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ABSTRACT. Two-dimensional steady isothermal flow of a marine ice stream is
studied. Cases of different relations between shear stress and longitudinal deviatoric stress
in the ice stream are considered. Analysis of the ice-stream—ice-shelf transition zone shows
that even if the longitudinal stress deviator in the ice stream is much larger than the shear
stress (as it is in the ice shelf), the ice-stream—ice-shelf transition zone is singular and the
full system of Stokes equations must be solved in it. Scales of fields in the transition zone
and the relation between the ice thickness and the horizontal mass flux at the grounding

line are found.

1. INTRODUCTION

Marine ice streams are characterized by relatively high
velocities caused by the small traction at their beds. Gener-
ally, motion of a marine ice stream is affected by the side walls,
surrounding stagnant ice sheet and flow-band geometry, etc.
(Van der Veen and Whillans, 1996). Understanding of the sim-
ple two-dimensional (2-D) steady isothermal flow of marine
ice streams is still not comprehensive. This concerns mainly
the ice-stream—ice-shelf interaction as well as the stream—
shelf transition-zone characteristics. Therefore, development
of a 2-D mathematical model of marine-ice-stream flow is ne-
cessary for studying ice streams, whose flow is close to 2-D,
and could help in studying three-dimensional flow of ice
streams, because the model shows some non-trivial features
of the ice flow, especially near the grounding line.

When the flow 1s 2-D, then the conventional view (Mus-
zynski and Birchfield, 1987, MacAyeal, 1989) is that the
shear stress in the ice stream is much less than the longitu-
dinal deviatoric stress and the ice-stream dynamics are
similar to those of the ice shelf. In this case, it has reasonably
been assumed (Thomas and Bentley, 1978; Muszynski and
Birchfield, 1987; Hindmarsh, 1993) that in the stream—shelf
transition zone the shear stress is also much less than the
longitudinal deviatoric stress, so the stream—shelf transition
zone has not been considered as singular and its analysis has
not yet been carried out.

The problem of modelling marine-ice-stream dynamics
is described by relations among independent and dependent
fields and their gradients (e.g. upper surface slope), which
will be determined in solving the problem. Evidently, scales
of the dependent parameters are functions of the scales of the
independent ones. We will call a scaling consistent when the
scales of dependent parameters are determined in scaling
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analysis of governing equations, based on our understanding
of the physical processes under consideration. In the present
study, we apply consistent scaling to consider ice streams
with different relations between the shear and longitudinal
deviatoric stresses. We also present a theoretical analysis of
the ice-stream—ice-shelf transition zone.

The scaling analysis of the ice-stream and ice-shelf flows
is based on two main assumptions: first, that the force driv-
ing the ice flow is the longitudinal pressure drop caused by
the negative slope of the ice upper surface (which is balanced
by the gradient of the shear or longitudinal stress deviator);
second, that the aspect ratios of the ice stream and the ice
shelf are comparable with the typical slopes of the upper
and the lower ice surfaces respectively. The first assumption
is physically reasonable. The second one can be ascertained
by survey data. The cases when the second assumption is not
valid are not investigated closely in this paper, but will also
be discussed; revealing that the singularity of the transition
zone 1s not based on the second assumption and is applied to
the general case of 2-D flow.

Whereas the “shallow-ice approximation” is generally
used to describe the boundary-layer approximation of the
shearing flow of ice (Hutter, 1983), let us for brevity use it to
describe any reduced model of the ice flow obtained with the
use of the smallness of the aspect ratio.

Notations

s(x) Upper surface profile

Z(g) Grounding-line position

Z(f) Ice front

b(zx) Lower surface profile (determined by rigid bedrock
elevation in ice stream and free in ice shelf)

l Sea level

h=s-0b Ice thickness

hwy =1-0 Water depth

P Pressure

" =p — pg) 9(s — z) Excess pressure

u Horizontal velocity
w Vertical velocity
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q Horizontal mass flux

51 Shear-stress deviator

Ty Longitudinal-stress deviator

w Effective viscosity

n Flow-law constant in the flow law
Tii = QN*ezj: W= Ql/n—lnl/n,e(l—n)/n

e? Second invariant of the strain-rate tensor

n>1 Flow-law exponent

ags) Ice-accumulation rate at upper surface

ag) Ice-ablation rate at lower surface

a = a) — ag) Cumulative ice-accumulation rate

g Gravitational acceleration

P() Ice density

Pw) Water density

= pG)/Pw)s

b=1-r Normalized difference between water and ice densities

€ Ice-stream aspect ratio

k(z) Sliding coefficient

subscript ¢ Parameters of glacier with no-slip condition at the
bed

subscript () Refers to the ice shelf
subscript () Refers to the transition zone
Letter subscripts denote derivatives. Scales are denoted by brackets.

2. GOVERNING EQUATIONS

Let us put the origin of a rectangular righthand coordinate
system at the begining of the ice stream (Fig. 1). In particu-
lar, the point of the begining can be an ice divide.

