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UNIMODAL EXPANDING MAPS
OF THE INTERVAL

BAU-SEN DU

Let / — [0,1] and let / be an unimodal expanding map in C°(I, I). If / has an expanding
constant A ^ (An)1'2 for some integers m 5 0 and n S 1, where An is the unique
positive zero of the polynomial se2n+1 — 2x2n~i — 1, then we show that / has a periodic
point of period 2m(2n + l ) . The converse of the above result is trivially false. The
condition A S (An)1'2 in the above result is the best possible in the sense that we cannot
have the same conclusion if the number An is replaced by any smaller positive number
and the generalisation of the above result to arbitrary piecewise monotonic expanding
maps in C°(/, /) is not possible.

1. INTRODUCTION

Let I denote the unit interval [0,1] of the real line and let / £ C°(I,I). For any
positive integer n, let / " denote the nth iterate of / . A point XQ G / is called a
periodic point of / if fm(xo) = »o for some positive integer m and the smallest such
positive integer m is called the period of x0 (under / ) .

The continuous map / is said to be piecewise monotonic if / can be divided
into finite number of non-degenerate subintervals Jj, I2, . •., Ik on each of which / is
either strictly increasing or strictly decreasing. If / is piecewise monotonic and there
is a constant A > 1 such that \f(x) — f(y)\ ^ A |x — y\ whenever both x and y belong
to some interval on which / is monotonic, then we call / an expanding map and, in
this case, call A an expanding constant for / .

The main result of this note is the following

THEOREM. Assume that f e C°(I,I) is an unimodal expanding map. It f Jias
an expanding constant A > (An) ' for some integers m ^ 0 and n ^ 1, where An is
the unique positive zero of the polynomial x2n+1 — 2x2n~1 — 1, then / has a periodic
point of period 2m(2n + 1).

The above result improves the main result in [4] and answers the question posed
in [6, p. 437].
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Remark 1. It is easy to see that the converse of the above result is false. In the
following, we present one such example. For 1/2 < a ^ 1, let ^Q be the map in
C°(I, I) defined by letting ga(x) = 2x for 0 <i x < 1/2 and ga(x) = -2ax + a +1 for
1/2 5: a: 5j 1. Then it is clear that ga is an unimodal expanding map with 2a as an
expanding constant which is close to 1 when a is close to 1/2. However, it is shown
in [7] that, for 1/2 < a ^ 1, ga has a periodic point of period 6.

Remark 2. The above result is the best possible in the sense that, if m ^ 0 and
I / 2 m

n ^ 1 are integers and A is a real number with 1 < A < (An) ' , where An is the
unique positive zero of the polynomial x2n+1 — 2x2n~1 — 1, then there is an unimodal
expanding map in C°(I,I) with A as an expanding constant which has no periodic
point of period 2m(2n + 1). To give one such example, let, for 1 < A < 2, f\ be
the unimodal expanding map in C°(I,I) defined by letting f\(x) — Aa; + 2 — A for
0 < x < 1 - I/A and f\{x) = -Xx + A for 1 - I/A < x <J 1. Then it is shown in [10,
p. 227] that j \ has a periodic point of period 2m(2n + 1) where m ^ 0 and n. ^ 1
are integers if and only if A ̂  (Xn)
Remark 3. The above result does not hold for arbitrary piecewise monotonic expand-
ing maps in C°( / , / ) . To be more precise, there exist, for integers m. > 1 and n ^ 2,
piecewise monotonic expanding maps fm<n in C°(/,J) such that (i) the integer n is an
expanding constant for /m,n; (ii) the topological entropy (see [1] for definition) of /m,n
is greater than or equal to log n; and (iii) fm,n has periodic points of period 2m • 3,
but no periodic points of period 2m~1(2k + 1) for any positive integer k. See [8] for
some examples.

2. PRELIMINARY RESULTS

We now introduce some preliminary results which will be used in the proof of our
main result. The following result is a well-known result of Sharkovskii ([14], see also
[2, 3, 5, 9, 13, 15, 16]).

T H E O R E M 1 . R e a r r a n g e the set of all positive integers according a s the following

new ordering (called Sharkovskii's ordering): 3 — » 5 - » 7 - • . . . . — > 2 - 3 — > 2 - 5 — »
2 - 7 - > . . . . - » 2 * - 3 - » 2 f c . 5 - + 2 * - 7 - > . . . . - > 2 3 - * 2 2 - > 2 - > l . Assume that

f € C°(I,I) has a periodic point of period m. Then f also has a periodic point of
period n precisely when m —• n

The following result ([11, 12] of Li et aJ is useful in showing the existence of periodic
points of certain odd periods > 1.

