ON LAVES’ GRAPH OF GIRTH TEN
H. S. M. COXETER

1. Introduction. This note shows how a certain infinite graph of degree
three, discovered by Laves in connection with crystal structure, can be in-
scribed (in sixteen ways, all alike) in an infinite regular skew polyhedron which
has square faces, six at each vertex. One-eighth of the vertices of the poly-
hedron are vertices of the graph, and the three edges of the graph that meet
at such a vertex are diagonals of alternate squares. Thus either diagonal of
any face of the polyhedron can serve as an edge, and the whole graph can
then be completed in a unique manner.

The same graph is also derived, by the method of Frucht’s paper (4), from
the abstract group

S1252S12 = Sz, 32251522 = S1.

2. A regular skew polyhedron. In 1926, J. F. Petrie discovered an infinite
regular skew polyhedron which can be derived from the simple honeycomb of
cubes {4, 3, 4} by taking all the vertices, all the edges, and half the squares
(1, pp. 33-35; 2, p. 242; 6, p. 55, Fig. 4). This new regular polyhedron was
named {4, 6|4} because it has square faces, six at each vertex, and square
holes corresponding to the missing faces of the cubic honeycomb.

The vertex figure of a cube {4, 3} is an equilateral triangle {3} (3, p. 16);
the vertex figure of the cubic honeycomb {4, 3, 4} is an octahedron {3, 4}
(3, p. 68); and the vertex figure of the skew polyhedron {4, 64} is a skew
hexagon which is a Petrie polygon of the octahedron (3, pp. 24-25). Since a
given octahedron has four Petrie polygons, the faces of the skew polyhedron
can be selected from those of a given cubic honeycomb in four ways. Taking
the vertices to be all the points whose Cartesian coordinates are integers,
one way is select the squares

(0,0,0)(0,1,0)(0, 1, —1)(0, 0, ~1)
(1,0,0)(1,1,00(1,1, —=1)(1,0, —1)

and all others that can be derived from these two by permuting the three
coordinates and adding fixed even numbers to them.

3. The infinite group {R, S}. In saying that the skew polyhedron is
“regular,” we mean that it possesses two special symmetry operations: R,
cyclically permuting the vertices of one face (say the former of those men-
tioned above), and S, cyclically permuting the faces at one vertex (say the
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origin). These operations generate an infinite group having the elegant abstract
definition
Rt =S8 = (RS)?= (RS)*=1

(1, pp. 35, 48). Since they are rotatory reflections (1, p. 87), their squares are
pure rotations: R?, of period 2 about the ‘‘axis’ of the square

(0,0,0)(0,1,0)(0, 1, —1)(0,0, —1),
and S?, of period 3 about the line x = y = z. In fact, R? is the transformation
¥ =x, y=1—9, &d=—-1-—3,
while S? is the cyclic permutation
=z y=x 2=y

4. The subgroups {7, T, T3} and {Si, S, S;}. It is convenient to let
Ty, T, T; denote R? and its transforms by S? and S~2, namely

Ty: % =x, y=1—9y9, 2z=—-1-z,
Te: x'=—-1—x,9 =y, 7 =1-gz,
T3: o/=1—2%x, 3y =—-1—9 2=

We use Sy, S, S3 to denote the products Ty T3, T3 T1, T1 T3, namely

S ¥ =24% y=-1—92=1-—g3z
Se: =1—-% oy =2+y 2=-1-g5z

’

S;: ¥=—-1—-%x9y=1-—y =24z

It
I

Thus S:2, S,2, S;? increase the respective coordinates by 4, and S; 7:S;
increases each of them by 2.

The half-turns T'; can be expressed in an obvious way as products of pairs
of reflections 4 ; and B;, namely

T1=A3B2, T2=A1.B3, T3=A2.Bl,

where .
Aiis ¥’ = —1—x, 9y =y, g =gz
Biis ¥’ =1—x, 3y =y, 2 =g,
Asis x' = x, Yy =—1—19 7 =3,

and so on. Thus the A’s and B’s are reflections in the opposite faces
x=:F%r y=:Féyz=:F%

of the cube (&%, &3, £1). They generate the direct product of three infinite
groups
A2=Bz2=1 (z=1,2,3),

since both 4; and B; commute with both 4; and B; whenever 7 ## j. The
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products 4 ;B increase the respective coordinates by 2. We easily verify that

<A1B1)2 =S8
and
AlB1AszA3B3 = A1A2A3B1BgB3 = T2T3T2T1T2 = SIT253.

5. An infinite graph. Since the three T's are half-turns about three edges
of the above-mentioned cube, which are the axes of three faces of {4, 6|4}
(see Fig. 1), they transform the origin into the three points

(Or ]-v _l)v (—170v 1)) (1y _110)
which are the opposite vertices of these squares. Thus the group {77, T, T3}
transforms the origin into the points
0,0,0, (1,2,3), (231, 31,2
2,22, 3,01, (0,1,3), (1,3,0) (mod 4),
which are derived from (0, 0,0) and (1,2,3) by cyclically permuting the

coordinates, adding 2 to all of them, and adding arbitrary multiples of 4 to
any of them.

(01,1 (-1,0,1) (0,0,0) (L1,0)

(0,071

| 01,9
(L0 (O,1,71) (-1,1,-2) (0,2,-2)
Figure 1 Figure 2

In this manner we pick out one-eighth of the vertices of {4, 6|4}, occurring
at the ends of diagonals of one-eighth of the squares (shaded in Figs. 1 and
2). These diagonals are the edges of a graph of degree three which is the Cayley
colour group for {T1, T, Ts}. It is remarkable that the three edges at a vertex
are coplanar and meet at angles of 120°, like those of the plane tessellation of
hexagons, {6, 3}.