Two-dimensional steady isothermal ice motion is de-
scribed by the following conservation and constitutive equa-
tions:

—Pz + Top + 712 =0, (1)
—Po T — T = pp)g, 0<z <1, b<z<s, (2)
uy +w; =0, (3)

(11, 72) = p(u, + wy, 2uy), (4)

,LL* — 771/” [41/3 + (uz + wm)2

()

Boundary conditions are common (e.g. Muszynski and
Birchfield, 1987). In particular, at the begining of the ice
stream, the ice thickness, hq), and horizontal mass flux,
q(a), are assumed to be known. If the begining of the ice
stream is an ice divide then g(q) = 0, which determines the
ice thickness. At the ice front it is sufficient to impose a value
of the normal stress (Weertman, 1957).

se(=p+ 1) =11,
USy = W+ Gs)

ST = —P — T2,
at z = s, (6)
bT(p - TZ) = bTh(W)p(w)g - T, b.rTl +p+ T = h(w)p(w)g7
ub, = w+agy at z=bwhen x > x(,, (7)
h = ha), /udz =qa at x=0, (8)

b
s

/(—p + TQ) de =— p(w)gh(Qw)/2 at T = I (9)
b

At the bedrock we use the exponential sliding law (Fowler,

1987)

u+wb, N )<Tl(1 —b%) — 2T2bx>”"
(14 02)° 1+ " (10)
uby, =w+ag) at  z=0 when =z <),

where £ is the sliding coefficient assumed to be known as a
function of z. Generally, behaviour of the function k de-
pends on subglacial cavity volumes, water pressure, etc.
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Fig. 1. Marine ice stream.

(Lliboutry, 1979; Fowler, 1987). Here we consider the situ-
ation when the sliding coefficient has a value of the same
order along all the ice-stream length. We also assume that
u > 0 and s, < 0 in the ice stream and the ice shelf. The
latter assumption, s, <0, may break down near the ground-
ing line.

Evidently, we can find the continuous velocities, stresses
and surface profiles (solution of Equations (1)—(10)) only for
certain grounding-line positions and their ice thicknesses,
which determine the solution of the marine-ice-stream
problem. Because Equations (1)—(6) for determining the
velocities, stresses and upper surface profile, written for
0 < x < x, are assumed to be valid in the whole zone of
the ice flow (which means that smooth solutions are sought),
we impose the condition of continuity of the lower surface
profile at the grounding line, b(—0) = b(+40), to determine
the grounding-line position.

We also will use the following integral equations

_p gh2 s T=T(g)
b =T
Z(g)
= —/ [bo(m2 —p) —71]._,dz when z < z(y), (11)

T

2 S
gl Mgy —p)d h 12
P©Y " = [(n—p')dz when > x4,,(12)
b

S h .
/7'1 dz| = p(i)g[h - i“)} when z > x,). (13)

€T

Equations (11), (12) and (13) are derived first by integration
of (1) and (2), respectively, with respect to z from b to s. Then
equation (11) is derived by integration with respect to = from
T < T(g) to T(g) and Equation (12) is derived by integration
with respect to x from z > x(g) to x(1). Therefore, Equations
(11) and (12) describe the force balance in the ice volumes
bounded by the planes x = const, x = x(,) and x = const,
T = x(p), respectively. Equation (13) describes force balance
in the section z = const. Using these equations, instead of
one of the boundary conditions at the upper surface, is con-
venient in analysis, because the shear stress is much less than
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its typical value at the upper surface (Hutter, 1983; Johnson
and McMeeking, 1984).

3. ICE STREAM

3.1. Scaling analysis

If the sliding velocity has order not much higher than the
component velocity due to shearing deformation, then
scales of fields describing shearing flow in glaciers (sub-
script o) are well-known (Salamatin and Mazo, 1984):

) -n #ﬁ 1 1_ 1
@:<@@%§_) - W= (lal)
(14)

Here [z] and [a] can be determined from observations. Physi-
cally, this relation, between g, [a] and the other parameters,
1s determined by equality of the scales of the pressure longi-
tudinal drop and the vertical gradient of the shear stress.
From observations it is known that € gy ~ 1021072

The case when the shear stress has an order not less
than the longitudinal deviatoric stress in ice streams
([11) 2 [m2]) was considered by Fowler (1982) and that of
slow varying traction was considered by Hindmarsh
(1993). Here we consider all the situations when the shear
stress can be much less or much higher than the longitudin-
al deviatoric stress.

Here we assume [z] to be prescribed and known from
observations. Along the ice stream, the ice thickness is
assumed to decrease by a value comparable with the thick-
ness itself, therefore [u,] = [u]/[z]. Evidently [u] = [q]/[2]
and w = eu from mass conservation. Because the ice
stream can have a large catchment area, we generally do
not assume [q] = [a][z]. Scale for the pressure is [2]pg)g. It
should be noted that if the upper surface slope is much less
than the ice-stream aspect ratio, then [p,] < p()ge. Again,
if the ice-thickness gradient is much less than the aspect
ratio, then [u,] < [u]/[z]. These cases require more subtle
scaling analysis which is not considered here. However,
when the ice-thickness gradient i1s comparable with the
upper surface slope and both are less than the aspect ratio,
then in scaling analysis we can assume the typical ice
thickness [2] (instead of [z]) to be prescribed and find the
typical slope of the upper surface from scaling analysis,
which will determine [z] much higher than the ice-stream
length.

