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On the Principal Eigencurve of the
p-Laplacian: Stability Phenomena

Abdelouahed El Khalil, Said El Manouni, and Mohammed Ouanan

Abstract. We show that each point of the principal eigencurve of the nonlinear problem

−∆pu − λm(x)|u|p−2u = µ|u|p−2u in Ω,

is stable (continuous) with respect to the exponent p varying in (1,∞); we also prove some conver-

gence results of the principal eigenfunctions corresponding.

1 Introduction

In this paper we study the stability (continuity) of the two parameter nonlinear prob-

lem

(Ep) −∆pu − λm(x)|u|p−2u = µ|u|p−2u in Ω,

with respect to the exponent p. The solution u is scalar valued and required to belong

to the Sobolev space W
1,p
0

(Ω), where Ω is a bounded domain in the Euclidean space

R
N and the real parameters λ and µ play the role of eigenvalues. The weight m ∈

L∞(Ω) \ {0} can change its sign. Here 1 < p < ∞ is considered as a variable

exponent.

The nonlinear degenerate operator ∆pu = ∇.(|∇u|p−2∇u), is the so-called

p-Laplacian, which is well known to mathematicians for being a prototype for mono-

tone operators, see [20, 24]. This operator has attracted growing interest, and occurs

in a large variety of application in applied fields and many mathematical models of

physical topics, according to values of the exponent p. For example, in the mathemat-

ical modelling of non-Newtonian fluids (dilatant fluids for p > 2, pseudo-plastics

for 1 < p < 2) [4], reaction-diffusion problems, nonlinear elasticity and glaciology

for p =
4

3
[22], in power-lower materials [3], in nonlinear diffusion and filtration

problems [23], in flow porous media, in petroleum extraction and torsional creep

problems [10] and the thermal radiation of a hydrogen bomb [6]. Note that the

p-Laplacian counterpart of Smagornsky’s model corresponds to p = 3 [25]. For a

discussion of some physical background, see [10]. For the linear case (p = 2), there

is an extensive literature.
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Note that when p = 2, we just get the usual Laplacian and we are back to a well-

understood familiar linear equation

∆u + λm(x)u + µu = 0,

appearing in connection with Schrödinger’s equation [9].

The above shows the importance of studying the dependence of the principal

eigenvalue of (Ep) with the exponent p. This is the main objective of the present

paper. The difficulty is that the Sobolev spaces W
1,p
0

(Ω) change with the exponent

p. We overcome this obstacle by assuming that the underlying domain Ω has the

so-called segment property, a sufficient regularity condition related to the geometry.

The problem (Ep) was considered by Hess and Kato [17] (for the linear case

p = 2) and by Binding and Huang [7], in a smooth bounded domain. It was also con-

sidered by various authors for the particular cases λ = 0 or µ = 0. We cite the works

of Anane [2], Azorero and Alonso [5], Otani and Theshima [21] and Lindqvist [18],

just to mention a few authors. Note that the stability question is not considered in

the above references.

In the particular case λ = 0 in (Ep), the stability phenomena were studied es-

sentially by Lindqvist in [19]. See also [14] for µ = 0 and where λ plays the role of

eigenvalue.

The present paper is partially motivated by recent works [7,13,15]. The simplicity

of each point of the first eigencurve of (Ep) in a general bounded domain Ω was

shown in [15]. Here the first (or principal) eigencurve of (Ep) means the graph of

the numerical function µ1 : λ → µ1(λ) from R to R, where µ1(λ), for fixed λ, denotes

the principal eigenvalue of (Ep).

We now describe some of the results of this paper. To prove our main results, i.e.,

the stability of the problem (Ep) with respect to p, which varies continuously (The-

orem 3.7 and Theorem 4.1), we were able to adapt some techniques of [19] to our

problems with some modifications. However, our situation is bit more complicated

due to the fact that the first eigenvalue of (Ep), µp(λ) = µ1(λ) (indicating the de-

pendance on p) can take negative values for some λ ∈ R, because the weight m is

indefinite and can change its sign on Ω. Lindqvist [19] proved that the stability of

(Ep), for the particular case λ = 0, may fail in an irregular domain, but it is true

for a smooth domain. Our first result establishes that this result also holds true for a

bounded domain such that W 1,p(Ω) ∩ W
1,p−ε
0

(Ω) = W
1,p
0

(Ω), for some ε > 0. So

we include this equality (Theorem 2.2) when Ω is a bounded domain having the so-

called segment property. This class of domains is fairly large. This property is needed

here to guarantee the right boundary values of the limit function. This is all the more

interesting when p < N (because for p ≥ N , any function in W
1,p
0

(Ω) is continuous

on Ω, by Sobolev embedding, and consequently the stability is required).