The smallest circuit in this graph is a skew decagon such as

(01 01 O) (Or 17 _1) (11 27 —1) (11 3, 0) (2v 3» 1) (2’ 2, 2) (]-v 27 3) (0, 1, 3)
(-1,1,2) (—1,0,1).
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In other words, the graph is of girth ten (9, p. 459). This property corresponds
to the fact that, apart from
T*=T=Ts=1,

the simplest relations satisfied by the I”s are
T1T2T1T3T1 = T2T3T2T1T2 = T3T1T3T2T3
(i.e., S3T1Sy = S1T2S3 = S2T3S41, or S2T; = T,S,:?), each involving ten T’s.
In terms of the S’s alone, which evidently satisfy

315253 = 1,
these relations become

51252512 = Ss,  S52255S:2 = Ss, S53S1Ss? = Sy
(any two of which imply the remaining one). The first implies
S1252? = 51252.51%52512 = 5125251252517 = S,25:%;

thus the squares of the S’s all commute with one another. By repeated applica-

tion of
S1S2? = S57281, 5255 = 55725, S:Si2 = Si73Ss,
S1S5?2 = S57251, 5251 = S$173S,, SiSe? = 5728,

we can transform any “word’’ into the standard form
S1ES4Ss*
where at most one of x, ¥, z is odd; e.g.,
S1S3 = S1251718571552 = 5125,552.
Thus the Abelian subgroup & = {S:?% S:?, S;?}, having the four cosets
S, &S5, &S, &S;,
is of index 4 in {Sy, Ss, S;}.

6. A finite graph. The abstract group {Si, Ss, S3} has a finite factor group

Si?t = Szz_"‘ = 532" = 515:5: = 1,
S1282512 = Sp,  S22538:%2 = S5, S53SuS:2 = Sy

or
Si2t = 5" = (5152)2" =1, 525,85 = Sa, §225:15:% = Sy,

whose order is 4/mn (since it has a subgroup €; X €,, X G, of index 4). The
case | = m = n has been described by Frucht (4, 5.51).

Geometrically, since the squared S’s in the infinite group are translations,
the effect of giving them definite periods Z, m, n is to identify points whose
three coordinates differ by multiples of 4/, 4m, 4%, respectively. In other words,
the infinite space is reduced to a three-dimensional torus. Since the order of
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the finite group is 4/mn, the corresponding graph has 8/mn vertices and 12lmn
edges.

The girth is still 10, provided [, m, # are all greater than 2. But if [ = 2,
the relation S1* = 1 or (T2 T5)* = 1, involving 8 letters, yields an 8-circuit.
In the special case | = m = n = 2, every edge belongs to just two 8-circuits
(e.g., the “Ty" edge belongs to (T'1T5)* = 1 and (T:T5)* = 1); therefore the
graph (4, 5.23) can be embedded in a surface to form a regular map of 24
octagons.

7. A thin packing of spheres. Returning to the infinite graph (with I, m, n
unrestricted), we note that something essentially equivalent to it was dis-
covered in 1932 by Laves (7, p. 10). When the graph is derived from the
{4, 6|4} whose vertices have integral coordinates, its edges are of length /2.
Hence spheres of diameter +/2, drawn around all the vertices, will touch one
another at the mid-points of the edges. This arrangement of spheres is the
figure described by Laves. His Fig. 7 shows, in a very striking manner, some
of the rings of ten spheres corresponding to 10-circuits in the graph.

Since there are eight spheres for each cube of edge 4, the packing density
is

8.3 (\/2)

12\/2 = 0.18512.

namely one-quarter that of the cubic or hexagonal close-packing. Nevertheless,
this is not the thinnest possible packing of equal spheres. By the simple but
ingenious device of replacing each sphere by a cluster of three smaller ones
(5, pp. 448-450; 8, p. 484), Heesch and Laves derived a still thinner packing,
with density only

3
71'\/2(\/3 - g) = 0.055515 . ..

8. A correction. I take this opportunity to correct an unfortunate error
in my paper on Regular skew polyhedra (1, pp. 54, 55, 61). The regular map
shown in Fig. xv is not {4, 7|3} but {4, 6|3}. Moreover, Table II should be
supplemented by three further entries:

Polyhedron f e | v P () g
{4, 6,2} 12 24 8 3 Si X S. 48
{5, 6,2} 24 60 20 9 Ay X S, 120
{3, 11|, 4} 2024 3036 552 231 LF(2,23) 6072

Note added in proof. When applied to the four-dimensional polyhedron
{4, 6|3} (1, pp. 45, 55), the procedure of §§ 1 and 5 (using diagonals of alter-
nate squares at a vertex) yields a graph of girth five having 20 vertices and 30
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edges (one diagonal of each square); this is the same as the graph formed by
the vertices and edges of the regular dodecahedron {5,3}. When applied
to {4, 6], 2}, it yields the complete 4-point (i.e., the vertices and edges of the
tetrahedron {3, 3}). When applied to {4, 6], 3} (1, p. 60), it yields a graph of
girth six having 24 vertices and 36 edges (diagonals of 36 of the 84 squares).
This graph, denoted by {12} + {12/5} (4, 4.1), consists of the vertices and
edges of the map {6, 3}z 2 0n a torus, and is the Cayley colour group for the
octahedral group S, generated by the three transpositions T'; = (2 4)
(z=1,2,3).
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