1o find [u.] we decompose u = ) + V), where )
is the sliding velocity and vuy,) is the shearing component
velocity. The dimensionless parameter v is to be chosen so
that [u(y)] = [u] and is a typical ratio of the shearing com-
ponent of velocity to the velocity u. Hence [u,] = v[u]/[7]
and {rom Equations (4) and (5) we have [r]/[n1] ~ &/v if
€2 Sv determining [u,] 2 [w,]. On the other hand, from the
boundary conditions at the upper surface we have
28,19 = (1 — 33)7'1, hence at the upper surface 71 ~ 7,
therefore [12]/[m1] $1/¢ in the ice stream. This means that
vz e? always.
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For the stresses we have

[ vlu]

=

fry] = 1 (15)

where [11*] = n/"([ulv/[2))" ™/ when e S (the typical
shear stress is not less then the typical longitudinal deviato-
ric stress) and [p*] = nl/”([u]/[x])ufn)/" when v<e (the
typical longitudinial stress 1s not less then the typical shear

stress). From the sliding law in Equations (10) we derive

Determination of v using the sliding law is correct only if
the shear stress has an order at the bed not less than at the
upper surface (shearing is determined mainly by the trac-
tion at the bed and 7(z,b) ~ [r1]), when the order of the
sliding velocity is not less than the order of the shearing
component velocity (v <1). This is because this determin-
ation corresponds to finding the scale of the shear stress
[r] from the sliding law [r] = ([u]/[K)Y™ If
ugy = u(z,b) < [u] or 71 (z,b) < [11], then this determin-
ation is not valid. On the other hand, if we derive v > 1,
then it means that sliding is negligible and we must put v =
lin further analysis.

When the shear stress is maximal at the upper surface,
then, as it was shown above, v ~ 2. Therefore, in order
for Equations (16) and (17) to be correct, it is sufficient that
£? < v, which is, as will be seen later (Equation (18)),
equivalent to the confirmation that a value of the second
term of (1) is negligible in comparison with the other
terms.

3.2. Governing equation in dimensionless form

Denoting dimensionless variables by capital letters, for the
ice stream we obtain

22
—Px+ A |:;T2X + Tle| =0, (18)

2
>
—Pz + A; WTix —Thz] =1,

O<X<X(g),B<Z<S7 (19)
Ux+ Wy, =0, (20)

where
HZMEW+§W4,E=me 1)
u= {[%UZ—I—%WX} +4(;)2U§(} nwhen eSv, (22)

1-n
2

2 2n
_ - (O Ao, 5 <
M—{4Ux+(€) LUZ—Q—VWX] } when v e, (23)

and
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Boundary conditions:
2 1
Sy [iTQ — —P] — T,
v A
1 2
€2SXT1 =——P— E_TQ,
A v
USx =W+ A at 7 = S(X), (24)

U+e*WBy =
oot [Ti(1—&2B2) — 2(e2/v) Ty B, ™
(1+¢ BX)ZK{ 1+ 2B ,
UBX:W+A(1)) at Z:B(X), (25)
S
H = H(d), /UdZ = Q(d) at X =0. (26)
B

3.3. Determination of dependent scales
From Equation (18) we infer that A must be of order 1. Let-

ting A =1, we can find the typical ice thickness or the ice-
stream aspect ratio

1
1 . —n\ 2n+2
£ = py22nt2 (M) When £ 5 v,

[I’]n+2
(27)
1
n L) 3t
e = py3ntl M when v <e.
[1‘]”4—2 ~
(28)

When v derived from Equations (16) and (17) is not higher
than 1, we can write these formulas as one via [k]:

1 —1_ _—(m+1)

L
PW)9 B (20)
_ <<p<i>g>m[[qf]:nxr"“>m when v<1.

This equation does not include information about rheology.
Comparing aspect ratios of glaciers of the same typical
length with sliding € and without it €y, we can write

1

e=v2+2g; when eSv,
n 2n+2 (3())
e=vdnflgydntl when v <e.
From Equations (27)—(30) we have
1
[q]2n72m+1 (p(i)g)nf?m [$] 2m—n [k] —(2n+2)\ 2m+1
v= ,'72m+1
when € S,
[C]] 3n—2m (p(~)g)n_m_m”n*@"”“) [m}3m+1—mn—2n 77,(27}7,+1)
1
v= [k]SnJrl
when v Se. (31)

We can find typical value [K] ;) of the sliding coefficient
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determining equality of the scales of the shear and longitu-
dinal deviatoric stresses. Equating € = v yields

1
2(n—m)r, 13m4+l-n, _ \n—m\ 2n+1
M = ([Q] [z] (Pw)9) ) 32

n2m+1
Putting v = 1, we can find typical value [k], of the sliding

coefficient determining equality of the scales of the sliding
velocity and the shearing component velocity:

_1
B} B [q]Zn-&-l—Qm [I] 2m—n (p(i)g)n—Zm 2n+2
[ ](1/) - 772m+1

== (33)

3.4. Shelf-like dynamics of ice streams

The parameter €2/v in (18) determines the importance of
the longitudinal stress deviator in the momentum conserva-
tion equations. If €2 /v ~ 1, then we expect an analogy with
shelf dynamics. Hindmarsh (1993) calls such streams “shelfy
streams”. In this case U = Uy + O(g?) and the equation
for the ice thickness will be (Muszynski and Birchfield, 1987)

1

. H? U\m

zlﬁUX%——} =HBX+(—) :
[ 2 X K

z (34)
where HU = Q(d) + / AdX, H(0)= H(d)
0

with the boundary condition determining the ice thickness
at the grounding line to be found.