LEMMA 2. Let f e C°(I,I) and let n |> 3 be an odd integer. If there is a point
x0 such that fn{x0) 5; x0 < /(*o) or fn(x0) > x0 > f{x0), then f has a periodic
point of period n.

https://doi.org/10.1017/S0004972700027337 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027337


[3] Unimodal expanding maps 127

A proof of the following result can be found in [17].

LEMMA 3. Assume that f £ C ° ( / , / ) is a piecewise monotonic expanding map
with A as an expanding constant. TJien, for every positive integer m, fm is a piecewise
monotonic expanding map with Am as an expanding constant.

The following result improves [4, Lemma 3].

LEMMA 4. Let h € C°(I,I) be a piecewise monotonic expanding map with A as
an expanding constant. Assume that h admits a point y with h(y) < y < hz(y) such
that h is decreasing on [h(y),y] and increasing on [y,h2(y)]. If h has no periodic point
of period 3 and g = h2 , then there is a point z with h(y) = g(z) < z < g2(z) < y
such that g is decreasing on [g(z),z] and increasing on [z,g2(z)].

PROOF: Since h is strictly decreasing on [/i(i/),y] and y £ [h(y),h?(y)] —

h([h(y),y])t there is a unique point z € (h(y),y) such that h(z) = y. So, g(z) =
h(y) < z. If g2(z) ^ y, then h(y) < z < y < g2(z) = h3(y). By Lemma 2, h has
a periodic point of period 3 which is a contradiction. So, h3(y) = g2(z) < y. Since
92(z)-g(z) = h\z)-h2{z) ^ \{h\z) - h(z)) ^ \2{z - h\z)) > z-h\z) = z-g(z),
we obtain g2(z) > z. Consequently, we have shown that h(y) = g(z) < z < g2(z) < y.

On the other hand, since g\[g(z)iZ] is the composition of ty[9(*),z] which is decreasing
and fyh([9(i),i]) which is increasing, it is decreasing. Similarly, since g\[z<g2(z)) is the
composition of fy[z,9>(x)] which is decreasing and h\Uiz 9

2(z)]) whicli is also decreasing,
it is increasing. This completes the proof. |

The following lemma is crucial in proving our main result.

LEMMA 5. Assume that f e C°(I,I) admits a point y with f(y) < y < f2(y)
such that f is decreasing on [f(y), y] and increasing on \y, f2(y)] • For every positive
integer k, let At denote the unique positive zero of the polynomial x2k+1 — 2x2k~1 — 1.
If, for some positive integer n, \f(u) — f(v)\ ^ An \u — v\ whenever both u and v lie
in [f{y), y] or in [y, f2(y)], then f has a periodic point of period 2n + 1.

PROOF: If /3(y) ^ /2(j/), then it is clear that / has a periodic point of period
3 and hence, by Theorem 1, / has a periodic point of period 2n + 1. So, we assume
that f3(y) < f2(y). Note that, since / is increasing on [y,f2(y)], f(y) £ /3(j/). For
simplicity, we let A = An in the sequel.

Assume that n = 1. Then we have f3(y) - f(y) ^ A[/2(y) - y] =
A { [ / 2 ( y ) - / ( » ) ] - [y - f ( y ) } } Z \ { \ [ y - f(y)) - [y - f ( y ) } } = X ( \ - l ) [ y - / ( » ) ] =
{[(A3-2A-l)/(A + l)] + l } [ J / - / ( 3 / ) ] ^ y-f(y). So, f\y) > y. By Lemma 2, /
has a periodic point of period 3.

Assume that n ^ 2. If f3(y) ^ y, then by Lemma 2, / has a periodic point of
period 3, and hence, by Theorem 1, / has a periodic point of period 2n + 1. So, we
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assume that f3(y) < y. Consequently, / maps [f(y), P{y)] onto itself. On the other
hand, y - f\y) = (/2(y) - f*(y)) - \f\y) - y) > (A2 - l)[/2(y) - y] > 0. Now, we
have two cases to consider:

Case 1. n — 2.
In this case, we have /5(y) - f(y) ^ X[y - f\y)\ ^ A (A2 - l)[/2(y) - y) =

A(A 2 - l ){[ / 2 (y) - f(y)} - [y - f(y)}} ^ A(A2 - l)(A - l)[y - f(y)} =
{[(A* - 2A3 - 1)/(A + 1)] + l}[y - f(y)} = y - f(y). So, /5(y) > y. By Lemma 2,
/ has a periodic point of period 5.

