Y. Kitaoka
Nagoya Math. J.
Vo. 74 (1979), 95-122

MODULAR FORMS OF DEGREE n AND REPRESENTATION
BY QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let A™, B™ be positive definite integral matrices and suppose that
B is represented by A over each p-adic integers ring Z,. Using the circle
method or theory of modular forms in case of n =1, B, if sufficiently
large, is represented by A provided that m > 5. The approach via the
theory of modular forms has been extended by [7] to Siegel modular forms
to obtain a partial result in the particular case when n =2, m>7. On
the other hand Kneser gave an arithmetic approach in case of n =1 in
his lectures [4] . Using this idea we proved that B is represented by A
over Z provided that m >2n + 3 and the minimum of B is sufficiently
large [2]. Our aim here is to give an analytic proof in the case when A
is an even unimodular positive definite matrix. Under the algebraic prepa-
rations of § 1 we give the Fourier expansion of Eisenstein series in the
sense of Klingen and estimate coeflicients from above. In §3 we estimate
Fourier coefficients of usual Eisenstein series from above and below and
it is applied to our problem in §4.

Notations. Let H, be the space of n X n complex symmetric matrices
Z with positive real Y. Let I', denote the group of integral 2n X 2n
matrices M satisfying

MI'M =1, 1:( . 1").

n

For Mel', we put M = (é” BM) where Ay, ---, D, are n X n matrices.
M M

For 1 <r< n — 1 we define the subgroup 4, ., of I', as the group of all
Me ', whose elements in the first n 4+ r colums and last n — r rows
vanish. The transposed matrix of a matrix M is denoted by ‘M. We don’t
use the usual convention A[B] = !BAB. ¢ stands for the trace of matrices.
e(x) means exp (2rix).
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§1.

Through this section we fix natural numbers r,n which satisfy 1 < r
<n—1. For a matrix Me M, (C) (p =n — r) we denote by M the last
n—r rows of M, ie, M= JTZ) For Me M, (C) we decompose M as M
- (%3 %) where M, € M,(C), M,e M,._(C), Mye M,_, (C), M,e M,_(C).
M, are used in this sense if we don’t refer.

LemMmA 1. For M,Nel,, 4,,M = 4, ,N is equivalent to M = gN for
some g€ GL(n—r, Z).

Proof. Let M, N be elements of I",. Suppose that M = KN where

* ‘ *
K= (* wlx % )edw. Then we have M = D,N. Since K is a uni-
0 0/0 D,

modular matrix, D, is unimodular. Conversely, suppose that M = g for
x| 0
some ge GL(n — r, Z). Put G = (_ 1, 0) € 4, ,; then we have GN = gN.
' 0/0 g ‘
Hence we may assume M= N. Then MN-' = ©=*7n-m 1, _,) holds. Hence

MN-ed,,. QED.

Lemma 2. For an element Ne ', with rank C’N < n—r, there is an

element M in 4, , such that 4, N> M <6] cg_l) for some Ue GL(n, Z).

Proof. By the assumption rank Cy <n —r there are unimodular

matrices g€ GL(n — r,Z), Ve GL(n,Z) such that the last row of gC’NV
x| 0

o 1, 0 )N(V ‘V‘1>; then the last row of Cx van-
0|0 g
ishes and the elements of the last row of Dy are relatively prime. Taking

a unimodular matrix We GL(n, Z) such that Dy W = (0 ) .>.k0 1), we put
-1

M:K(LW W); then we have Me d, ,_, since the last row of M is

©,---,0,1). We may take VW™ as U. Q.E.D.

vanishes. Put K = (

Lemma 3. If ‘AC is symmetric for A, Ce M,(Z), then there is a sym-
metric coprime pair (€™, D™) such that €A + DC = 0.

Proof. If C =0, then we may take € =0, ® = 1,. Suppose C #£ 0.
First we assume |C|# 0. Then AC™! is a symmetric rational matrix.
Hence there is a symmetric coprime pair (€™, D™) such that |€| =+ 0,
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C D = —AC™ (p. 166 in [5]). Thus we have €A + DC = 0. Next we as-
sume |C| = 0; then there are unimodular matrices g, g,€ GL (m, Z) such

(s)
that g,.Cg;'=c = (g‘ 8) (el # 0,s >1). Putting a = ‘g;'Ag;", we have

tac = 'g;'*ACg;' and this is a symmetric matrix. Decompose a¢ as a =

al”
(13 a,
0, = 0. Take a symmetric coprime pair (€&, D) such that Ca, + De,

=0, and put € = (61 0). D= (Q‘ 1 ) Then (€, ) is a symmetric

coprime pair and

¢, O0\/a, O D c
o+ e 0 0/\a; a, + 1 0

On the other hand, Ca + D¢ = (C’g"'A + DgC)gr* implies €’g;"A + Dg,C
= 0. Here it is easy to see that (Clgr?, Dg;) is a symmetric coprime pair.
This completes the proof, Q.E.D.

). ‘ac = ‘ca implies that ’a,c, is symmetric and ‘a,c, = 0 and so

LEmMMA 4. For Me ', there are a unimodular matrix Ue GL(n, Z)
and Ne d, .M (‘U U“) such that the first r colums of Cy vanishes.

Proof. Take ge GL(n — r, Z), Ue GL(n, Z) such that gC,‘U = (0, C,);
C, Cz>

0o c/
tAC = ‘CA implies 'A,C, = 'C. A, where we put A = A;, C= C,. By
Lemma 3 there is a symmetric coprime pair (€7, ) such that €A, +

*
C.e M, (Z). Put K = (hl L )M(‘UU_I); then we have C, — (
g

®,C, = 0. Take an element Ge 4,, such that C; = (gl 8), D, = ((;Dl (1)),

then C,x = (gl 8)(‘2: ij) + (((“;) ! (1)><Cl g‘i) = (8 :) This completes the

proof. Q.E.D.
AP A,

We put P, , — {A - ( )e GL(n, Z)| A, = 0}.

A, A,

LemMA 5. Let M, N be elements of I', such that (gl> = (gl,) =0,
3 3

|CLIICL| # 0 where we put Cy — (g g) C, = (g g) I KM(‘V V_l) _
0 3 Uy 3 Uy
N< U_l) for Ke 4,,, U, Ve GL(n, Z), then we have Cy = 0, ‘Ue P, ,'V.

Proof. Put W= 1U'V™; then Cgy = CxAy + DxCy = CyW. Putt-

ing Ay = (i; ﬁj), Cy = (0@1 8), Dy = (Ql %i), W= (%; %,/j), we have
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C/{W,;=0 and €,A, = C/W,. The assumption |C/|# 0 implies W, = 0.
Hence ‘U= W'VeP,,'V and €A, = 0. We have only to prove |A,| # 0.
Since 'A,C, = (g ‘A j: ‘A304) is symmetric, we have 'A,C, + ‘A,C, = 0
and A; = —'C;''C,A,. Since the rank of the first r colums of M is r, we
have r = rank (i:) = rank (_, 01411, C)A‘ < rank A, <r. Thus we have

rank A, = r, i.e.,, |A;]# 0 and so €, = 0. Q.E.D.
The following lemma is a key in this paper.