3.5. Plug and shearing flow

Let us consider the situation when €2 /v < 1. In this case to
order O(g%/v) + O(?) from Equations (18)—(26) we derive

1
T1 :,LLZ—/UZ = *SX(S* Z), (35)
P=5-2, (36)
1-n
1 2 e\ 2 ) 2n <
,LL—{[UUz] +4(;) UX} when ¢ <, (37)
1-n
2n

211 2
#_{4U§(+(Z> LUZ} } when vSe. (38)

Mass balance:

S
Qv=A Q= /UdZ. (39)
B
Boundary conditions which have not yet been taken into
account:
U=KI" at Z=B(X), (40)
B
H =Hy), /UdZ =Qu at X=0. (41)
S

If v < 1, then Q = KH(—SxH)™ + O(v). If v ~ 1, then
Q= KH(—SxH)™ +|Sx|"H""?/(n +2). In the first case
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(plug flow) we have an equation for the ice thickness (Fowler,
1982)

X
KHm+1|SX|m: Q(d) + / AdX (42)
0

In the second case we derive (e.g. Salamatin and Mazo,
1984)

X
S ’ﬂHnJrZ
0

Equations (42) and (43) require boundary conditions at the
grounding line to be found. One can note that (42) and (43),
contrary to (34), do not require the value of the ice thickness
at the begining of the ice stream to be imposed.

For ice streams we expect ¥ < 1, while for glaciers with
no-slip condition: v ~ 1. Therefore it is necessary to estimate
value 2 /v to determine what model to apply: Equation (34)
or (42) and (43). Evidently, if e S v (order of the shear stress is
not less than the order of the longitudinal deviatoric stress),
then /v se < 1 and (42) and (43) are to be applied. If
vse, then from  Equations (30) we find
e2v ~ (E%/E)Hl/”. For Ice Stream E we have [z] =
300 km, [2], =24 km, [2] =L1km (e.g. Lingle, 1984), there-
fore for n = 3 we obtain €2 /v ~ 0.005 and we do not expect
“shelf-like” dynamics of this ice stream. For ice streams of
Vilcheck Land (Franz-Josef Land) € = 0.01, g =0.02, there-
fore €2 /v ~ 0.0l for n = 3 and we arrive at the same conclu-
sion. On the other hand, putting v = €2, we find ¢ = 7, and
typical ice thickness is of the order of only several metres,
which is not observed.

4. ICE SHELF

Ice-shelf dynamics have been studied by many authors (e.g.
Weertman, 1957; Thomas, 1973; Sanderson, 1979; Van der
Veen, 1983; Muszynski and Birchfield, 1987). We show only
the main points of analysis of 2-D isothermal flow of an ice
shelf. Evidently, because the ice shelfis afloat, the upper sur-
face slope is about ten times (1/6) less than the lower surface
slope. We expect that shearing is determined mainly by the
ice-thickness gradient and reaches its maximum at the
lower surface; the steepest one in the flow direction. We in-
troduce the spatial scales [2] ), [2] ), &) = [2]5)/[2]5) and
assume [7] ) < [z]. Boundary conditions at the lower surface
yield [11] = €(s)[72], which is equivalent to v = 5%S>, where
V(s) determines the importance of the component velocity
due to the shearing deformation in relation to the compo-
nent velocity due to the longitudinal deformation (analo-
gous to uy)). It is necessary to point out that in the ice shelf
the driving force (longitudinal pressure drop) is estimated
as [p.] = €(5)p@)g0 (about ten times less than it would be in
the ice stream with the same aspect ratio). Scale for the
velocity is as usual [u] = [¢]/[2] ). As with the ice stream,
we find that parameter A\ = A/6 is of order 1. However,
in studying ice-shelf dynamics it is sometimes convenient
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not to equate A) = 1 at this step. Neglecting terms of order
O(S%S)), we derive new variables pointed by tildes:

141
~ 1
Ugr. (44)

22+ [ ez [m}ﬁ

1 1
O\l

Equating the factor at the right side to 1, we obtain
1
[CI]U22"+1 n+1
[ = ERO (45)
] (P()99)
Finally, solution of (44) can be found as (Van der Veen, 1983)

H=

H=Q|V+(n+1) / Qudx| | (46)

X

where

X
~ ~ [m} (S) ~
Q:Q(X(g))—i—w AdX.
X(g)
Here constant V' determining the ice thickness at the
grounding line is to be determined from matching the solu-
tions found for different zones.

5. ICE-STREAM-ICE-SHELF TRANSITION ZONE
5.1. Revealing singularity near the grounding line

Differential equations (34),(42) and (43) determining the ice-
stream thickness require the boundary condition at the
grounding line. Solution (46), determining the ice-shelf thick-
ness, has one free parameter determining the ice-shelf thick-
ness at the grounding line. Evidently, if the shear stress in the
ice stream is much larger than the longitudinal stress devia-
tor, then all the stresses in the transition zone are of the same
order and the transition zone is singular (e.g. Chugunov and
Wilchinsky, 1996). Let us then consider the situation when the
value of the parameter v, describing the importance of the
shearing component velocity, 1s small near the grounding line
and presume that the (shallow-ice-approximation) solution
for the ice shelf found (46) is valid up to the grounding line.
In this case the solution of the problem of marine-ice-stream
dynamics determines the ice thickness at hydrostatic equilib-
rium and continuous stresses at the grounding line. This
means that strain rate is also continuous at the grounding
line. On the other hand, due to the small value of v, to order
of O(v) we have Ux = (Q/H)y = —QHx/H* +Qx/H.
Hence, because () and H are continuous at the grounding
line, we obtain Hy (X ) —) = Hx(X(g+); continuity of the
ice-thickness gradient at the grounding line.

