2000; Sikkema
et al. 2002). It may be that factors other than those normally
investigated in a thrombophilia screen are responsible for
the abnormal placental pathology associated with adverse
pregnancy outcome, such as increased production of the
fibrinolytic inhibitor PAI-1 (Sheppard & Bonnar, 1999).
These data, together with recent reports of increased
procoagulant microparticles in women with a history of
pregnancy loss (Laude et al. 2001), suggest that excessive
coagulation in general may be responsible for adverse fetal
outcome (Greer, 2001).

Homocysteine, methylenetetrahydrofolate reductase status
and pregnancy complications

The link between homocysteine, MTHFR and neural-tube
defects is well established (Steegers-Theunissen ef al. 1994;
Mills et al. 1995; Whitehead et al. 1995). However, for the
purposes of the present review, prominence will be given to
pregnancy complications and homocysteine—-MTHFR status
where the probable link is a thrombotic mechanism.
Placental vasculopathy resulting in placental infarcts
compromises the ureto-placental circulation and is thought
to contribute to pregnancy complications. Recently, van der
Molen et al. (2000) reported that elevated homocysteine


https://doi.org/10.1079/PNS2003251

Postgraduate symposium 485

concentration and homozygosity for the 677C - T MTHFR
mutation are risk factors for placental vasculopathy.
Furthermore, there is substantial evidence that elevated
homocysteine concentration is associated with common
pregnancy complications and adverse pregnancy outcome
(de Vries et al. 1997; Ray & Laskin, 1999; Vollest et al.
2000), such as pre-eclampsia (Dekker et al. 1995; Rajkovic
et al. 1997; Powers et al. 1998; Cotter et al. 2001), placental
abruption (Goddijn-Wessel et al. 1996) and recurrent early
pregnancy loss (Wouters et al. 1993; Quere et al. 1998;
Nelen et al. 2000).

As with MTHFR genotype and risk of VTE, the
association between risk of pregnancy complications and
homozygosity for the 677C — T MTHFR mutation is more
uncertain. In a study by Kupferminc et al. (1999) in which
the study population comprised women with any one of the
obstetrical ~ complications  (pre-eclampsia,  placental
abruption, intrauterine growth retardation or stillbirth), the
frequency of TT genotype individuals was higher in cases
than in controls. Grandone ef al. (1997) reported an associ-
ation between homozygosity for the 677C > T MTHFR
mutation and the occurrence of pre-eclampsia and, although
several other researchers have not found this association
(Powers et al. 1999; Kaiser et al. 2001; D’Elia et al. 2002),
a meta-analysis by Ray & Laskin (1999) associated the TT
genotype with a moderate risk of pre-eclampsia. Similarly,
several authors found no association between placental
abruption or fetal loss and homozygosity for the 677C > T
MTHFR mutation (Brenner et al. 1999; Gris et al. 1999;
Foka et al. 2000), while a meta-analysis reported that the TT
genotype is a probable risk factor (Ray & Laskin, 1999).

Homocysteine and haemostasis
Coagulation factors

There is increasing evidence that elevated levels of
homocysteine are associated with prothrombotic changes
in haemostatic factors. Rodgers & Kane (1986) reported
increased factor V activation in association with
homocysteine-treated endothelial cells. In patients with
acute coronary syndrome elevated plasma homocysteine has
been associated with elevated factor VIIa (Al-Obaidi ef al.
2000), although other researchers have been unable to
demonstrate any correlation between factor VII activity and
homocysteine in population-based studies (Kario et al.
2001; Kuch et al. 2001). The association between
homocysteine and fibrinogen also remains unclear, with
some researchers reporting an association (von Eckardstein
et al. 1994; Kuch et al. 2001), and others finding no associ-
ation (Folsom et al. 1998; Yarnell et al. 2000; Kario et al.
2001; Kuch et al. 2001). Kuch et al. (2001) studied two
populations, Czech and German, and reported more
pronounced associations between homocysteine and coagu-
lation factors in the Czech population, which has a higher
proportion of cardiovascular disease, and thus proposed that
the association may become more apparent with underlying
conditions that enhance and produce hypercoagulable states.
In folic acid-supplementation studies Undas et al. (1999)
reported no change in fibrinogen and prothrombin levels
despite a reduction in homocysteine concentration, whereas
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other researchers reported decreases in both homocysteine
and fibrinogen following supplementation (Naruszewicz
et al. 2001; Mayer ef al. 2002; Mayer Jr et al. 2002).