The other main objective of our paper is to study the convergence of the principal

eigenfunctions in connection with the inequalities

lim
s→p

−

µs(λ) ≤ µp(λ) = lim
s→p+

µs(λ),

proved in Corollary 3.5, by using a direct method based essentially on the variational
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characterization of corresponding principal eigenvalues. For λ = 0 the states’ in-

equalities are due to Lindqvist [19].

The outline of this paper is as follows. In Section 2, we establish some defini-

tions, notations and basic properties. In Section 3, we first give some general stability

results with respect to p for each point of the first eigencurve of problem (Ep) and

then we restrict ourselves to a bounded domain having the segment property. In Sec-

tion 4, we establish some convergence results of the principal eigenfunctions denoted

up(λ), p ∈ (1, +∞), corresponding to µp(λ).

2 Preliminaries, Notations and Definitions

In defining the eigenpairs of (Ep) (in a given bounded domain Ω ⊂ R
N) we shall

interpret the equation (Ep) in the weak sense. We say that (λ, µ) ∈ R × R is an

eigenpair of (Ep), if there exists a function u ∈ W
1,p
0

(Ω) \ {0} , such that the pair

((λ, µ), u) satisfies (Ep) in the weak sense, i.e., such that

(2.1)

∫

Ω

|∇u|p−2∇u∇ϕ dx =

∫

Ω

(λm(x) + µ)|u|p−2uϕ dx,

whenever ϕ ∈ W
1,p
0

(Ω). The function u is called an eigenfunction.

We define

(2.2) Up =
{

u ∈ W
1,p
0

(Ω), ‖u‖p = 1
}

.

For λ ∈ R, let µp(λ) denote the first eigenvalue of (Ep). We recall from [15] that

µp(λ) can be variationally characterized as

(2.3) µp(λ) = inf

{

‖∇u‖
p
p − λ

∫

Ω
m(x)|u|p dx

‖u‖
p
p

; u ∈ W
1,p
0

(Ω) \ {0}

}

,

that is,

µp(λ) = min
{

‖∇u‖
p
p − λ

∫

Ω

m(x)|u|p dx; u ∈ W
1,p
0

(Ω), ‖u‖p = 1
}

.

The graph of the function λ → µp(λ) from R into R is called the first eigencurve of

the p-Laplacian, which is also called the principal eigencurve of the p-Laplacian.

Throughout this paper, the first eigenfunctions are the eigenfunctions corres-

ponding to eigenpair (λ, µp(λ)). And the principal eigenfunction, denoted up(λ),

is the first eigenfunction required to be positive and belongs to Up. Hence, for any

λ ∈ R we have

(2.4) µp(λ) = ‖∇up(λ)‖
p
p − λ

∫

Ω

m(x){up(λ)}p dx.

We end this paragraph by recalling the following properties that can be found in [15]:
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(P1) µp(λ) can have negative values and µp(0) = λ1 (i.e., the first eigenvalue of the

p-Laplacian );

(P2) for any λ ∈ R, the first eigenfunctions are essentially unique for any bounded

domain, i.e., they are merely constant multiples of each other;

(P3) for any λ ∈ R, the first eigenfunctions have no zeros in the domain and they

are the only eigenfunctions not changing sign;

(P4) for any λ ∈ R, µp(λ) is the only eigenvalue of (Ep) having an eigenfunction not

changing sign;

(P5) for any λ ∈ R, µp(λ) is simple and isolated.

Now, we define a class of domains for which the boundary is sufficiently regular

to guarantee that

W 1,p(Ω)
⋂

q<p

W
1,q
0

(Ω) = W
1,p
0

(Ω).

Definition 2.1 An open subset Ω of R
N is said to have the segment property if, given

any x ∈ ∂Ω, there exists an open set Gx in R
N with x ∈ Gx, and a point yx of R

N \{0}
such that if z ∈ Ω ∩ Gx and t ∈ (0, 1), then z + t yx ∈ Ω.

This property allows us to push the support of a function u in Ω via a translation.