First, we consider the situation when the upper surface
slope in the ice stream has order not less than the ice-thick-
ness gradient Sy 2 Hy. At the same time Hx ~ Sx/6 in the
ice shelf, due to the condition of hydrostatic equilibrium. This
yields Sx (X ) —)/Sx(X(g)+)z 1/6. In other words, such a
solution determines a ten-time break of the upper surface
slope and Sxx much higher near the grounding line, than it
1s in the ice stream or in the ice shelf. However, from physical
considerations we expect the smooth upper surface profile.

Second, we consider the situation when the upper surface
slope in the ice stream is much less than the ice-thickness gra-
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dient. Evidently, such a situation can occur only if Bx > 0
when X < X, In this case we start from investigation of the
solution for the ice shelf (46). In deriving this solution we
assumed that Sx < 0, which is physically consistent. There-
fore, this determines Hy (X y)+) <0 and Bx(Xy)+) > 0 at
the grounding line. Evidently, if By (Xy)—) # Bx(X(g)+)
then matching the strain rate also determines a break of the
upper surface. Although investigation of Equation (34), writ-
ten for the ice stream and for the ice shelf, does not allow us to
conclude that if Bx(X)—) = Bx(X(g)+) then the strain-
rate 1s continuous at the grounding line, one could assume it.
However, in this case the condition By (X () —) =Bx (X (y)+)
implies that Hy) (X)) = (1 = 0)H(X(g)+) and H,)x
(X(g) = (1 = 8)Hx(X(g)+), where H(y is the water depth.
Therefore, due to (44) the water depth Hy) at the grounding
line must satisfy the equation

I_:’(nw) = (1 - 6)n1< ~Q ) ’
H(W) X

which is assumed to be a very strong restriction on the bed
profile determining the existing of the solution of the marine-
ice-stream dynamics.

Eventually, we conclude that in any case, even if we con-
sider “shelf-like” dynamics of the ice stream, the reduced
models found adequate in the ice stream or in the ice shelf
are not adequate near the grounding line and the transition
zone is singular. This can be caused not only by the change of flow
style in the transition zone, but also by the change of boundary condition
at the base from the absence of the Archimedes force to the presence of it.

5.2. Scaling analysis

Let us determine the scales of the transition zone. For this
purpose we consider Equation (1).

First, in the transition zone we expect that all the stresses
important in both the ice stream and the ice shelf are im-
portant in the transition zone. Therefore, all terms in (1), de-
scribing the influence of the stresses, must have the same
order (as in the ice shelf), because all these terms determine
the change in flow style in the zz plane.”

Second, if the longitudinal deviatoric stress in the ice
stream is much larger than the shear stress and this holds
in the transition zone, then the boundary condition at the
lower surface yields [11]/[r2] ~ £(5) < 1 and the shallow-ice
approximation is valid in the transition zone, which contra-
dicts the conclusion made above. Hence, in any case in the
transition zone all the stresses are of the same order.

On the other hand, both statements are possible only
when [11] = [r], [z] = [2] = [h] (generally [u] # [w]). This
means that the full system of Stokes equations must be
solved in the ice-stream—ice-shelf transition zone.

Denoting hg) = h(z(y)) the ice thickness at the ground-
ing line, we introduce new variables, pointed by bars with
the same (yet unknown) scale [7] for the stresses and the ex-
cess pressure; and the scale Ay for the coordinates and the

* If we consider an axisymmetric flow, then in cylindric co-
ordinates the corresponding momentum equation along
the axis, 7, includes the normal stress, 7, in the transverse

direction to the flow, where ¢ is an angle of turn. Although

this stress plays a significant role in the axisymmetric ice
shelf; it is not important in the transition zone, because it

does not characterize flow change in the 7z plane.
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ice thickness. We also move the origin of the coordinate
system to the bed at the grounding line.

Integral equations (12) and (13) for X > 0 (in the ice
shelf) take the forms

where
(49)

Eliminating I—:T(W) from Equations (47) and (48), we derive

G [
——+rHTx - 6r3TE = /(T2 — P"dZ = 0(1),
B
(50)
where
s
T - /T1 dZ = O(1).
B

From this equation it can be seen that 3 ~ 1, otherwise
either the first term on the righthand side (which describes
the driving force in the ice shelf) is not balanced (3 > 1) or
is not important (3 < 1), which contradicts the transitional
behaviour of the flow. Hence, Equation (47) means that to
order O(6) the ice thickness can be found from the condition
of hydrostatic equilibrium and the upper surface slope is of
order O(6). However, for high sliding velocities the latter
estimate can be improved in the ice stream near the trans-
ition zone, where the shallow-ice approximation is still va-
lid.