As well as playing a role in the coagulation pathway,
vWF is an established marker of endothelial damage.
Plasma vWF is increased in patients with hyperhomo-
cysteinaemia (Freyburger et al. 1997; de Jong et al. 1997),
and several studies have shown positive correlations
between homocysteine and vWF (de Valk-de Roo et al.
1999; Becker et al. 2000; Yarnell et al. 2000; Kuch et al.
2001), although Kario ez al. (2001) did not find any corre-
lation. Similarly, results from folic acid-supplementation
studies have not been consistent, with some studies demon-
strating a decrease in vVWF in association with homocysteine
lowering (van den Berg et al. 1995; Mayer Jr et al. 2002),
while other studies found no change in vWF levels
(Constans et al. 1999; Thambyrajah et al. 2000, 2001). It
may be that the inconsistency is the result of higher baseline
homocysteine levels in studies in which homocysteine
lowering was observed, possibly equating to damaged
endothelium and higher baseline vWF levels, which were
lowered or normalised on removal of the damaging
stimulus, homocysteine. Furthermore, as study populations
consisted of varying disease states, it is possible that, in
some conditions, factors other than hyperhomocysteinaemia
are involved in the pathophysiology of the prothrombotic
state, thus leading to inconsistent results in supplementation
studies.

In relation to TF, the initiator of blood clotting in vivo, low
concentrations of homocysteine have been shown to induce
TF activity in endothelial cells (Fryer et al. 1993), while
physiologically-relevant concentrations of homocysteine
induce TF expression on monocytes (Khajuria & Houston,
2000), thus presenting a plausible mechanism whereby
homocysteine may induce thrombosis. Using a rat model,
Durand et al. (1997) showed that hyperhomocysteinaemia
enhances platelet aggregation and macrophage-derived TF
activity. Moreover, homocysteine was positively correlated
with plasma levels of TF in patients with IHD (Marcucci
et al. 2000). However, only a randomised placebo-
controlled folic acid-supplementation study designed to
investigate whether homocysteine lowering by folic acid is
accompanied by a reduction in TF, will conclusively
establish a cause—effect relationship between homocysteine
and TF in vivo.

Coagulation inhibitors

Evidence is also emerging that elevated levels of homo-
cysteine may result in prothrombotic changes in coagulation
inhibitors. TM acts as a cofactor for thrombin-catalysed
activation of protein C, and in vitro studies have demon-
strated that homocysteine inactivates TM activity, therefore
reducing its anticoagulant properties (Lentz & Sadler, 1991;
Hayashi ef al. 1992). TM is also a marker of endothelial
damage and, in agreement with in vitro experiments
(Hayashi et al. 1992), in vivo studies of patients with hyper-
homocysteinaemia reported increased levels of TM when
compared with normohomocysteinaemic patients (Hofmann
et al. 1998; Brunelli et al. 2000), although this outcome
has not been reported in all studies (de Jong et al. 1997,
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Kario ef al. 2001). Results from folic acid-supplementation
studies have shown that lowering of homocysteine is
associated with a reduction in TM levels (van den Berg et al.
1995; Constans et al. 1999). The effects of homocysteine on
TM demonstrate two mechanisms whereby homocysteine
may contribute to thrombosis risk: increased endothelial
damage; reduced anticoagulant properties.

In agreement with an early study reporting decreased AT
activity in homocystinuric patients (Palareti & Coccheri,
1989), Nishinaga et al. (1993) demonstrated that homo-
cysteine suppresses anticoagulant heparan sulfate expression,
thus reducing the capacity of endothelial cells to bind and
activate the anticoagulant AT. However, several ex vivo
studies found no correlation between plasma homocysteine
concentrations and AT levels (Brattstrom et al. 1989;
Bienvenu ef al. 1991, 1993). Although Palareti & Coccheri
(1989) demonstrated that folic acid and pyridoxine treatment
resulted in areturn of AT activity to normal in homocystinuric
patients, folic acid supplementation for treatment of hyper-
homocysteinaemia has been reported to increase AT in some
(Mayer et al. 2002; Mayer Jr et al. 2002), but not all (Undas
et al. 1999), intervention studies.