The following result is essential here.

Theorem 2.2 ( [13, 14]) Let Ω be a bounded domain in R
N having the segment prop-

erty. If u ∈ W 1,p(Ω) ∩W
1,q
0

(Ω) for some q ∈ (1, p), then u ∈ W
1,p
0

(Ω).

Remark 2.3 (i) If ∂Ω is of class C1, then the proof is simple, since we can use the

local carts, cf. [8]. (ii) The theorem holds if Ω is not necessarily bounded. It suffices

to approximate u arbitrarily closely in W 1,p(Ω) by functions with bounded supports.

(iii) If Ω does not have the segment property, then the result of the theorem cannot

hold. (iv) Note that a bounded domain Ω ⊂ R
N has the segment property if and only

if it is in the class C, cf. [12]. This means that locally the boundary has the continuous

equation xN = f (x1, x2, . . . , xN−1), after a notation of the coordinate axis. (v) We

also note that F(Ω1) has the segment property if Ω1 has this property and F and F−1

are Lipschitz. This result is a consequence of (iv).

Example 2.4 The set {x ∈ R
N ; 0 < |x| < 1} is a domain not having the segment

property.

In what follows, we will need the next lemma which can be found in [15].

Lemma 2.5 For any λ ∈ R and for any bounded domain Ω,

(2.5) ‖u‖∞ ≤ 4N
(

|µp(λ)| + |λ|‖m‖∞
)

N
p ‖u‖1

for each p ∈ (1,∞) and for each eigenfunction u associated to eigenpair (λ, µp(λ)).
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Remark 2.6

(i) Remark that if we take u in Up, then Hölder’s inequality yields

(2.6) ‖u‖∞ ≤ 4N
(

|µp(λ)| + |λ|‖m‖∞
)

N
p |Ω|

p−1

p ,

where |Ω| denotes the Lebesgue measure of Ω.

(ii) From (2.6) it is clear that each eigenfunction of (Ep) belongs to L∞(Ω). By an

advanced result in regularity theory, see [11], it follows that each eigenfunction is

of class C1,α
loc , for some α ∈ (0, 1). Note that α depends on λ and on the exponent

p.

3 Stability Results

First, from (2.4) we deduce

(3.1) ‖∇up(λ)‖
p
p = µp(λ) + λ

∫

Ω

m(x){up(λ)}p dx.

Lemma 3.1 For any λ ∈ R and for any bounded range I ⊂ (1,∞), the sets {µp(λ) ;

p ∈ I} and {‖∇up(λ)‖
p
p ; p ∈ I} are uniformly bounded, that is,

max
p∈I

{

max
(

|µp(λ)|, ‖∇up(λ)‖
p
p

)}

< ∞.

Proof Let up(0) be the principal eigenfunction associated to µp(0) = λ1(p) (the

first eigenvalue of p-Laplacian). Thus up(0) ∈ Up, u(0) > 0 and

λ1(p) = k‖∇up(0)‖
p
p.

Hence up(0) is admissible in the definition of µp(λ). It follows that

(3.2) µp(λ) ≤ λ1(p) − λ

∫

Ω

m(x){up(0)}p dx ≤ λ1(p) + |λ| ‖m‖∞.

Remark that up(λ) is admissible in the definition of λ1(p). Therefore

λ1(p) ≤ ‖∇up(λ)‖
p
p.

Hence

(3.3) −µp(λ) ≤ λ1(p) + |λ| ‖m‖∞.

This and (3.2) yield

(3.4) |µp(λ)| ≤ λ1(p) + |λ| ‖m‖∞.

On the other hand, from (2.4) we deduce that

(3.5) ‖∇up(λ)‖
p
p ≤ λ1(p) + |λ| ‖m‖∞.

Using [19, (2.5)], we can show that maxp∈I λ1(p) is bounded by a finite constant.

This fact, (3.4) and (3.5) achieve the proof.
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Remark 3.2 In a smooth domain one can use the continuity of the function p →
λ1(p) to conclude that maxp∈I λ1(p) is finite, see [19]. Then from (3.4) and (3.5) we

deduce the result.

Proposition 3.3 For any λ ∈ R and for any bounded domain Ω, we have

(3.6) µp(λ) ≤ µs(λ) +

[

( s

p

) p

(λ1(s))
s
p
−1 − 1

]

‖∇us(λ)‖s
s,

for any s, p ∈ (1,∞) such that p < s.