LemMMA 6. Let M be an element of I', with rank Cy = n — r. Then
there is an element Ne 4,,,M such that |Cy|# 0, (AxCiz"), = 0mod 1.

Proof. By virtue of Lemma 4 there exist Pel",, Ue GL(n,Z) such

that 4, ,.M> P(tU U"l)’ Cr = (g gz) rank C, = n —r yields |C,]+0.
4,
Put A, = (ﬁ‘ 32) ; then |A;|# 0 holds as in the proof of Lemma 5.
3 4
1, |0
Take K = (17 0 1— €d,, and put KP=N'. Then Ay = Ap, Cy =
0O o™
(fél At Cz) imply | Cy| # 0, (Ax.Cid), = 1,. Taking N/(‘U U_l) as N, we
4
have |Cy|# 0, (AyCyY), =1, and 4,,M>5 N, Q.E.D.

LEmMA 7. Let C, D,, D, be elements of M,_.(Z), M,_, (Z), M,_(Z)
respectively. Suppose that |C,|+ 0, C/!D, is symmetric and (C,, D,, D,) is
primitive. Then there is a symmetric coprime pair (C'™, D) such that C
=(0,C,), D = (D, D).

Proof. Since rank (C,, D,) = n — r, there exist matrices U, e M,_/(Z),
VeGLE2(n —r),Z) such that (C, D)= U(0,1,_,)V and |U,]+0. Put
€, =U7C, D, = U?D,; then (€, D,) is primitive and €/, = U, *C!D U
is symmetric. Thus (€, ©,) is a symmetric coprime pair. Since (C,, D,, D))
is primitive, (D,, C,, D,) = (D,, U(0, 1,_,)V) is also primitive. Hence (D,, U,)
is primitive and there is a unimodular matrix U = ( 53 2}4) e GL (n, Z).

Put C = U(g %), D = U(lf > ); then (C, D) is a symmetric coprime pair
-~ 4 - 4
and C= (0, UE) = (0,C), D= (D,, UD,) = (D;, D,). This completes the

proof. Q.E.D.

Let C, D,, D, be those as in Lemma 7 and let M be an element of
I', such that M = (0. C,, D;, D,). By Lemma 6 there is K< 4, , such that
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|Cy] # 0, (AyC7Y), =0mod1 for N= KM. By Lemma 1 gN = M holds
=] 0

for some ge GL(n — r, Z). Put P=(O 1, )N; then 13=g1\7=M=

g
©,C,D,D,), |Col+0, and (ApC;Y),=0mod1. We denote one of such

P’s by MI[C,, D, D,]. Then 4,,M[C,, D;, D,] is uniquely determined by
(C, D,, D) by Lemma 1.
Put

Cd; D4 Mn-rZ ’ D Mn—rrZ ’ C4 0,
@n,r = {(Ch DB,D«l) ) ( ) ae '( ) I I¢ }'

C.'D, = D,*C, and (C,, D,, D,) is primitive

For §,8 e¢©,, we define S~ S by S’ = gS for some ge GL(n — r, Z).

LEMMA 8. U 4, .M =4, .M[C, D, DJ(ZU U“)’ where the

MeElry
rank Cy=n—7

right hand is a disjoint union, (C,, D,, D,) (resp. 'U) runs over representatives
Of @n,r/"V (resp. Pn,r\GL(n, Z))'

Proof. Take an element M of I’, such that rank éM =n—r. Then
there exist g ¢ GL(n — r, Z), Ue GL(n, Z) such that g7'C, U"' = (0, C&™"),
|Cl# 0. Hence Me4,,MIC, Dy DIV ). For w= (" [7)er.,

4,
X

lr )M[C4a Ds, D4]<W tW_l). Then
h

Cy = (8 hé’i W4> holds. Thus M is contained in some coset 4, .M[C,, D,,

¢
D4]( Y U“) for any specified representatives (C, D,, D), U. We must

and 7e GL(n — r, Z), we put N = (

prove the disjointness of the right hand. Suppose KM[C,, D,, D4]<tU U“)

= M(C, D, D) ) for (CuDy D, (Ciu Dy DYeC,,i~, 'U,'U'e
P, \GL(n,Z), Ke 4,,. There are some G, G'e 4,,, such that the first r-
colums of the C-parts of GM[C,, D,, D,], G'M[C{, D;, Dj] vanish as in the
proof of Lemma 4. Hence Lemma 5 implies ‘Ue P, ,'U’. Thus we have
U= U and then KM[C,, D, D] = M[C{, D;, D;] implies g'(C,, D;, D,) =
(C{, D;, D)) where g’ is a unimodular matrix defined by the right lower
(n — r) X (n — r) submatrix of K. Hence (C,, D;, D)) = (C{, D, D).
Q.E.D.

We introduce another equivalence relation ~ in &,,. For (C,, D,, D,),
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(04,7 -D;, D;) € @n,r we deﬁne (Ch D31 -D4) = (C:’ D;, D;) by g(CL D?:) D;) =

C,D,+ CS,, D, + CS,) for some geGL(n —r,2), S;eM,_, (Z), S, =

tS,e M,_(Z). It is easy to see that (C/, D;, D)) = (C, D,, D,) if and only
18

it 4., MIC, Dj, D) = 4., MIC, Dy D) tor some 5 =15 = (§ &)

e M (Z).

THEOREM.

: 1[8\/U
U An,rM = U An’TM[C“ D3, D4](‘—'k>( ) N
rankMﬁif:’;z-r 0 1 U—I

where the right hand is a disjoint union, (C,, D,, D,) (resp. ‘U) runs over
representatives of &, ./~ (vesp. P, \GL(n,Z)) and S runs over {S =
tSe M (Z)|8S, = 0}. ' .

Proof. This is an immediate corollary of Lemma 8, Q.E.D.

We remark the following two propositions although they are not used
for our aim.

ProposrrioN 1. Take (C, D,,D)e®,, and M, NeI', such that M =
N=(0,C,D,D), |CyllCyl# 0 (A4,,C;i): = (A5C53), =0mod 1. Then we
have GL(r, Z)(Cy), = GL(r, Z)(Cy):.

Proof. Put A, = (ﬁ; ﬁj), C, — (Cl g) . tA,Cy = ‘CyA, implies

'A,C, = 'C,A, and A,Ci'= YA,C;Y) is an integral matrix. Put K =
00 -1, 0

0 L. 0 0 . o

(17 0 l —AcCt ol then Ke 4., and Cgy = (0 C’4)‘ We define similarly
0 0 0o 1,

K’'ed,, for N. Then 4, .KM = 4, ,K’N and Lemma 5 imply
E'N = (U Us )KM
tU—-l

where (U f{fl) ed,, U= (gf” U) € GL(n, Z). Then (Ag), = (UAry
3 4

4+ USCyg,), implies —(Cy), = —U(Cy),. Thus we have GL(r, Z)(C,), =

GL(r, Z)(Cy).. QE.D.