Case 2. n > 2.
In this case, if f2k+1(y) ^ y for some 1 ^ k ^ n — 1, then by Lemma 2, /

has a periodic point of period 2fc 4- 1, and hence, by Theorem 1, / has a periodic
point of period In + 1. So we assume that f2k+1(y) < y for all 1 ^ fc < n — 1.
Also, for all 2 < k < n , we define Afc(A) recursively, by putting ^ ( A ) = A2 — 1 and
Aj+1(X) = A2A,(A) - 1 for 2 <| j ^ ra - 1. Then, since A = An > \/2, we have
j4fc(A) > 1 for all 2 < fc ^ n .

Assume that 3/ - f2k(y) ^ vl*(A)[/2(t/) - y] for some 2 < fc < n - 1. Then

y _ /2*+2(y) = [/2(y) - /2*+2(y)] - [f\y) - y)

^ A2[y - /2fc(y)] - [f(y) - y) Z A2Afc(A)[/2(y) - y] - [/2(y) - y]

= A f c + 1 (A)[ / 2 (y) -y]>0.

Since we have already shown that y — /4(y) ^ -i42(A)[/2(y) — y], the above implies, by
induction on k, that y > / 2 n ( y ) . Consequently

f2n+1(y) - fiv) ^ My - f2n(y)\ ^ *MVlf2(y) - y]

> XAn(X){[f(y) - f(y)} - [y ^-

^ XAn(X){X[y - f(y)] - [y -

- A(A - l)An(X)[y - f(y))

= {[(A2""" - 2A2""1 - 1)/(A + 1)] + l}[y - /(„)]

= y -

Thus, f2n+1(y) ^ y. By Lemma 2, / has a periodic point of period In + 1.
This completes the proof. |

3. PROOF OF THE THEOREM

Without loss of generality, we may assume that there is a point c withO < c < 1
such that / is increasing on [0, c] and decreasing on [c, 1].
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If m = 0, the desired result follows from Lemma 5 above. So, from now on, we

assume that m > 1. Since / (c) - / 2 (c ) ^ A[/(c) - c] > / (c) - c, we have / 2 (c ) < c.

If / 3 (c ) ^ c, then since / 3 (c ) ^ c < / ( c ) , / has, by Lemma 2, a periodic point

of period 3 . By Theorem 1, / has a periodic point of period 2m(2n + l ) . So, we

assume that / 3 (c ) > c. Since / 4 ( c ) - / 2 ( c ) > A 2 ( c - / 2 ( c ) ) > c - / 2 ( c ) , if follows that

/ 2 ( c ) < c < / 4 ( c ) .

If /5(c) < c, then since /5(c) < c < /(c), / has, by Lemma 2, a periodic point of

period 5. By Theorem 1, / has a periodic point of period 2m(2n + 1). So, we assume

that /5(c) > c. Since f2 |[/2(C))C] is the composition of / |[y2(c)iC] which is increasing

and / l/(r/2(c))C]) which is decreasing, it is decreasing. Similarly, since / 2 |[Cl/4(<:)]

is the composition of / l[c,/4(c)] which is decreasing and / | wrc fttc\\\ which is also

decreasing, it is increasing. If f2 has a periodic point of period 3, then, by Theorem

1, / has a periodic point of period 2m(2n + 1). Otherwise, we can apply Lemma 4

to the map h — f2 with y = c. So, without loss of generality, we may assume that

/ has no periodic point of period 2k • 3 for any integer k with 0 < k < m and let

g = f2 , By Lemma 4, there is a point z with /2(c) = g(z) < z < g2(z) < c such

that g is decreasing on [^(z),z] and increasing on [z,j2(z)]. By Lemma 3, g is a

piecewise monotonic expanding map in C°(/,/) with A2 as an expanding constant.

Since A2 ^ An , it follows from Lemma 5 that g has a periodic point of period In + 1 .

Therefore, by Theorem 1, / has a periodic point of period 2m(2n + 1). This completes

the proof. |
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