Proof The principal eigenfunctions (us(λ))s>p associated to (µs(λ))s>p verify

us(λ) ∈ Us, us(λ) > 0

and

(3.7) µs(λ) = ‖∇us(λ)‖s
s − λ

∫

Ω

m(x){us(λ)}s dx.

If we set ϕ = {us(λ)}
s
p , then ϕ ∈ W

1,p
0

(Ω), because p < s. Thus ϕ is admissible in

the definition of µp(λ) and ‖ϕ‖p = 1. Therefore

µp(λ) ≤ ‖∇ϕ‖
p
p − λ

∫

Ω

m(x)ϕp dx

=

( s

p

) p
∫

Ω

{us(λ)}s−p|∇us(λ)|p dx − λ

∫

Ω

m(x){us(λ)}s dx,

because ϕp
= {us(λ)}s and ∇ϕ =

s
p
{us(λ)}

s
p
−1∇us(λ). Hölder’s inequality yields

µp(λ) ≤
( s

p

) p(
∫

Ω

{us(λ)}s dx
) 1−

p
s
(

∫

Ω

|∇us(λ)|s dx
)

p
s

− λ

∫

Ω

m(x){us(λ)}s dx.

Hence

µp(λ) ≤
( s

p

) p(
∫

Ω

|∇us(λ)|s dx
)

p
s

− λ

∫

Ω

m(x){us(λ)}s dx,

because us(λ) ∈ Us. Since for p
s

< 1,

(

∫

Ω

|∇us(λ)|s dx
)

p
s

≤
(

∫

Ω

|∇us(λ)|s dx
)

p
s
−1(

∫

Ω

|∇us(λ)|s dx
)

and
(

∫

Ω

|∇us(λ)|s dx
)

p
s
−1

≤ (λ1(s))
p
s
−1,

we obtain

(3.8) µp(λ) ≤
( s

p

) p

(λ1(s))
p
s
−1

(

∫

Ω

|∇us(λ)|s dx
)

− λ

∫

Ω

m(x){us(λ)}s dx.

The desired inequality follows from (3.8) and (3.7).
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Remark 3.4 If λ = 0, then µp(0) = λ1(p) and µs(0) = λ1(s) = ‖∇us(0)‖s
s.

Thus, we find the same result stated by Lindqvist in [19]. Indeed, the inequality (3.6)

becomes

p(λ1(p))1/p ≤ s(λ1(s))1/s.

Corollary 3.5 For any λ ∈ R, we have

(3.9) lim sup
s→p

−

µs(λ) ≤ µp(λ) ≤ lim inf
s→p+

µs(λ).

Proof Let us s > p, letting s → p+, we find

µp(λ) ≤ lim inf
s→p+

µs(λ),

because lims→p+
λ1(s) = λ1(p) > 0, cf. [19].

For the case s → p−, (3.6) can be written for s < p as

µs(λ) ≤ µp(λ) +

[

( p

s

) s

(λ1(p))
p
s
−1 − 1

]

‖∇up(λ)‖
p
p.

This yields

lim sup
s→p

−

µs(λ) ≤ µp(λ).

Altogether, this achieves the proof.

Remark 3.6 (i) Observe that if lims→p µs(λ) exists, then this limit is necessarily

equal to µp(λ). Thus in this case we say that we have the stability (continuity) of

the point (λ, µp(λ)) of the principal eigencurve with respect to p. (ii) The first in-

equality in (3.9) can be strict in an irregular domain and 1 < p ≤ N .

Theorem 3.7 For any λ ∈ R and for any bounded domain having the segment prop-

erty, the function p → µp(λ) is continuous from (1,∞) into R.

Proof Fix λ in R. Let {s j}
j=∞

j=1
be a sequence in (1,∞) such that lim j→∞ s j = p.

We claim that lim j→∞ µs j
(λ) = µp(λ). Indeed, let ϕ ∈ C∞

0 (Ω) \ {0}. Therefore

µs j
(λ) ≤

‖∇ϕ‖
s j
s j − λ

∫

Ω
m(x)|ϕ|s j dx

‖ϕ‖
s j
s j

.

Passing to the minimum over ϕ, we find

(3.10) lim sup
j→∞

µs j
(λ) ≤ µp(λ).