Let (C,, D,, D,) be an element of &, , and define matrices U = (g g)

€, ®,) and (C, D) as in the proof of Lemma 7; then C, = UG,, D, = UD,
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and D, = U, Taking, %, B, such that (g“ 23“) el,., we put

ON
1 01(0 0)
o | B i} ‘w0 o %o B, |
L0\ || o |g|l00]L o0
00" 0 Cjo D]

Then C, = UG, and |C,| # 0 imply |U,| # 0 and |U, — U,U;'U,| # 0 follows

from

(1 —IIZU;I)U:(UI— U.UU, 0)
0 1 % %/

Hence we have
U — < U, - G,U0,)! —(U, — G,UU) 0, U )
—U7UU, — GUSUY™ U+ USU(U, — GUSU) 0,0
Putting ‘U™!' = V, we have

14 V%I) B, (0 *>

AJI = (
Ve VU, 0 =
—_— Vl VZQLL + U2@4 — Ul VZgBli + 172@4
CM - ’ D M ’
O C4 D3 D 4

For this special extension M — (‘é g) eI, of (0, C, D,, D,) we have

Lemma 8. X=(B,— A,C{'D,— A,C['D, + A,C'C,C'D,)'C, is integral.

Proof. X = (—U, — VUC'D, + (VA + ULYC D)V,

= (‘ U1 + Uz(&;C{lDa)th = —1,. QED

Prorosition 2. Take N = M][C, D,, D] for (C, D,,D)e@,,, and a
half-integral symmetric matrix P such that (Cy)*P(Cy)r* is half-integral.
Then ¢(PC3'Dy) mod Z is uniquely determined by (C,, D,, D,) and P.

Proof. Take Me I, such that M = (0, C,, D,, D,) |Cy| # 0, (A,Ci?), =
Omod 1 and put C,, = C, D,, = D; then we have

C—-ID — (Cl_I(D1 - CZC4_1 3) t(CAt_lDa))
C D, C:'D,

and (C™'D),, (C™'D),, (C™'D), are only dependent of (C,, D,, D,). Take any
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extension N = M[C,, D,, D,] and define K, K’, U, S as in the proof of

Proposition 1;then C, = ~,,, implies U, = 1,_, and we have
-US, 0 U, + USACTT —-US
CN — ( 1~1 )A ( 1 1M1 1v1 1 Z)C R
0 o/t 0 1 )"
—~US, 0 U + USAC?T —-US,
D —_ ( 1M1 )B ( 1 11 1%1 1 Z)D .
" 0 sl 0 R

Hence (Cy'D,, — C7'Dy), = C'S(B, — A,C'D, — A,C{'D, + A,C'C,CtD,).
Now we suppose that M is a special extension in Lemma 8; then C,(Cy'D,,
— C5'Dy)'C, = 0mod 1. Therefore o(PCy;'D,) — o(PCy7'D,) = o(P,(C7'Dy
— C37'Dy),) = o(C*P,.C7Y(C(C# Dy —C3'D,)!C)) = Omod 1. Q.E.D.

§ 2.

Through this section we fix natural numbers r, n ,k such that 1 <r
<n—1,k>n+r+2 kE=0mod2 Denote by f a cusp form of degree
r and weight & which is also fixed.

For MeI', we put

(FIM)Z) = f(M<Z3}),)|CuZ + Dyl™*,
where M{Z> = (AyZ + B, )(CyZ + D))", (Z€ H,), and (M<Z>), is the upper
left r X r submatrix of M{Z> asin §1, and (f|M)Z) = f(M{Z>*)M{Z}"*
in the notation of Klingen [3]. It is easy to see that (f| M)(Z) = (f| NM)(Z)
for any Ne 4,,.

Put E(Z) = 3 4 (fIMXZ) (vesp. EXZ) = 2 x (fIM)Z)) where M runs
over representatives of 4,,\I", such that rank C, = n — r (resp. rank C~’M

<n-—r).
LEMMA 1. Let N be an element of I', such that rank Cy < n — r and

put 6aY ( @+, ) Then we have ‘(le)(Z) = 0 where Y

= Im Z.
Proof. By Lemma 2 in § 1 there exist M e 4, ,_,, Ue GL(n, Z) such that

An,,Na M(U 3U..1>- Put AM = (ﬁl ?4), B (g g) CM - (OCI g)’ DM

=<(1))1 32> and Z = (tg g) where A, ---,D, and Z, are (n — 1) X

(n — 1) matrices. Then we have C,Z + D, = (C‘Z‘J D, Z), MLZy =
((A‘Z‘ + B‘)iC‘Z‘ + D)7 I) Hence (f|M)(Z) does not depend on Z, Z,

ayzj ‘ 3
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and so |0/0Y|(f|M)Z) = 0. Since (f|N)Z) = (f|M)UZ'U) and |Y||9/0Y|
is invariant under the transformation Y— UY'U on {Y™|Y > 0}, we have

Y12 (1N = 1 ¥1|-5 | (1 M(UZ°D)

=0

Y-Urto

_ vl 2 o
=1Y| \W\vmxux U+iY)

’

where Z = X + iY. Q.E.D.

ProrositioN 1. EyZ) has Fourier expansion > .ra{T)e(o(TZ)) such
that ay(T) = 0 for T > 0.

1|8
Proof. Put N = M<AT> where N,Mel',, ‘S= SeM,Z). Then

rank C‘N = rank éM. Hence EJ(Z + S) = Ey(Z) for any S ="'Se M,/(2).
Thus E,(Z) has Fourier expansion )., a)(T)e(o(TZ)). From Lemma 1 follows

2| B@) = 3 0|~ 25Tl eo(T2)) = 0.
oY 7
Hence a,(T') vanishes if T is positive definite. Q.E.D.
For a natural number m we put
Am = {SeMm(Z)IS = tS} )
A = {Se M,(Q)|S = ‘S: half-integral} .

A% is the dual lattice of 4,, via¢(SS).
The following is well known ([1], [5], [8]).

LemMA 2. For a positive definite matrix Y™ and p >m + 1,

2 VY 4 2xiF|r

Fe&nnm

is absolutely convergent and

Fm(p) Z [Y+ zﬂiFl—p — 2—m(m—-1)/2 Z |Tlp—(7n+1)/2 e—a(TY) ,
Fedn TT€>A?"

where I (o) = a™ ™V T[mt T'(o — v/2).
LevmmA 3. For a positive number a,

2 |@ri)™(Z + aF)[*
FEln
= 2~ mmDEQyme N (o) lgmme S | T~ 0i2e(q 6(TZ))
750

TE A,
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where Ze H,, and p > m + 1.
Proof. This is an immediate corollary of Lemmaj2. Q.E.D.

