
ON LAVES' GRAPH OF GIRTH TEN 

H. S. M. COXETER 

1. Introduction. This note shows how a certain infinite graph of degree 
three, discovered by Laves in connection with crystal structure, can be in­
scribed (in sixteen ways, all alike) in an infinite regular skew polyhedron which 
has square faces, six at each vertex. One-eighth of the vertices of the poly­
hedron are vertices of the graph, and the three edges of the graph that meet 
at such a vertex are diagonals of alternate squares. Thus either diagonal of 
any face of the polyhedron can serve as an edge, and the whole graph can 
then be completed in a unique manner. 

The same graph is also derived, by the method of Frucht's paper (4), from 
the abstract group 

5i2525i2 = S2, 52
25i52

2 = Si. 

2. A regular skew polyhedron. In 1926, J. F. Pétrie discovered an infinite 
regular skew polyhedron which can be derived from the simple honeycomb of 
cubes {4, 3, 4} by taking all the vertices, all the edges, and half the squares 
(1, pp. 33-35; 2, p. 242; 6, p. 55, Fig. 4). This new regular polyhedron was 
named {4, 6 | 4} because it has square faces, six at each vertex, and square 
holes corresponding to the missing faces of the cubic honeycomb. 

The vertex figure of a cube {4, 3} is an equilateral triangle {3} (3, p. 16); 
the vertex figure of the cubic honeycomb {4,3,4} is an octahedron {3,4} 
(3, p. 68); and the vertex figure of the skew polyhedron {4, 6|4} is a skew 
hexagon which is a Petrie polygon of the octahedron (3, pp. 24-25). Since a 
given octahedron has four Petrie polygons, the faces of the skew polyhedron 
can be selected from those of a given cubic honeycomb in four ways. Taking 
the vertices to be all the points whose Cartesian coordinates are integers, 
one way is select the squares 

(0 ,0 ,0) (0 ,1 ,0) (0 ,1 , - 1 ) ( 0 , 0 , ~1) 
(1,0,0) (1,1,0) (1 ,1 , - 1 ) ( 1 , 0 , - 1 ) 

and all others that can be derived from these two by permuting the three 
coordinates and adding fixed even numbers to them. 

3. The infinite group {R, S}. In saying that the skew polyhedron is 
"regular," we mean that it possesses two special symmetry operations: R, 
cyclically permuting the vertices of one face (say the former of those men­
tioned above), and 5, cyclically permuting the faces at one vertex (say the 
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origin). These operations generate an infinite group having the elegant abstract 
definition 

£4 ^ £6 = (#5)2 = (#5-1)4 = l 

(1, pp. 35, 48). Since they are rotatory reflections (1, p. 37), their squares are 
pure rotations: R2, of period 2 about the "axis" of the square 

(0,0,0)(0, 1,0) (0, 1, - 1 ) ( 0 , 0 , - 1 ) , 

and S2, of period 3 about the line x = y = z. In fact, R2 is the transformation 

x' = x, y' — 1 — y, z' — — 1 — s, 

while S2 is the cyclic permutation 

x' = z, yf = #, z' = y. 

4. The subgroups {Tu T2, Tz] and {Si, S2, S3}. It is convenient to let 
Tu T2l Tz denote R2 and its transforms by S2 and S~2, namely 

Ti: x' = x, y' = 1 — y, zf = —1 — z, 

T2: x! = —1 — x, y' = 3>, z' = 1 — 2, 
r 3 : x' = 1 — x, y' = —1 — y, z' = z. 

We use Si, S2, S3 to denote the products T2 TZi Tz 7\, Ti T2, namely 

Si : x' — 2 + x, y' = —1 — y, z' = I — z, 

S2: x' = 1 — x, y = 2 + J, s' = — 1 — z, 

S3: *' = - 1 - x, y = 1 - y, z' = 2 + 0. 