Homocysteine also interferes with the protein C pathway.
In vitro, supraphysiological concentrations of homocysteine
reduce protein C activation by acting as a competitive
inhibitor to thrombin (Rodgers & Conn, 1990) and by
irreversibly inactivating protein C (Lentz & Sadler, 1991).
More recently, Undas ef al. (2001) demonstrated that homo-
cysteine is rapidly incorporated into factor Va, resulting in
impaired inactivation of factor Va by activated protein C,
and that this process can occur at physiologically-relevant
concentrations. Furthermore, Lentz et al. (1996) showed
that the aortic endothelium from monkeys with hyperhomo-
cysteinaemia activated protein C in vitro less effectively
than that of control animals. However, in human studies
elevated levels of homocysteine do not appear to affect
protein C activation (Cattaneo et al. 1998), and folic acid
treatment has no effect on the activity of protein C (Undas
et al. 1999). It is unclear why there is a discrepancy
between in vitro and in vivo results. One explanation may be
that circulating activated protein C measured in vivo reflects
protein C activation occurring in the microcirculation, and
that there is a different relationship for activated protein C
measured in vitro, which reflects localised activity
(Cattaneo et al. 1998).

Overall, it is not clear why some studies link elevated
homocysteine with impaired anticoagulation, whereas others
show no association, but it may be possible that in certain
disease states factors other than, or including, homocysteine
influence thrombotic mechanisms, and thus inconsistent
results may be related to the different populations studied.

Fibrinolysis

Elevated homocysteine also appears to result in prothrom-
botic changes within the fibrinolytic system. In vitro,
homocysteine impairs the ability of endothelial cells to
generate plasmin by modulating annexin II, inhibiting t-PA-
annexin II assembly on the cell (Hajjar & Jacovina, 1998),
and thus reducing t-PA activity by 60 % (Hajjar, 1993). Ling
& Hajjar (2000) proposed that the subsequent reduction
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in plasmin generation could underlie the prothrombotic
activity associated with homocysteine in vivo. Although
these results, together with those of in vitro experiments
which reported no effect of homocysteine on t-PA mRNA
levels (Midorikawa et al. 2000), suggest that homocysteine
affects the activity rather than the expression of t-PA, results
from in vivo studies are inconclusive. Several studies
reported no significant difference in levels of t-PA antigen
between individuals with and without hyperhomocystein-
aemia (de Jong et al. 1997; Bozi¢ et al. 2000), and folic
acid supplementation of hyperhomocysteinaemic patients
resulted in no significant change in t-PA concentration
(van den Berg et al. 1995). However, other studies have
reported an association between homocysteine and t-PA
concentration (Bienvenu et al. 1993; Lindgren et al. 1996;
Kristensen ef al. 1999). Furthermore, t-PA activity of hyper-
homocysteinaemic patients was not found to be significantly
different from that of normohomocysteinaemic patients
(Bozi¢ et al. 2000). In order to increase our understanding of
the effect of homocysteine on t-PA in vivo, further studies of
the effect of homocysteine lowering on both t-PA antigen
and activity are necessary.

In vitro, homocysteine increases PAI-1 gene expression
(Midorikawa et al. 2000), yet the effect of homocysteine on
PAI-1 in vivo remains unclear. There was no significant
difference in either PAI-1 antigen or activity for hyper-
homocysteinaemic individuals compared with normohomo-
cysteinaemic individuals (de Jong et al. 1997; BoZiC et al.
2000), and there was no association between homocysteine
and PAI-1 activity (Bienvenu et al. 1993). However, in renal
transplant recipients Marcucci et al. (2001) reported a
positive correlation and a reduction in PAI-1 levels and
homocysteine concentration following folic acid supple-
mentation. In a folic acid-supplementation study of a similar
size involving haemodialysis patients, lowering homo-
cysteine levels did not result in a reduction in PAI-1 (Kunz
et al. 1999). Again, one possible explanation for these
apparently inconsistent results may be that in different
disease states the mechanisms contributing to the pro-
thrombotic state are complex, such that lowering homo-
cysteine in one population may lower PAI-1 levels, whereas
in a different population other factors continue to impinge
on fibrinolysis.

There is some evidence that homocysteine may impair
fibrinolysis, which could represent one mechanism
whereby homocysteine contributes to the increased risk of
thrombosis. However, in view of the disparity in results
from studies to date, there is clearly a need for further
investigation of homocysteine lowering in vivo in order to
fully elucidate the link between elevated homocysteine and
fibrinolytic factors.