LEmMA 4. If a, b are complex numbers such that Re a > 0, then we have
.[ exp (—ax? + 2bx)dx = 'z]a exp (b/a) ,
R

where Vr]a is real positive if a is real.
Proof. This is also well known. Q.E.D.
The following is an easy generalization.

LEmma 5. If A is a symmetric matrix of M,(C) such that Re A >0
and b is an element of C™, then we have

f exp (—xAx + 2:bx)dx = +/det (rA™") exp (‘bA™'b) ,
R™
where +/det (tA™Y) is real positive if A is real.

We need the following generalization.

LemmaA 6. If A is a symmetric matrix of M,_,(C) such that Re A >0
and W{” >0 and @ is an element of M,_, ,(C), then we have

exp (—2ra(W, XA'X) + 270(XQ))dX

«[XGMr,n—r(R)

— 1W1 I((r—n)/zzr(r—n)/z (det A-—l)r exp (_g_o(zQA—wal—l)) ,

where v/(det AN is real positive if A real.

Proof. Put ‘X = (‘x,, ---,%x,) and *x = (x,, - - -, x,) € M, (n_,,,(R). Then

A
we have ¢(XA'X) = x - x where rA’s are on the diagonal. Denot-
A
ing QW' by (y,---,y,) where W= +W,>0, we have o(XQW) =
¢y, - -+, 'y)x. Thus the integral of the left side is

wre | exp (—2n0(XA'X) + 200(XQW)dX
XeMy n—r(R)
A
— lW‘](T-n)/Z J;zt -n exp —2r'x . . X -+ 277"(ty19 Tty tyr)x dx
A
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— | W, |- mrgrtr-mry/([det A7) exp <%a(‘W'1 ‘QA*‘QW“)) . QED.

Lemma 7. If N is an element of I', such that |Cy|# 0, (Ay CNI)1 =
0mod 1, then we have

(f|N)(Z) = ICN|k | W4\-kf(W1 - W2W4_1tW2) ’

where

(r) W
- ‘¢, + D,‘C,
w (‘W W) CZ'Cy +

Proof. Put N = (é g). Since B — AC-'D = B — A{C-'D) = (B'C
— A'D)'C' = —'C-%, we have N{Z> = (AZ+ B)(CZ+ D) = AC-! —
tC(CZ+ D) = AC* — W-'. From the identity

W= T S, )

follows

W= ((VK — W, W W)t *) .

k E 3
Hence we have

(fINXZ) = f(—=(W, — W,W;*Wp)™) | W*C'|
= f(W1 - W2W4—1 th) ’ W1 - WzW[l tW2|k I Wl_k lCIk
=|CF|W,| ™ (W, — W, W' W) . Q.E.D.

Let N = (‘g g) be an element of I', such that |C|# 0, (AC™), =

(r)
Omod 1, C, =0 where we decompose Me M,(C) as M = (% %2> as in

§1 and take a natural number p such that pC-! is an integral matrix.
We fix N, p till Lemma 13. Now we calculate

> (f\N(—[—L >><Z>.
5=(c5, 53)erHn

Put W= CZ'C + D'C. For S=(g, g>e/1 we have

-1Qe(-1
s{Aesey (2
0f 1 C

*
S‘C'+ D )
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and CZ'C + (S'C*'+ D))C= W+ S. If, moreover, Sep?4,, then

(5 o

=|CF|W, + S f(W, — (W, + SYW, + S)" (W, + 8)) .

First we calculate, for ¢ > 0, te A},

Se(—o(tW: + SHWE (W, + 8) .

S2€p2 My, n—v(Z

It equals

(= oW, + p*SyWi (W, + p*S)))

S2E€EMy, n—r(Z

e(—o(®W, + p’X)W* (W, + p’X)))e(a(S,'X))dX

S2€EMy,n—r(2) JXGMr,n—r(R)

= e(—o(tW, W' 'W,)) j exp (— 2mo(ptX(E W) X))
SeEMyr,n—r(Z) J XEMy, n—r(R)

X exp Cro(X(—2ip*W; Wyt + i'S)))dX
— (oW W) | 3T | pt| R 2 A WY
2€EMyr,n—7(2)
X exp ((z/2)e(‘QGE'W)Qp~*t™") ,
where we put @ = —2ip*W;* Wyt + i'S,.
Since
o('QE'W)Qp~'t™)
= p lic(4p* W, W1 ‘W,t — 4p*W, 'S, + S,W,:S;t™Y) ,
we have

e(—a(t(W, + SHW«(W, + S)
Se€P2 My, n—r(Z)

= Qr(r=m)iz, plrir=n) Itl"‘"’”«/m
2 e((4p) (4" WS, + S WSt Y) .

S2€ My, n—r(2)

Put f(z2'") = X >0 b(t)e(a(t2)); then b(t) = O(t|**) is known [7].

tedt

LEMMA 8.

1| C'S«C?
(4 Dy (f 'N(F 1 »(Z)

— ‘Clkzr(r—n)/zpzr(r—n) | WA—k det (i—l W4)r
X 2 1HTTVb(Re(ot W) + (4p) 'o(—4p*WL'S; + S, W,'S,¢7Y)
t>0

tedr
S2E€EMy,n—r(Z)
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where the right hand is absolutely convergent.

Proof. Define a matrix Pe M.(R) by
P=Im(W, - (W, + X)W ' W, + X)) - X+ QIm (- W)X+ @,

where @ = Re W, + Im W,-Re (— W, )Im (—W;9))!, Xe M, ,_(R). Then
P is independent of X. Since (W, — (W, + X)W (W, + X))"! is the

upper left r X r matrix of
0 X\\!
W (x o))
( + X 0

we have W, — (W, + X)W, 'YW, 4+ X) e H, and its imaginary part is posi-
tive definite. Hence, putting X = — @, we see that P is positive definite.
Now we have

le(a(d( W, — (W, + S W (W, + S))))I
= exp (—2x0(tP + S, + Q) Im (— W;H4(S, + Q)))
< exp (—271'60'(t + (Sz + Q)t(S2 + Q))) ’

where ¢ > 0 is defined by
P>el,, Im(-=W;)>+Vel,.,, t>+ecl, fortedst>0.
Then it is easy to see that
2 b@ele®W, — (W, + SHW: «(W, + S)
Ssepity @

is absolutely convergent.
To prove that the right hand is absolutely convergent, it is enough
to show

< 2. . le(a(tW,) + (4pY)~'o(—4p*W,!S; + SZW4LSZt—1))|
2E€E My, n—r(Z)

= O(|t]" " exp (— 2rea(2))) for some ¢ > 0.

Im (c(tW)) + (4p*)'o(—4p*W,'S, + S, W,!S;t™")) is equal to

AWt s i)

= ”(((1) —(zp?_lt—lsz)am W)((_(sz)l‘l 1Syt g)(é g))
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and, taking a positive number ¢, such that Im W > ¢,1,, we have

le(a(tW)) + (4p*)'o(—4p*W,'S, + S, W,'Sit ™))
< exp (—2re,0(t + (4p*)~1S,!Sit™Y) .