First, for determining [7] we use Equation (11) taking
into account (48):

| _ H?
[T]ﬂ(m - (1—1;)) / (26)

0

ZmaX([Tl]m[T])/<m>Z_BdX (51)

X

+nly| [ (Ty—P*)dZ+0()| when X <O0.

B~

Here we assumed that By ~ ¢ when X < 0. This equation is
written at X ~ 1, where the shallow-ice approximation is va-
lid (near the transition zone, but not in it). Due to the above
estimate on the upper surface slope, we have [H? — H(QW) /
(1 = 6)]/6 ~ 1. The scales of the shear stress and longitudinal
stress deviator at so chosen X (near the transition zone, but
where the shallow-ice approximation is valid) are denoted by
[71]y» [72], and are generally different from those in the ice
stream. Evidently, the scale of the shear stress, 7y, in the zone
of integration is the maximum of the typical shear stresses
near the transition zone [71], and in it [7].
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Equating the typical values of lefthand-side and right-
hand-side terms yields the physically reasonable relation

[7] = max([ri]y, [2]p)- (52)

The scales [11], [72], can be found from Equation (15) using
(16), (17) and (29) to determine the typical ice-surface slope
of the ice stream particularly near the grounding line as a
function of ) (in this case) when the shallow-ice approxi-
mation is valid (one should not forget that these formulas
were derived with the assumption s, ~ h;). On the other
hand, from (49) we derive [7] = hy) p(i)gé. Elimination of
h( ) yields

T| = (e g8 mLH when [], S [
1= (2705)™ when [y il (9

1
<77m [q]m+1 (pmg) 2m+165m+1> nm+3m+1

when [r1], S [72]o, (54)

] = ——=. (55)

These estimates are valid when the value, v(y), of the para-
meter ¥ near (not in) the transition zone is no higher than 1
(V7 is not equal to the value of v in the ice stream because
the scales of the flow near the the transition zone and in the
ice stream are generally different). Equating v(;) =l in (16)
and using (15) and (55) we derive [7] and the corresponding
value [k], ; of the sliding coefficient making v, ~ L:

_1
(7] = (nlal(py98)*)"", (56)

1
n—m —(m n—2m \ n+2
iy = (fa"™" 0D (o g0)" )", (57)

For the typical ice-stream surface slope near (not in) the
transition zone &) from (29) we obtain

Ey =0 when  [n]y S [7i)o, (58)
1
[q]nferl (p(i)g)n*2m6n(m+1) nm+3m-+1
E(t) = [k]n+27’]m+1
when  [11], S [7)p- (59)

Although these relations determine the typical upper
surface slope near the transition zone, because they were de-
rived using estimates for the shallow-ice approximation, we
expect that these estimates are also valid in the transition
zone. Otherwise, if the surface slope in the transition zone
is much higher, this could lead to much higher longitudinal
deviatoric stress, which contradicts (52).

If vy ~ 1 (sliding is negligible), then substituting Equa-
tion (55) in (45) for [2], and using (56) we find that in this
case the typical slope of the ice shelf surface near the trans-
ition zone is 272771,

In the derivation of Equations (53)—(59) we used formu-
las (16) and (17), valid when the shear stress in the ice stream
near (but notin) the transition zone reaches its maximum at
the lower surface. It is true particularly when the gradient of
the longitudinal deviatoric stress in (1) is much less than the
other terms. Evidently, if in the ice stream the shear stress is
much larger than the longitudinal deviatoric stress then this
1s true. If the situation is the contrary and we assume that all
the terms in (1) have the same order, then equating
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2] =P glhe)/ 2] = [rox] = [7]/[] we find [7]=p(;)glhy),
which contradicts (55). Hence our scaling is adequate.

For the use of formulas (53)—(59) we can find the typical
value [k], of the sliding coefficient, which determines

1]y ~ [72]y- Equating [71], = [r2], yields

1
[k] ) — (77_(m+1) [q]nfmle (p(i)g)ﬂ*%nén—?)m—l) n+2. (60)

Evidently [11], 5 [72], when [k] ;) < [k] and vice versa.
To compare the typical values of the sliding coefficient de-
termining different flow styles, we find the following ratios:

[k]<y) 2m+1
~ 2n+1 61
ey~ oy
I 3mtl-n
[k](f) £ ;::1) n+2 .
He "\ 0 | (02
) ) e
V) (0 1n63m+1—n n+2. 63
[k](t) (50 ) ( )

Using these formulas we derive for m = n and § = 0.1:

€ 0.1 001 0.01 0001 0001 000l
@ 1 2 3 1 2 3
(Kl /K]y 001 0.01 001 0001 0001 0001
/e 0022 0018 0.016 0001 56x10" 4x10*
(Kl / Kl 046 0.56 063 1 18 25

It can be seen that the value of the sliding coefficient de-
termining the equality of the typical sliding velocity and the
shearing component velocity in the ice stream [k](,,) also de-
termines the equality of the typical longitudinal deviatoric
stress and the shear stress near the grounding line, where
the shallow-ice approximation is still valid. This value is
much less than that determining the equality of the typical
longitudinal deviatoric stress and the shear stress in the ice
stream [k](7>. This 1s caused by the higher surface slope near
the grounding line than that in the ice stream.