Markers of haemostasis activation

It is apparent from the evidence discussed earlier that
elevated homocysteine is associated with changes in coagu-
lation factors, coagulation inhibitors and fibrinolytic factors.
However, in order to determine whether hyperhomocystein-
aemia is associated with the hypercoagulable state, changes
in the sensitive activation markers of coagulation and
fibrinolysis, F1+2, TAT and D-dimer, must be examined.
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Homocysteine is positively correlated with TAT in patients
with IHD (Marcucci et al. 2000) and, although mildly
increased homocysteine levels are associated with elevated
levels of TAT in plasma, folic acid supplementation does
not modify TAT levels (Freyburger ef al. 1997). Treatment
of hyperhomocysteinaemia with folic acid and vitamin By,
has been reported to reduce TAT, F1+2 and also increase
bleeding time (Undas et al. 1999). A positive correlation has
been observed between homocysteine and F1 +2 in patients
with acute coronary syndromes, but not in patients who
presented with chest pain that was not of cardiac origin
(Al-Obaidi et al. 2000) or in asymptomatic populations
(Kario et al. 2001; Kuch et al. 2001). In large population
studies a positive correlation was found between
homocysteine and D-dimer, demonstrating a relationship
between homocysteine and fibrinolytic activity (Yarnell
etal. 2000; Kuch et al. 2001). However, increased
fibrinolysis is suggestive of increased coagulation and,
therefore, it would be of greater relevance to observe the
effect of elevated homocysteine on the coagulation—
fibrinolysis balance, perhaps by measuring the fibrino-
peptide A:D-dimer ratio in subjects with elevated
homocysteine, and observing the effect of homocysteine-
lowering treatment.

It is difficult to interpret the effect of elevated
homocysteine on haemostasis as many in vitro studies use
supraphysiological concentrations, and in vivo and ex vivo
studies examine a variety of different populations with
complex disease states. Thus, further prospective studies are
required in order to fully establish whether homocysteine is
associated with the hypercoagulable state as a causative
agent or whether elevated levels of homocysteine are a
product of other, unknown, mechanisms involved in the
pathophysiology of thrombotic diseases.

The present review has sought to examine the effect of
homocysteine on haemostasis, and also describes alterations
in normal haemostasis and in homocysteine during normal
pregnancy. Although to date there has been little research
into the effect of homocysteine lowering in pregnancy on
haemostatic factors, it is possible that this physiological
lowering of homocysteine plays a homeostatic role in
the regulation of haemostatic factors during an otherwise
hypercoagulable period.

Concluding statement

In normal haemostasis there is a balance between coagu-
lation factors and coagulation inhibitors, and between
fibrinolytic factors and fibrinolytic inhibitors, with normal
haemostasis ultimately being the result of a balance between
coagulation and fibrinolysis. Although normal pregnancy is
associated with many changes in haemostasis, with a
potential tilt towards the hypercoagulable state, there is
evidence that this balance is maintained (Bellart ez al. 1998;
Eichinger et al. 1999). In addition to increases in certain
coagulation inhibitors and a decrease in factor XI (discussed
earlier), the reduction in the expression of monocyte TF,
the initiator of blood clotting in vivo, may play a major role
in redressing the haemostatic balance (Holmes et al. 2002).
As homocysteine induces monocyte TF expression at
physiological concentrations in vitro (Khajuria & Houston,
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2000), it may be that reduced levels of plasma homocysteine
during normal pregnancy play a role in down regulating TF
expression and, thus, in maintaining homeostasis in haemo-
stasis. The reason for lower homocysteine in pregnancy is
unknown, but as elevated homocysteine is associated with
prothrombotic changes in haemostasis and consequently
with increased risk of pregnancy complications, one
outcome of lower homocysteine may be the protection of the
mother and fetus from VTE and pregnancy complications.
As folic acid is effective in lowering homocysteine, it
is essential to investigate homocysteine metabolism in
pregnancy and to establish the role of folate in homocysteine
metabolism at the different stages of pregnancy. Finally,
longitudinal prospective studies in pregnant women at risk
of VTE or with pregnancy complications are necessary in
order to fully evaluate the link between homocysteine and
thrombotic complications associated with pregnancy.
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