Hence we have only to prove that, for ¢ = 2ze¢,(4p*)},

exp (—a(S, St~ )=0(¢[*")  for >0, te A*.

S2€Myr n—r(Z)

Without loss of generality we may assume that ¢! is in some Siegel
domain. Then there are positive constants ¢, ¢, such that

&0 < t7' < e,

where 0 is a diagonal matrix defined by
! = -y T —

Then t < ;07! and te AF imply that §, < e;'. Therefore we have

exp (—¢'a(S,:S,t7Y)) < > exp (—¢&’e,0(8S;'S,0))
s

2€My,n~-r(Z)

= >, exp (—-e4 > 51-83]) (o = €ley)
i

S2EMy, n—r(2)

=11 (5 e (—eas))r < 1 (14 25 exp (—ed)

K

— 1+9 exp (—e,9,) )n_r
]l] ( * 1 — exp(—edy)

=1+ ;{(i‘;ﬁ) <+ ?3 )"

- 1:[ (645;;; 2 )n—r < (ﬂ e (eer 4 2)>n‘rltl"" .

3

Now the calculation before Lemma 8 implies the identity in Lemma 8.
Q.E.D.

Lemma 9. For t >0, te AF we have
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2 W+ S *Vdet GT(W, + S))e((4p)'o((W, + 8)'S;t™'S,))

Ss€p2dn—r
— i(’n—?‘)k(zn.)(ﬂ—T)(k—f/?)z(T-n)(n—T—l)/Zp(T—ﬂ)(n—T+1)(4p4bt)(7‘—7l)(2k—n—l)/2

X Tk — 1/2)7e((4p") 'a(W,'S,t'S,))
X 2N e((4p'0) " a(TWL)

where b, is any fixed natural number such that bt is integral,
S,e M, . (Z), and T runs over

{T\T>0, Te A% ,, 4p)'(S;t™'S, + b;'T) e AF.,} .
Proof. The left side equals

ik(n—7)e((4p4)—la.(W4tS2t~l 2))S Z l_i(m +p2 4)I—(k—7/2)e((4p2)—10.(s4tszt—1 2))

4€4An—r

= PO e(p) to(WiSETS)) | T eldp) oSS 7S))

4€4n—r mod 4p2b

X 25 |—UWi+ p’Si + 4p'b.S)|"

Ss€dn—r

= Fe(p) o(WSEIS)) 3 el(4p) (SISt S)

i€4p—r mod 4p2bs

% (27[)(7-n)(k—r/2)2(r—n>(n—7‘-1)/2(2”)2(”~r>(k—r/Z)[""—T(k — r/2)!
X (4p*b,)~-rtk=1 > !Tlk_(n+1)/ze((4p4b¢)_10'(T(W4 + p*SY) .
T>0

Ted _,
From
e((4p?)'a(S¢S,t7'S,) + (4p*b,) 'a(p*TSY))
Si€dn—r mod 4p20;
_ {(4p2bc)(n_”("-r+l)/2 if (4p2)-1(tszt_182 + b;lT) e A;f—r R
0 otherwise
follows the identity in Lemma 9. Q.E.D.

Now we have

1] C'8C
s=(,g§§§)epun (fi N(H' 1 ))(Z)

— Z: lCIk 2r(r-n)/2p27(r—n) ;:0 lti(r—n)/Zb(t)

Ss€p2dp—r O

SZGMi,en:r(Z)
X e(a(th) — p 'o(W! D) W, + S«l_k*/det (i-l(W4 + S))”
X e((4p’)'a(W, 4+ S)'Sit™'S,))

= l Clk 2(T—n)(n—1)/21)(r-n)(n+ r+1)i(n—r)k(2n.)(n—r)(lc—r/Z)

R R I
t,Se,T
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X | T "b(t)e(a(tW,) — p~*o(W,'S) + (4p)'a(W,'S;t7'Sy)
+ (4p'6)'o(TW)) ,

where
t>0’ tGA;k, SzeMr,n-r(Z)y T>0a
Tedl,, (@4p)'(Sit'S, + b;'T)e 4}, .
Put
P = ( t _(zpz)-lsz ) — (Pl Pz) .
—@2p)7'S, (4p)'(b7'T + *Sit7'S)) ‘P, PJ’
then

P=(_(2p2)}1 Sit™ (1))(8 (4p‘1(3)t)“T><(1) —(2p2)1_1t_182>

implies that P is positive definite and |P| = (4p*b,)" " |t||T|. Our assump-
tions on ¢, S,, T mean that P, e A}, 2p*P, e M, ,_(Z), p*P, € A*_,, and b 4p'P,
— b!Sit7'S, e A4 .. {t,S,, T} and P correspond bijectively and

o(WP) = o(Wit) — p~’a(W,'S,) + (4p*)'o(W(b;'T + ‘Sit™'S)) .

Thus we have

LEmMA 10.

1CcsC
(8, Fyore (f 'N(Ff 1 )>(Z)

— l Clkz(r—'It)(n—l)/Zp(T—n)(n+7'+l)i(n—T)k(zn.)(n—r)(k—T/?)

>< Fn-'r(k — r/2)-—1 Ig‘, b(Pl) ‘Pl I(r+l)/2—-k lPlk—(n+1)/2e(g(PW)) R

where
P edf, 2p°P,eM,, (Z), p’Ped;,.

Lemma 11. Put G = {(‘S,'Ci' — S/(C'C,CY, S CY)| S, e p*M, ,,_(Z),
S,epid, )}, G ={C.S, C.S)|S.eM,, ,(Z),S. e, ). Then we have
[G/: G] —_ p(n—r)(n+r+1)abs(‘cllr—n |C4l-n—1).

-1 - -

Proof. By definition C = (C‘ 82) and pC! = p(C‘ '_Cbl_?za 1) are
4 4

integral. It implies G’ © G. Put G, = M,_, . (Z) X {C,S,|S,e 4,_,}; then

[Go: G'] = abs|C,|". As representatives of G,/G we can take representatives

of {C,S,|8S,e 4,_,}/{8;!C:*|S,e p’4,_,} and then representatives of
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M,_, (Z)[{'S,'C{*|S, e p’M, ,_(Z)} .
Hence we have

[Go: Gl = [{CiS,| S, € 4,_,}: {8LCt| S, e p 4, }]
X M, .. (2):{'S;'C{*| S, e p’M,_,,(Z)}]
— [An_1:p204—1/1n_rtc4—l]abs Ipz tcl—lln—r
— abs IpC4—1|n-r+l |p2 tCl-lln-r .
Thus we have [G’: G] = p" " "*Vabs(|C,|""" |C,|=" ). Q.E.D.