5.3. Problem for the transition zone

In order to find the boundary condition at the grounding
line relating the ice thickness and horizontal mass flux at
it, we scale values in the transition zone by the scales of flow
without sliding (shearing flow):

M(t) = [w](t) = %, 2] = [2] = he,  [us] = [[%]’
q(g) B / adx, [T](t) = [Tl] = [TZ] = [p*] - (%)nv
£=7, X=X (64)

Here q(y) is the (yet unknown as well as h(g)) horizontal mass
flux at the grounding line. In the transition zone the full
system of Stokes equations (considered as the inner problem)
must be solved (new variables are pointed by hats):

3 .
5% (65)
_P;+T1X_T2Z =0,
—o<X<oo, B<Z<S,  (66)
Ug+ W, =0, (67)

—Py+Thx+1y; =
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where
1= (0, + V), T =2l (68)
= <4UX+ [UZ+WX] ) : (69)

Boundary conditions:
(1—S%)Ty = 25Ty,
USy =W+ 0(e) at = 5(X), (70)
(1 B)T1—2B TQ,UBX—W+O()

at Z = B(X) when X >0, (71)
W=0(), U=pg" ~[T]" +0(e)
at Z=B(X) when X <0, (72)

S
/UOZdZ_1+O() (73)
B

where

1
77erlq'mfnfl n+2
7= k() ( (g'r)12m> :
(P)90)

For determination of the suface profiles, instead of the
boundary conditions at the free surfaces, we use the integral
equations:

A 5
- H

Aot _ 587! /Tle when X > 0, (74)
r

B X
i /
L / (T, — P dz,
B
S
- / 71dZ when X > 0, (75)
B
i)
H? — ) /(26
ﬂ( = 5)>/( )
0 S
= /T1|Z:B+/(T2 — P*)dZ + O(e) when X < 0, (76)
% B
3
H()—T 1—6ﬁ /Tle 5 (77)
B %/ %=0
where
KOLOLLE

8=
i
The initial condition is H(0) = 1. In these variables ﬁ(m is
unknown.

The parameter f3, as it will be seen later, plays an import-
ant role and is proportional to the ratio of the longitudinal
stress deviator found with the shallow-shelf approximation
to the shear stress found for the Pouiselle flow at the ground-
ing line.

Solution of the problem (65)—(78) and matching the solu-
tions found for the ice stream, ice shelf and transition zone is
beyond the scope of this work. However, it should be noted
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that values in (65)—(78) are not of order 1. If expansion on §
is used, then, proper scaling must first be performed. For
example, near the grounding line we cannot neglect the
upper surface slope (as it was done in the case of the no-slip
condition at the bed; see Chugunov and Wilchinsky, 1996),
because the longitudinal deviatoric stress, which plays a sig-
nificant role in the transition zone, is determined by it. We
can assume that the upper surface is plane and horizontal
(to order of O(6)), but the value of S’X must enter the kine-
matic boundary condition at the upper surface (70), which
in case of no-slip condition at the base yields W =0 and
does not include information about the surface slope.

5.4. Boundary condition at the grounding line

It is physically consistent to presume that when the bed
profile and horizontal mass flux are monotone functions of
x, then a unique solution of the complete problem describ-
ing the ice flow in the ice stream, transition zone and ice
shelf exists. In this case, because the (outer) solutions found
for the ice stream and ice shelf have free parameters (their
thicknesses at the grounding line) to be determined from
matching with the solution of the (inner) problem (65)—
(78), problem (65)—(78) has a unique solution not including
free parameters. On the other hand, problem (65)—(78) in-
cludes only five dimensionless parameters n,m, 3,7, 0,
which determine similar flows in the transition zone. Influ-
ence of the outer flow is “hidden” in 3 and 7, where the para-
meter [ includes the unknown ice thickness at the
grounding line h,), and parameter v is a known function
of z(y). Presumption of uniqgeness of the solution leads to
the relation 8 = 3(n, m, 6,~). That is for certain choices of
n,m,7,9d, only the one value of 3 determines continuous
fields at the grounding line. If sliding is negligible, then 3
depends only n and 6. As can be seen from (49) and (78),
the typical value of Bis [7]/[7] .

Finally, the boundary condition at the grounding line
(78) relating the ice thickness and horizontal mass flux can
be written as

Shy "
B(n,m, 8,7) = 0T, (79)
(nag))",

which, when dependence 3(n,m, 6,y) and f:fw(n, m,6,7)1s
known, lets us determine x(g) and h(y), because hg) =
) (x)/H<W) (n,m, 6,7), and the lefthand as well as right-
hand parts of (79) are known functions of x(4). It should be
noted, that the form of (79) generally implies that several

solutions () can exist if b(x) or g(z) are not monotone.
In variables scaled by the scales of flow without sliding

we derive
1+
6H
B=—"1 (80)
“0Qy
where Qg = Q(X(y)) and & is the aspect ratio of the glacier

without sliding (14).

6. DISCUSSION

Because this work retrieves many results mainly concerning
ice-stream dynamics, differences in the conclusions must be
pointed out.

First we compare the results with those of Muszynski and
Birchfield (1987). For convenience we will use the definition
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A =1/(2n). According to the cited work for n = 3 the longi-
tudinal stress deviator is much larger than the shear stress if
(o) /] = ([u] /(A[x])l/?’) J(elp]) > L The typical values
for ice streams were taken as follows [u] = 200ma ', [z] =
100km, A =1x10""a '"Pa* [p] =25 x10° Pa. For e = 0.01
this yields [r]/[r1] ~ 2 and for £ = 0.005 this yields
[72]/[11] ~ 5. Therefore, we generally do not expect the shear
stress to be negligible in the ice streams characterized by such
typical values. The difference is that in the cited work
([r2]/[m1])* was estimated and this value evidently can be
much higher than L.