To achieve the claim, it suffices to show that

µp(λ) ≤ lim inf
j→∞

µs j
(λ).
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Indeed, let {sk}k≥1 be a subsequence of {s j} j≥1 such that

lim
k→∞

µsk
(λ) = lim inf

j→∞
µs j

(λ).

From the minimizing property of µs j
(λ), there exists vk ∈ W

1,sk

0
(Ω) such that vk ∈

Usk
,
∫

Ω
|∇vk|

sk dx > 0 and vk is an eigenfunction associated to eigenpair (λ, µsk
(λ)).

Set

wk =
vk

‖∇vk‖sk

.

Then wk ∈ W
1,sk

0
(Ω) and

∫

Ω

|∇wk|
sk dx = 1,(3.11)

∫

Ω

|wk|
sk dx > 0,(3.12)

µsk
(λ)

∫

Ω

|wk|
sk dx = 1 − λ

∫

Ω

m(x)|wk|
sk dx.(3.13)

On the other hand, we have sk → p, as k → ∞. Thus for every ε > 0 there exists

kε ∈ N
∗ such that

p − ε < sk < p + ε, when k ≥ kε.

We have p > 1, let ε1 > 0 such that p − ε1 > 1. Hence there exists k0 ∈ N
∗ such that

1 < p − ε1 < sk < p + ε1, when k ≥ k0.

Now let ε2 > 0 small enough so that 0 < ε2 <
√

N2 + p2 − N . Fix ε0 > 0 such that

0 < ε0 ≤ min(ε1, ε2). Then each ε ∈ (0, ε0) satisfies

(3.14) 1 < p − ε < sk < p + ε < (p − ε)∗, when k ≥ k0,

where for any q ∈ (1,∞), q∗ =
Nq

N−q
if q < N and q∗ = ∞ if q > N . Note that we

are interested in k large enough since we have j → +∞
From (3.11) and Hölder’s inequality, we obtain

(3.15) ‖∇wk‖p−ε ≤ |Ω|
sk−p+ε

sk , when 0 < ε < ε0.

Hence {wk}k≥1 is a bounded sequence in W
1,p−ε
0

(Ω), whenever 0 < ε < ε0. Thus

there is a subsequence noted also {wk}k≥1 and a function u ∈ W
1,p−ε
0

(Ω) such that

wk ⇀ u (weakly) in W
1,p−ε
0

(Ω), as k → ∞. By compactness, we have wk → u

in Lp+ε(Ω) in view of (3.14). Moreover, we can assume that wk → u a.e. on Ω as

k → ∞ (for a subsequence if necessary). In particular u ∈ Lp(Ω) and is independent

of ε. Moreover, by the Dominated Convergence Theorem and using Remark 2.6 and

Lemma 2.5, we obtain
∫

Ω

|wk|
sk dx →

∫

Ω

|u|p dx and

∫

Ω

m(x)|wk|
sk dx →

∫

Ω

m(x)|u|p dx
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as k → ∞. Letting k → ∞ in (3.13), we deduce that

(3.16)
(

lim
k→∞

µsk
(λ)

)

∫

Ω

|u|p dx = 1 − λ

∫

Ω

m(x)|u|p dx.

On the other hand, the weak lower semicontinuity of the norm yields

(3.17) ‖∇u‖p−ε ≤ |Ω|
ε
p ,

when 0 < ε < ε0. Fatou’s lemma implies that

(3.18)

∫

Ω

‖∇u‖p dx ≤ 1.

It follows that u ∈ W 1,p(Ω). (3.16) yields that
∫

Ω
|u|p dx > 0. From this, (3.16) and

(3.18), we find

(3.19)
(

lim
k→∞

µsk
(λ)

)

∫

Ω

|u|p dx ≥

∫

Ω

‖∇u‖p dx − λ

∫

Ω

m(x)|u|p dx.

We have u ∈ W 1,p(Ω) ∩ W
1,p−ε
0

(Ω), then from Theorem 2.2, u ∈ W
1,p
0

(Ω). Conse-

quently, u is an admissible function in the definition of µp(λ). Hence

(3.20) µp(λ)

∫

Ω

|u|p dx ≤

∫

Ω

‖∇u‖p dx − λ

∫

Ω

m(x)|u|p dx.

Finally, (3.19) and (3.20) imply that

lim
k→∞

µsk
(λ) ≥ µp(λ).

That is,

(3.21) lim inf
j→∞

µs j
(λ) ≥ µp(λ).