It is obvious that

G = {Sf@fl|8= (0 S") ep%.},

S, S,
;. ~ . 0 S2
o - (@i (3, Sl
and
— —
1| C8:C? ~ o~ ~ 118 ~ ~ ~
N—=——"=-)=(@G D+ 8&CYy, N—2)=(C
(0, ; ) (G, D+ §C, <0|1) (¢, D +C5).
We take

0 S,
si=(,0 J)ed,
tSi,2 Si,4

such that 6\/&’ is representatives of G’/G. For MeI',, (f| M) Z) is uniquely
determined by M. Hence we may write (f|M)(Z) for (f] M)(Z). Then
we have

1|8 .
2 Yetn <f N (FIT»(Z) = 2, (fI(C, D + g)2)

_( 0 S
S_(‘Sz Sy

~ ——
= Z o;g (fI(C, (D + C8)) + g)(2)

_ iS{ 1cisc
% (Z)<f 'N< 0> 1 >< 01 1 ))(Z) '

u=(3/)
01

For

we have C, =Cy=C, D, =CS/+ D, (A,C;), =0mod1 and C,Z‘C,
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+ D,!Cy = W+ CS/*C. Applying Lemma 10, we have

S=(;§,Z§j)e4,.< | (O 1 ))
= lClkp(r—n)(n+r+1)PZ>;] b(P;) l-Pl l(r+1)/2-k lPlk-(,Hl)/z
X e(a(P(W + CS,;’i‘C)) ’

where o = {»" QUMD Qyn-ntk=r (B — r/2)7!, and P runs over

{P > 0|P1 € A;”(, 2p2P2€ Mr,n—r(Z)v p2P4€ Arf—r} .

We fix P such that P, e 4}, 2p°P,e M,,,_(Z), p°P,e A}, and we put
1(8) = e(20(g,'C.P,) + 20(g,'C.P,) + o(g,'C,P)) for g = (g{""", g """ ") e G

It is easy to see that y(g) = 1 for g€ G and e(¢(PCS‘C)) = y((C.'S,, C,S,))

= X(EZ'TSJ) for S = (Lg, gz) € A,. Therefore the definition of S; implies
2 4

2.ee(PCSIC) = 20 (&)

x is trivial if and only if 2‘C,P,C,e M,,,_(Z) and ‘C,P,C, + ‘C/}P,C, +
tCP,C,eA* . Put T =‘CPC;then we have

LEmMmA 12. P, e 4%, 2p*P,e M, ,_(Z), p’P,e A ,, 2°C\P,C,e M,,,_(Z)
and 'C,P,C, + ‘C}P,C, + ‘C,P,C,e A*_, if and only if Te AF and ‘C7*T,C;*
= (‘!C'TC™), € AF.

Proof. T ='‘'CPC implies T, =‘C,PC, T,='‘'C/PC,-+ ‘CPC, T, =
‘C,P,C, + ‘C,'P,C, + ‘C,P,C, + ‘C,P,C,, The assumptions on P imply
‘CrTCit = Pie AF and so T,e AF. 2T, = 2'C,P,C, + 2‘C,P,C,e M,,,_(Z)
holds since P, € A4¥, 2'C\P,C,e M, ,_(Z). T, = ‘C,P,C, + (‘C!P,C, + ‘C,P,C,
+ tC,P,C)e A% .. Thus “only if” part has been proved. Conversely, as-
sume Te AF, ‘C7'T\Ci*e A¥. Then P, = ‘CT\C;te AF, ‘C,P,C, + ‘CP,C,
+‘C,PC, =T, — ‘CPC,e A} ,, 2°C,P,C, = 2T, — 2'C\P,C,e M,,,_(Z), 2p*P,
= 2(p'CiY)(‘C,P,CYpCiY) e M, ,_(Z) follow easily. From P, — ‘C{'T,C* +
£C4_1 tCz-Plcszl = “Lchch—l - tC{l tCzPZ = —LC4_1(tI,2 - tCzplcx)Cl_ICzC[l -

(CrC,C)(T, — ‘C,P,C)Cr" and pC-' = p( 01‘1 —Cfcl_cfcfl) e M,(Z) follows

pP,e ¥, Q.E.D.

Summarizing we have

LeMmmA 13.
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Nii Z)
S=(,g§f)e/ln<fl (0‘1>>(

=a IQI"ICA"‘T;] B((CC-TC-Y),) | T, | +vr-k
Tes

X | T Ditg(a(TC'D))e(o(T2)) ,
where we suppose b((CCTC1)) =0 if (C'TC"), & A}.

This lemma, Proposition 1 and Theorem in §1 imply the former part
of the following

THEOREM. Let r,n,k, be natural numbers such that 1 <r<n—1,
E>n+r+ 2 k=0mod2, and let f(z2”) = 3150 b(t)e(o(t2)) be a cusp form
of degree r and weight k. If we put

BL(ZN) = T (M@ = 3 (T, Pele(TL)),

e TE4
then we have

AT )=« 2, [CIFIGI T o(((CTU T UC™))
(C4,D3,D4) €Cn /=
tUE€ Py, \GL(n,Z)

X ((U—lTLU—l)ll(T-Fl)/Z—k l le—(n+l)/2e(o.(U—thU—IC—ID))

for T > 0, where M, stands for the upper left r X r matrix of M, (C, D)
stands for any fixed symmetric coprime pair such that

&, D)=, C, D, D), C=(CO* g) ICl# 0

and (AC™'), = 0 mod 1 for some (‘é g) el,, and
o = i(n~T)kz(f—")(n—])/2(211.)(71—7)(76-1‘/2)
>< (n.(n'T)(ﬂ-'T—l)/‘i n“ﬁ_l F(k . (r + U)/Z))_l .
»=0

Moreover we have a(T, f) = O(T,|"*-""P2|TF-+v2) §f T > 0 runs over any
fixed Siegel domain.
To prove the latter part we prepare the following

Lemma 14. The number of (D,, D,) such that (C,, D, D,) is repre-
sentatives of €, ./~ for fixed C,(C,| # 0) is at most abs|C,| 8" ---0,_,
where 8,|---|6,_, are elementary divisors of C,.
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Proof. By the definition of the relation ~ the number of inequi-
valent (C,, D,, D,) for fixed C, is at most [M,_, (Z):CM,_, (Z)] X
{Die M,_(2)|C{'Dy=4C;*D))}: CA,_.). M., (Z2): CM,_, (Z)] =abs|C,|
is obvious. The latter part equals [{S = ‘Se M,_(Q)|C.Se M,_(2Z)} : 4,_,].
Put C, = g.0g, where g, GL(n — r, Z),

0,
0= ’ . ’ 51‘ "lan—r
5n—r
Then {S='SeM, (@)|CSeM, (Z)} ={S='SeM,_(Q)|dSeM,_.(Z).
Hence the latter part equals 62" --- 5,_,. Q.E.D.
We can take
¢
Cij
o, CI"..’cn_7>0’0£c“<c’l
0
Coer y

as representatives of GL(n — r, Z)\{C,e M,_(Z)||C,| #+ 0;. I

then 677 -+ 0,_, = 08,0,8,) -+ (6, -+ 0,_,) < ci(ee) -+ (¢, -+ €,,) Where
d,]-++]0,-, are elementary divisors of C,, Hence we have
ao(T,f) = O( > 1C7* X I(U—lTlU—-l)ll(T+1—k)/Zlle_(n+1)/2>

(C4,D3,D4) ECp,r/=
tU€EPn, \GL(n,2)

=3 (Me) e e o e

ci=1 \i=1

X O( I(U—thU-l)ll(7+l—k)/2ITIk-—(n+l)/2) R
)

tUe Py NGL(,Z

where the sum of ¢; is equal to {(k — n)""", and the last sum is a so-
called Selberg’s zeta function and the order of the magnitude is
| T, |+ -2 | T k- »+b72 if T yuns over any fixed Siegel domain (p. 143 and
Theorem in p. 144 in [5]). This completes the proof of Theorem.