The other difference concerns the determination of the
scale of the strain rate u,. Here we assume that the typical
strain rate in the ice stream does not depend on the typical
strain rate in the ice shelf. And the equality of the strain
rates determines the characteristics of the transition zone.
In the cited work, the strain rates in the ice stream and the
ice shelf are equal and this determines the typical velocity in
the ice stream [u] = A[z](8[p])*. For the typical values
pointed out above, we derive [u] ~ 10 kma . However, the
last overestimate may be caused by using the same spatial
scales for the ice stream and the ice shelf.

On the other hand, one can consider the following situ-
ation. For low traction at the bed, the typical ice thickness of
the ice stream (found with the assumption that the surface
slope and the ice-thickness gradient are of the same order) is
much less than the typical thickness of the ice shelf. This is
because the continuity of the longitudinal stress deviators at
the grounding line (Hx (X —) = Hx(X(g)+)) implies that
the upper surface slope of the ice shelf is 1/8 times less than
that of the ice stream, which causes the decrease in the driv-
ing force, the longitudinal pressure drop associated with the
upper surface slope. In this case, we expect that the ice-
stream aspect ratio is determined by the ice thickness at the
grounding line. Therefore, in scaling analysis one should con-
sider the ice thickness at the grounding line as a prescribed
quantity rather than the ice-stream length, as was performed
in this work. Moreover, we expect that the upper surface
slope of the ice stream will be much less than its aspect ratio.
Such a conclusion corresponds to the characteristics of sur-
face slopes of Ice Stream B (e.g. see simulation by MacAyeal
(1989)) and to the qualitative analysis by Hindmarsh (1993). If
such a situation occurs, then we cannot assert that “shelf-like
dynamics” are not expected for ice streams.

Let us turn to the results derived by Hindmarsh (1993) on
modelling ice flow with slowly varying traction at the bed.
Different flow styles are described with the parameter
A = [11]/[m2] = v/e. Different typical values of A correspond
to different flow styles: shearing (ice sheet, v ~ 1, A = =1/,
plug (called “meso-traction stream” by the author, v ~ £, A = 1)
and shelflike dynamics of ice streams (v~ % X =1/g).
Generally the derived results correspond to each other, ex-
cept for the estimate for the longitudinal stress deviator in
the ice sheet. We determine the scale in the region where the
shearing mostly occurs and in which the flow mostly deter-
mines the ice-sheet dynamics. Therefore we derive the con-
ventional result A =1/e. In the cited work the scale is
chosen as the typical longitudinal stress deviator at the upper
surface, whereas it is really larger for Glen’s flow law. How-
ever, the upper layer is not believed to influence the ice-sheet
flow strongly (Johnson and McMeeking, 1984), therefore this
discrepancy is not significant.

Here, as in the work by Hindmarsh (1993), it is assumed
that the typical upper surface slope depends on the sliding
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conditions (traction) at the bed. Again, in the present work
the ratio of the typical longitudinal stress deviator to the
pressure is also assumed, depending on the sliding condi-
tion, whereas Hindmarsh (1993) assumes this ratio (denoted
6 in the cited work) constant and equal to e*1/" for any
traction at the bed. Therefore we consider the presented
scaling approach as a generalization, which could help take
into account as many affects as possible.

7. CONCLUSIONS

The analysis of two-dimensional isothermal flow of a marine
ice stream shows that in the ice-stream—ice-shelf transition
zone the shallow-ice approximation is inadequate and the full
system of Stokes equations must be solved. The shear and lon-
gitudinal deviatoric stresses have values of the same order in
the transition zone. The horizontal gradient of the longitu-
dinal stress deviator is negligible in the momentum-conser-
vation equation along the longitudinal coordinate written
for ice streams, which are characterized by the same order of
the upper surface slope and the ice-thickness gradient. An
assumption of “shelf-like” dynamics for ice streams leads to
an estimate of the typical ice thickness of only several metres
for such ice streams. However,“shelf-like” dynamics can be ex-
pected for ice streams, which are characterized by an upper
surface slope smaller than the ice-thickness gradient.

The boundary condition at the grounding line, relating the
ice thickness and horizontal mass flux, can be presented in the
form of Equation (80) (cf. Chugunov and Wilchinsky, 1996) in-
cluding the parameter 3 (proportional to the ratio of the longi-
tudinal stress deviator found with the shallow-shelf
approximation to the shear stress found for the Pouiselle flow
at the grounding line) determined from solution of the
problem in the transition zone (Equations (61-72)) or from
glaciological data. When sliding is negligible, then 3 depends
only on the flow-law exponent and the normalized difference
between the water and ice densities.

The style of the ice flow with sliding on the bed is char-
acterized not only by the relation among the stresses, but
also by that among their derivatives, surface slope and ice-
thickness gradient, etc. Therefore asymptotic expansions on
several small parameters must be used with great care and
after correct scaling, otherwise real values of neglected
terms will be underestimated.
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