(3.10) and (3.21) show that

lim
j→∞

µs j
(λ) = µp(λ).

This concludes the proof of the claim. The theorem follows.

Remark 3.8 For the proof of the continuity on the right, the regularity of the do-

main is not necessary. It suffices to use (3.10) and Corollary 3.5. In the case of an

irregular bounded domain and p < N , we can have lims→p
−

µs(λ) < µp(λ).
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4 Convergence Results

Throughout this section, we assume that Ω satisfies the segment property.

Theorem 4.1 For any λ ∈ R, we have the following:

lim
s→p+

∫

Ω

|∇us(λ) −∇up(λ)|p dx = 0,(4.1)

lim
s→p

−

∫

Ω

|∇us(λ) −∇up(λ)|s dx = 0,(4.2)

where us(λ) denotes the principal eigenfunction associated to (λ, µs(λ)).

Let us mention that for λ = 0 this result is due to Lindqvist, see [19].

Proof For s ∈ (p, p + 1), Hölder’s inequality yields

(4.3)

∫

Ω

|∇us(λ)|p dx ≤ |Ω|1−
p
s

(

∫

Ω

|∇us(λ)|s dx
) p/s

.

From Lemma 3.1, we deduce that the set {us ; s ∈ (p, p + 1)} is bounded in W
1,p
0

(Ω).

Hence there exist a sequence {s j} j converging to p+ and a function u ∈ W
1,p
0

(Ω)

such that us j
(λ) ⇀ u (weakly) in W

1,p
0

(Ω) as j → ∞. Using the Rellich–Kondrachov

Compactness Theorem, cf. [1, 16], we obtain that us j
(λ) → u in Lp(Ω), as j → ∞.

Passing to a subsequence if necessary, we can assume that us j
(λ) → u a.e. on Ω. Thus

u ≥ 0 a.e. on Ω. We will prove that u ≡ up(λ). From (4.3) we obtain that

(4.4)
(

∫

Ω

|∇us(λ)|p dx
)

s
p

≤ |Ω|
s
p
−1

(

µs(λ) + λ

∫

Ω

m(x){us(λ)}s dx
)

.

The weak lower semicontinuity of the norm, the Dominated Convergence Theorem

and the fact that lims→p+
µs(λ) = µp(λ) imply that

(4.5)

∫

Ω

|∇u|p dx − λ

∫

Ω

m(x)up dx ≤ µp(λ).

On the other hand, u ∈ Up. Therefore, u is admissible in the definition of µp(λ).

Thus we conclude from (4.5) and the variational characterization of µp(λ) thatthe

µp(λ) =

∫

Ω

|∇u|p dx − λ

∫

Ω

m(x)up dx.

Finally, by the uniqueness of the principal eigenfunction associated to the eigenpair

(λ, µp(λ)), we assert that u ≡ up(λ). Thus the limit function u does not depend on

the particular (sub)sequence s1, s2, . . . . Therefore us(λ) → up(λ) at least in Lp(Ω), as

s → p+. The strong convergence (4.1) can be obtained from Clarkson’s inequalities

in W
1,p
0

(Ω), cf. [1].
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For the convergence (4.2), we process as follows. Let ε0 > 0 be small enough so

that for any ε ∈ (0, ε0) and each s close enough to p, we have

(4.6) 1 < p − ε < s < p + ε < (p − ε)∗.

Such an ε0 exists because we suppose that as s → p− Hölder’s inequality yields

(4.7)

∫

Ω

|∇us(λ)|p−ε dx ≤ |Ω|
1−p+ε

s

(

∫

Ω

|∇us(λ)|s dx
)

p−ε
s

,

whenever 0 < ε < ε0. We use the same argument in the proof of the stability to the

left (s → p−). It is not difficult to have us(λ) converge to u(λ) weakly in W
1,p−ε
0

(Ω),

strongly in Lp(Ω) and almost everywhere in Ω, as s → p−, when ε > 0 satisfying

(4.6), for some u(λ) ∈ W 1,p(Ω) ∩ W
1,p−ε
0

(Ω). By Theorem 2.2, u(λ) ∈ W
1,p
0

(Ω)

and by the uniqueness of the principal eigenfunction associated to the eigenpair

(λ, µ
p
(λ)), we deduce that u ≡ up(λ).