§3.
Let k,n be natural numbers such that 2 >n + 2,k =0 mod 2 and
put
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EXZ) =3 |CZ+ DI’ (ZeH,),
where (C, D) runs over representatives of GL(n, Z)\{symmetric coprime
pairs}. Our aim is to prove
THEOREM. Put

EXZ) = 2 a(T)e(o(T2)) .
Te,
Then there are positive numbers c,, ¢, such that

o | TP < |a(T)| < ¢ | T2 for T>0.

Put Sy = Dz e(—a(TR)W(R)™* for Te AF where R runs over all n X n
rational symmetric matrices modulo 1 and »(R) is the product of deno-
minators of elementary divisors of R. Then it is known that

a(T) = const. X |T|F-"*V2S, for T>0 ([9) .

On the other hand S; = > |C|*e(—a(TC'D)) where (C, D) runs over the
set {(C, D)|symmetric coprime pair, |C|# 0}/~. Here by definition
(C', D) ~ (C, D) if and only if there are Ue GL(n, Z),Se 4, such that
(C', D) = UC, D + CS). We take as representatives of C matrices of the

form

Cij
’ 0<¢e;<¢;

Cn
then the number of the choice of D for C is at most ¢ --- ¢, as in the
proof of Theorem in §2. Thus we have
1821 < 33 (T ed™(IT &™) TT et~ = €l — )"
To complete the proof we must show |S;| > ¢ where ¢ is a positive
number independent of 7.

Put S(T) = >z e(—o(TR))(R) " where R runs over all n X n rational
symmetric matrices modulo 1 such that v(R) is a power of p. Then
Sy = [[,8,(T) for T>0,Te A¥. Put

J= %((1’ 15) and A(T) = # {Ce My, (Z) mod qg~(CJC — T)e 43} .
k
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Then we have
S,(T) = (p2) ™2~ A,(T)
for sufficiently large a.
LemmA 1. For We A, we put
GW;p = 2. e ('CICW)).

CE€ Mg, n(Z)
C mod p%

primitive mod p

Then we have

PP DG(p= @ OW; p) if W=0 modp°*!,
0 otherwise.

G(W; p*) = {

Proof. For a primitive element C, of M, ,(Z) we take a unimodular
matrix U = (C, *). From

(5)- G- vrem

follows that W=0 modp if and only if C,W =0 modp. Lemma is
obvious for a = 1. We assume a > 2. Decompose Ce M,, (Z) as C = C,
4 p*~'C,. Then C is primitive mod p if and only if C, is primitive mod p.
Hence we have
CWipY= 5 e o(CICW) T e@p o(CICW)) .

C1 mod pa—1
Cy: primitive mod p

20(:C,JC,W) = 0 mod p for any C, if and only if 2W*'C,J = 0 mod p, and it is
equivalent to W= 0 modp. Thus we have

p*"G(p~*W; p*?) if W=0 modp,
G(W; p°) = { 0 .
otherwise.
Now our lemma is inductively proved. Q.E.D.
Put
C; primitive mod p,
,a = M n d @
4uD) = 4 Ce M @modpe 7 O BB
LEMMA 2.

(pa)n(nﬂ)/z-anA;a(T) =pn(n+l)/2—2knA;(T) for a 2 1, Te A;f .
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Proof.
()" *VPAT) = 3 2, ep((CJC — T)W))
W €dn mod p grm%wg mod p
= 2. GW;p®e(—p *a(TW))
WeEAn, mod p@
= _ 2. p*ePG(W;pe(—pla(TW))
WeAp mod p
— kan(a—l)pn(‘n-#l)/ZA;(T) . Q'E.D'
LeMmMmaA 3.
S,(T) > p o2 A(T) for Te A* .
Proof. This follows from A,«(T) > AL«(T). Q.E.D.

LeEmMA 4. There is a positive number ¢ such that SYT) > ¢ for
Te A%,

Proof. AYT) is uniquely determined by 7 mod 2. Hence the values
of A(T) is a finite set. Hence we have only to prove AYT) # 0 for
Te AF. By the theory of quadratic forms T e A¥ is equivalent over Z,
to a direct sum of

2‘1_1((1) (1)) ) 2“'1@ .‘b » 2°u (@>0,ueZ).

Since AYT + 2T") = AYT) for T, T’ e A¥, we may assume that T is a
direct sum of

l(o 1) i(2 1) e Zi
2\1 o/> 2\1 2/ ?

and 0. Hence we may suppose

(4 |
| .
A,

U,

|
|
|
l . un—-2r

-=A,-1=l(0 1), A,=l<° 1) or 1(2 1)
2\1 0 2\1 0 2\1 2

T

where

A,
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Uy =+ = Uy, =0 and u,u, =0 or €Zy (93:18 in [6]). Denote by ¢
the number of u, such that w, =0. It is easy to see that | %(g (1)>

r+i-1

r—1
represents primitively | A, | (0). To prove AYT) ++ 0 we have only to
i=1 t
show that | %(2 (1)) represents A,, A, | (u,), A, | (w) | (w), (u; €
k= (r+t-1)
Zy), primitively according as t=n—2r,n —2r — 1, n — 2r — 2.
(i) The case of t=n—2r,n—2r—1;then2(k —r—t+1) — 3>

3dand | 5-((1) (1)> is Z,-maximal. Hence | %(2 (1)> represents A,

k=r—t+1 k-r—t+1
1 (wy), (€ ZY). 27'det (24, | (2u,)) € Z; implies that this representation
is primitive.
(ii) The case of t=n—2r — 2; then 2 —r+1—1t > 5.

2000 J)(5) = (LG =0 )L )

yield that | %<(1) (1)) represents A, | (u;) | (u,) primitively. Thus we have
4

proved AYT) #+ 0 for Te A¥. Q.E.D.
If S,(T) > (1 — p®* for odd prime p, then

Sy =TI S,T) = S(T) JLA=pH">e>0

holds, and it completes the proof. From now we show
S(T)>@1—pH)" for odd prime p, Te A¥ .