Thus Si2, S2
2, S32 increase the respective coordinates by 4, and Si T2 S3 

increases each of them by 2. 
The half-turns Ti can be expressed in an obvious way as products of pairs 

of reflections At and Bu namely 

Ti = AZB2, T2 = AiBzy Tz = A2Bi, 

where 
A1 is xf = — 1 — x, yr = y, z' = z, 

B\ is x' = 1 — x, y = ;y, 2' = s, 
^2 is x' = x, y = — 1 — y, z' = z, 

and so on. Thus the A1 s and B's are reflections in the opposite faces 

of the cube (=t | , ± J, =tj). They generate the direct product of three infinite 
groups 

At
2 = Bt

2 = 1 (* = 1,2,3), 

since both At and Bi commute with both Aj and Bj whenever i 9^ j . The 
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products AiBi increase the respective coordinates by 2. We easily verify that 

(4 ,B«) 2 = S<2 

and 
A\B\A<LB<IA%BZ = A\A<LAZB\B<LBZ = T2TZT2T1T2 = SiTVSV 

5. An infinite graph. Since the three T's are half-turns about three edges 
of the above-mentioned cube, which are the axes of three faces of {4, 6 | 4} 
(see Fig. 1), they transform the origin into the three points 

(0 ,1 , - 1 ) , ( - 1 , 0 , 1 ) , (1, - 1 , 0 ) 

which are the opposite vertices of these squares. Thus the group {7\, !T2, ^3} 
transforms the origin into the points 

(0,0,0) , (1 ,2,3) , (2 ,3,1) , (3,1,2) 

(2,2,2) , (3 ,0,1) , (0 ,1,3) , (1,3,0) (mod 4), 

which are derived from (0, 0, 0) and (1, 2, 3) by cyclically permuting the 
coordinates, adding 2 to all of them, and adding arbitrary multiples of 4 to 
any of them. 

Figure 1 Figure 2 

In this manner we pick out one-eighth of the vertices of {4, 6 | 4}, occurring 
at the ends of diagonals of one-eighth of the squares (shaded in Figs. 1 and 
2). These diagonals are the edges of a graph of degree three which is the Cayley 
colour group for {7\, T2, Tz}. It is remarkable that the three edges at a vertex 
are coplanar and meet at angles of 120°, like those of the plane tessellation of 
hexagons, {6, 3}. 

The smallest circuit in this graph is a skew decagon such as 

(0,0,0) ( 0 , 1 , - 1 ) ( 1 , 2 , - 1 ) (1,3,0) (2,3,1) (2,2,2) (1,2,3) (0,1,3) 
( - 1 , 1 , 2 ) ( - 1 , 0 , 1 ) . 
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In other words, the graph is of girth ten (9, p. 459). This property corresponds 
to the fact that, apart from 

TV = TV = TV = 1, 

the simplest relations satisfied by the T's are 

T\i<2.TiTzTi = 12TZI2T1T2 = T%T\T%T2±z 

(i.e., S37\S2 = SiT2Sz = S2JT3SI, or Si2Tt = TtSt
2)t each involving ten T's. 

In terms of the S's alone, which evidently satisfy 

SiS2S3 = 1, 
these relations become 

Si 2S 2Si 2 = S2 , 52
25352

2 = 58> S3
2SiS3

2 = St 

(any two of which imply the remaining one). The first implies 

Si2S2
2 = Si2S2 .Si2S2Si2 = Si2S2Si2 .S2Si2 = S 2

2Si 2 ; 

thus the squares of the S's all commute with one another. By repeated applica­
tion of 

S,S2
2 = S2~

2Si, S2S,2 = 53~252, SzS,2 = Sr2Sz, 

SiS3
2 = S3"2Si, S2SX

2 = 5 r 2 5 2 , 5352
2 = 52~253, 

we can transform any "word" into the standard form 

SCSI'S*9 

where at most one of x, y> z is odd; e.g., 

5X53 = 51
251-153~153

2 = Si2S2S3
2. 

Thus the Abelian subgroup © = {Si2, S2
2, S3

2}, having the four cosets 

©, ©Si, ©S2, ©S3, 

is of index 4 in {Si, S2, S3}. 