To achieve the proof, we use Clarkson’s inequalities related to uniform convexity

of W 1,s
0

(Ω). Consider the case p > 2 first. Since s → p−, we take s near to p so

that 2 ≤ s < p and we use Clarkson’s inequality associated to W 1,s
0

(Ω). The case

1 < p ≤ 2 is similar, the only change being to choose the other Clarkson inequality

associated to W
1,s
0

(Ω), since in this case 1 < s ≤ 2. The theorem follows.

Remark 4.2 (i) The convergence (4.1) is also true for any bounded domain. (ii) In

any arbitrary bounded domain, we can show that the convergence (4.2) implies sta-

bility to the left, i.e., for any λ ∈ R lims→p
−

µs(λ) = µp(λ). The converse is an open

question when p < N .

Using the regularity C1+α
loc

(Ω) of the principal eigenfunctions us(λ) and the L∞-esti-

mation established in Remark 2.6, we can state the following important result gener-

alizing [19].

Theorem 4.3 For any λ ∈ R and p ∈ (1,∞) and for any bounded domain Ω, each

sequence converging to p, contains a subsequence s1, s2, . . . , s j such that us j
(λ) → u(λ)

and ∇us j
(λ) → ∇u(λ), locally uniformly in Ω, where u(λ) is some function in C1(Ω).

Moreover, u(λ) is a weak solution to the equation

(4.8) ∆pu + λm(x)|u|p−2u + µ(λ)|u|p−2u = 0,

where µ(λ) = lim j→+∞ µs j
(λ).

Remarks

(1) (i) The limit lims→p
−

µs(λ) can fail to exist, because the limit function u(λ)

can depend on the particular choice of s1, s2, . . . , s j .

(ii) The limit function u(λ) is positive. Indeed, since each us j
(λ) > 0, we

have u(λ) ≥ 0. Moreover u(λ) ∈ W 1,p(Ω) ∩ W
1,p−ǫ
0

(Ω), for ǫ > 0 small

enough. Applying the Maximum Principle to (4.8), (cf. [26]), we conclude

that u(λ) > 0 in Ω.
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(iii) We know that only the first eigenfunctions are not changing signs. Thus

from (ii), if µ(λ) is an eigenvalue associated to λ then µ(λ) = µp(λ), and

by normalization, we have u(λ) ≡ up(λ).

(2) An important point: even though for any ε > 0 chosen sufficiently small

the limit function u(λ) is in W 1,p(Ω) ∩ W
1,p−ε
0

(Ω), it is not always the right

eigenfunction up(λ), i.e., u(λ) is not necessarily in W
1,p
0

(Ω). Thus u(λ) is not

admissible in the definition of µp(λ).

(3) If Ω has the segment property as regularity, then u(λ) ≡ up(λ), µ(λ) = µp(λ)

and lims→p µs(λ) = µp(λ).

Remark 4.4 (Generalization) Many results are readily extended to equations of the

more general form

(4.9) −∆pu + h(x)|u|p−2u − λm(x)|u|p−2u = µg(x)|u|p−2u

u ∈ W
1,p
0

(Ω), where Ω is a bounded domain of R
N , N ≥ 1, h, m ∈ L∞(Ω), with

m 6≡ 0 and g ∈ L∞(Ω) with g ≥ ε0 > 0 a.e. on Ω, for some ε0.
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Sciences Dhar-Mahraz, Fès, 1999.
[14] A. El Khalil, P. Lindqvist, and A. Touzani, On the stability of the first eigenvalue of

Apu + λg(x) | u |p−2 u = 0 with varying p. Rend. Mat. Appl. 24(2004), no. 2, 321–336.
[15] , On the first eigenvalue of the p-Laplacian. In: Partial Differential Equations, Lecture Notes

in Pure and Applied Mathematics 229, Dekker, New York, 2002, pp. 195–205.
[16] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren

der Mathematischen Wissenschaften 224, Springer-Verlag, Berlin, 1983.
[17] P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight

function. Comm. Partial Differential Equations 5(1980), no. 10, 999–1030.

https://doi.org/10.4153/CMB-2006-036-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-036-5


370 A. El Khalil, S. El Manouni, and M. Ouanan

[18] P. Lindqvist, On the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0. Proc. Amer. Math. Soc.
109(1990), no. 1, 157–164.

[19] , On nonlinear Rayleigh quotients. Potential Anal. 2(1993), no. 3, 199–218.
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