We fix an odd prime p. Let L be a hyperbolic space of dim 2k over
F, = Z|(p); then AL(T) is equal to the number of isometries from the
quadratic space over F, corresponding to T to L where isometries are
supposed to be injective. For quadratic spaces M, N over F, we denote
by A(M, N) the number of isometries from M to N. Our aim is to prove
that

A(T, L) > p¥n-rn+Di(] — p2)in for any quadratic space
T of dimension n.
Let T be a quadratic space of dimn over F, and T'= T, | R where

R is the radical of T. Define a quadratic space L, by L = T, | L,; then
A(T, L) = A(T,, L)A(R, L)) and
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t/2~-1
% p A+ p™) [ @ —p*)
s=1

AT, Ly = p-tce-vnese if t=0 mod2,

(t=1)/2
AQxp™ [I A=p*™)
ift=1mod2,
where ¢ = dim T ([8]).
From k> n + 2 and n > ¢ follows

A(Tg, L) 2 p—l(t+l)/2+2kb(1 — p-2)2n .

Since, then, A(T, L) > p*" ""*P*41 — p~3* follows from A(R, L) >
p-(‘n-l)(n——L*l)/2+(2k—t)(n—t)(1 __p—Z)Z(’n—t), we have Only to prove

LemmA 5. Let M be a regular quadratic space over F, of dim M = m
and let N be a totally isotropic quadratic space over F, of dim N = s.
Then we have

A(M M) 2 p—s(s+1)/z+ms(1 . p~z)2s lf m Z 23 + 3 X

Proof. Put N = F,[v,,---,v], M= H | M, where H is a hyperbolic
plane. For quadratic spaces we denote by @, B associated quadratic
forms and bilinear forms (@(x) = B(x, x)). Take a basis {e, f} of H such
that @(e) = Q(f) =0, B(e,f) = 1. Let ¢ be an isometry from N to M such
that o(v,)) = e, and put o(v;) = a.e + b;f + u, (a;, b, F,, u,€ M;). Then
B(v, v;) = B(o(vy), o(v)) = b, =0. Since ¢ is injective, u, ---,u, are
linearly independent and B(u,, u,) = 0 for i,j. If, conversely, w,, ---, w,
€ M, are linearly independent and B(w,, w;) = 0 for i,j, then u(v,) =e,
wv,) = ae + w;(a; € F,,i > 2) define an isometry from N to M. Thus we
have

A(Ns, M) = ps—la(M)A(Ns_l’ Ml) ’

where N, denotes a totally isotropic quadratic space of dimi and a(M)
is the number of (non-zero) isotropic vectors of M.
Put M= | H_| M,; then we have

s—-1

A(N,, M) = p“‘a({l_lH_l_ Mo) A(Ns_l, LHL Mo)

=pela(LHLM).
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If dim M, = 1 mod 2, then we have

(L5 L M) = e
> p21+m—2(s—1)-1(1 _p_z)
>p21:+m—2(s—1)—-1(1 — p-z)z
since 2i + m—2(s— 1) — 1> 2.
If dim M, = 0 mod 2, then we have

a( L H Mﬂ) _ {pz,_n +p —pt—1  if M, i.s hyperbolic ,
o p"'—p +pt—1  otherwise,

where
or=2+m—2s—1)=dim] H| M,.
Hence
“(-L H ] Mo) =@ FNP+1)>p"'A—p
holds.

Thus we have

A(Ns’ M) Z ps(s—l)/2 :Ij:pzi+m—2(s-1)—l(1 — p—Z)Z
— pms—s(s+1)/2(1 - p—Z)zs . Q.E.D.

CoroLLARY. If n, k are natural numbers such that k >2n + 2,k =0
mod 2 and f(Z) = 3 a(T)e(o(TZ))(Z e H,) is a modular form of degree n
and weight k, then we have

a(T) = O( T »+vrz) for T>0.
Proof. It is known that there exist cusp forms f, of degree r and
weight k such that f(Z2) = 35701 EX (Z,f) + aEXZ) + fAZ), (ae C) ([3]).
Since a(CUTU) = a(T) for Ue GL(n, Z), we may assume that 7 is in some

fixed Siegel domain. Theorem in §2 and our theorem imply the
corollary. Q.E.D.

§4.

Let A be an even integral unimodular positive definite symmetric
matrix of rank m; then m =0 mod 8. Put
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0.2, A)= e(%a(‘CACZ)), ZeH,.

CEMm,n(2)

Then 6,(Z, A) is a modular form of degree n and weight m/2. Then there
exist cusp forms f, of degree r and weight m/2 such that

0.Z, A) = ErXZ) + 5 EPXZ,f) + f(Z) forn<mla—1.

If
Ex%Z) = 25 anpa(T)e(0(T2))

TeAy,
then

a (T) — Qnim-n+D)2 7ﬁ1 TimoOr
e =0 T((m — 1)[2)
where S,(T) = >z e(—a(TR))»(R)-™"? where R runs over all n X n rational
symmetric matrices modulo 1 such that the product v(R) of denominators
of elementary divisors of R is a power of p.
Put

T |em=n-02 ] Sp(T) for T>0,
»

0.2, A) = 3, NT, A)e(o(TZ))

TeA},

and

ExXZ,f) = 2 oT, f)e(o(T2)) .

Then we have, summarizing,

THEOREM. If n < mf4 — 1, Te A¥, T > 0, then N (T, A) = @pnp(T) +
>eia(T, f) + O(T™*. If, moreover, T runs in any fixed Siegel domain,
then

QD) ~ | T, a(T,f) = O(T, | "r=r R | T=-07)
where T, stands for the upper left r X r submatrix of T.

For n X n positive definite matrix S we denote by m(S) the minimal
value of ‘xSx (xe€ Z" — {0}). It is well known that there is a constant g,
such that m(S) < g, ¥|S| for any n X n positive definite matrix S.

CoroLLARY. If n < mf4 — 1, then
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NT, A) = app(T) + O(m(T)-™*|T|™-"-17%) for T>0, Te AF.
Especially N (T, A) > 0 if m(T) is sufficiently large.
Proof.

ITrl—(m/Z—r—l)/z — O(m(TT)—T(m/Z-r-l)/Z)
— O(m(T)—r(m/Z—r—l)/Z) .

On the other hand
lTlm/4 (m(T)l—m/4lTl(m—n—l)/Z)—l — m(T)m/4—1[Tl(2n+2—m)/4

g ,l:‘nﬂ—l I Tl(m/4—1)/n+(2n+2—m)/4 .

Sincer(m/2 —r—1)2>mf4 — 1for 1 <r < n<mf4 — 1, we have o(T\ f,)
— O(m(T)x—m/4|Tl(m—n—l)/z)’ !Tlm/:; — O(m(T 1—m/4lTl(m—n—1)/2), if lT| > 1.

There are only finitely many equivalence classes of T ¢ 4¥ such that
T>0,|T|<1. This completes the proof. Q.E.D.

Remark. Let f(Z) = 3 a(T)e(e(TZ)) be a modular form of degree n,
weight k(e £Z) with level such that the constant term of f(Z) at any
cusps vanishes. Results in [2] and here seem to suggest that a(7T)=
= Om(T)~**|T|e-»*v?) for T > 0 if, at least, 2k > 2n + 3.
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