6. A finite graph. The abstract group {Si, S2, S3} has a finite factor group 

Si*' = s2
2m = S*2n = SiS2S3 = 1, 

Si2S2Si2 = S2, S2
2SSS2

2 = S3, S3
2SiS3

2 = Si 
or 

S ^ ' = s2
2m = (SiS2)

2w = 1, Si2S2Si2 = S2, S2
2SiS2

2 = Si, 

whose order is Umn (since it has a subgroup Ez X Sw X Sn of index 4). The 
case I = m — n has been described by Frucht (4, 5.51). 

Geometrically, since the squared S's in the infinite group are translations, 
the effect of giving them definite periods /, m, n is to identify points whose 
three coordinates differ by multiples of 4/, 4m, 4w, respectively. In other words, 
the infinite space is reduced to a three-dimensional torus. Since the order of 
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the finite group is Umn, the corresponding graph has 8lmn vertices and 12lmn 
edges. 

The girth is still 10, provided l, m, n are all greater than 2. But if / = 2, 
the relation Si4 = 1 or (T2 T3)4 = 1, involving 8 letters, yields an 8-circuit. 
In the special case / = m — n = 2, every edge belongs to just two 8-circuits 
(e.g., the " r 2 " edge belongs to ( r x r 2 ) 4 = 1 and (T 2 r 3 ) 4 = 1); therefore the 
graph (4, 5.23) can be embedded in a surface to form a regular map of 24 
octagons. 

7. A thin packing of spheres. Returning to the infinite graph (with /, m, n 
unrestricted), we note that something essentially equivalent to it was dis­
covered in 1932 by Laves (7, p. 10). When the graph is derived from the 
{4, 6 14} whose vertices have integral coordinates, its edges are of length y/2. 
Hence spheres of diameter V2, drawn around all the vertices, will touch one 
another at the mid-points of the edges. This arrangement of spheres is the 
figure described by Laves. His Fig. 7 shows, in a very striking manner, some 
of the rings of ten spheres corresponding to 10-circuits in the graph. 

Since there are eight spheres for each cube of edge 4, the packing density 
is 

8 • | 7r(VI)3/43 = Y ~ 2 = ° ' 1 8 5 1 2 

namely one-quarter that of the cubic or hexagonal close-packing. Nevertheless, 
this is not the thinnest possible packing of equal spheres. By the simple but 
ingenious device of replacing each sphere by a cluster of three smaller ones 
(5, pp. 448-450; 8, p. 484), Heesch and Laves derived a still thinner packing, 
with density only 

7rV2f V 3 - I ) = 0.055515 

8. A correction. I take this opportunity to correct an unfortunate error 
in my paper on Regular skew polyhedra (1, pp. 54, 55, 61). The regular map 
shown in Fig. XV is not {4, 7 | 3} but {4, 6 | 3). Moreover, Table II should be 
supplemented by three further entries: 

Polyhedron / e V P © g 1 

{4, 6 | , 2} 
{5, 6 | , 2} 
{3,11|,4} 

12 
24 

2024 

24 
60 

3036 

8 
20 

552 

3 
9 

231 

S4 X 5 s 

LF(2, 23) 

48 
120 

6072 

Note added in proof. When applied to the four-dimensional polyhedron 
{4, 613} (1, pp. 45, 55), the procedure of §§ 1 and 5 (using diagonals of alter­
nate squares at a vertex) yields a graph of girth five having 20 vertices and 30 
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edges (one diagonal of each square) ; this is the same as the graph formed by 
the vertices and edges of the regular dodecahedron {5,3}. When applied 
to {4, 61, 2}, it yields the complete 4-point (i.e., the vertices and edges of the 
tetrahedron {3, 3}). When applied to {4, 61, 3} (1, p. 60), it yields a graph of 
girth six having 24 vertices and 36 edges (diagonals of 36 of the 84 squares). 
This graph, denoted by {12} + {12/5} (4,4.1), consists of the vertices and 
edges of the map {6, 3} 2,2 on a torus, and is the Cayley colour group for the 
octahedral group £4 generated by the three transpositions Tt = (i 4) 
(* = 1. 2, 3). 
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