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MODULAR FORMS OF DEGREE n AND REPRESENTATION
BY QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let A(m\ B(n) be positive definite integral matrices and suppose that
B is represented by A over each p-adic integers ring Zp. Using the circle
method or theory of modular forms in case of n = 1, B, if sufficiently
large, is represented by A provided that m > 5. The approach via the
theory of modular forms has been extended by [7] to Siegel modular forms
to obtain a partial result in the particular case when n = 2, m > 7. On
the other hand Kneser gave an arithmetic approach in case of n = 1 in
his lectures [4] . Using this idea we proved that B is represented by A
over Z provided that m > 2n + 3 and the minimum of B is sufficiently
large [2]. Our aim here is to give an analytic proof in the case when A
is an even unimodular positive definite matrix. Under the algebraic prepa-
rations of § 1 we give the Fourier expansion of Eisenstein series in the
sense of Klingen and estimate coefficients from above. In § 3 we estimate
Fourier coefficients of usual Eisenstein series from above and below and
it is applied to our problem in § 4.

Notations. Let Hn be the space of n X n complex symmetric matrices
Z with positive real Y. Let Γn denote the group of integral 2n X 2n
matrices M satisfying

MPM = I, I=(

For MeΓn we put M = ( n

M

 n

M ) where AM, , DM are n X n matrices.
For 1 < r < n — 1 we define the subgroup Δn>r of Γn as the group of all
MeΓn whose elements in the first n + r colums and last n — r rows
vanish. The transposed matrix of a matrix M is denoted by tM. We don't
use the usual convention A[B] = ιBAB. σ stands for the trace of matrices.
e(x) means exp(2πix).
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96 YOSHIYUKI KITAOKA

§1.

Through this section we fix natural numbers r, n which satisfy 1 < r

< n — 1. For a matrix Me Mp>q(C) (p>n — r) we denote by M the last

n — r rows of M, i.e., M = (7ί>) For Me Mn(C) we decompose M as M

= ( ^ Λfj) w h e r e M l e M ' ( C ) > M a e M — ( C ) ' M>e M*-rΛC), Mi e Mn_r(C).MJ
Mi are used in this sense if we don't refer.

LEMMA 1. For M,Ne Γn, ΔntTM = Δn>rN is equivalent to M = gN for

some g e GL(n— r, Z).

Proof. Let M, N be elements of Γn. Suppose that M = KN where

I e Δn%r. Then we have M = DjR. Since if is a uni-
0 0 Dit

modular matrix, D4 is unimodular. Conversely, suppose that M = ̂ iV for

some g e GL(ra — r, Z). Put G =
*

0

0
lr o \e Δn>r; then we have GN =
0

Hence we may assume M = N. Then MN""1 = (o u + r ' w - r ) , in_r) holds. Hence

MN-1 e Δn>r. Q.E.D.

LEMMA 2. For cm element NeΓn with rank CN < n — r, there is an

element M in Δn>n_x such that Δn>rNs M(~ ^'Ί for s o m e UeGL(n,Z).

Proof. By the assumption rank CN <in — r there are unimodular

matrices # e GL(n — r,Z), Ve GL(n,Z) such that the last row of gCNV
0 \

1 0 l ^ ί tV~1)9

or g) v ;

r o w °f Cκ van-(
g)

ishes and the elements of the last row of Dκ are relatively prime. Taking

a unimodular matrix WeGL{n,Z) such that DKW = ( n * n -), we put

M=Kl ψ); then we have MeΔn>n_x since the last row of M is

(0, , 0,1). We may take V'W'1 as U. Q.E.D.

LEMMA 3. // ιAC is symmetric for A,Ce Mm(Z), then there is a sym-

metric coprime pair (&m), S)(m)) such that &A + S)C = 0.

Proof. If C = 0, then we may take © = 0, S> = lm. Suppose C Φ Q.

First we assume |C|^=0. Then AC'1 is a symmetric rational matrix.

Hence there is a symmetric coprime pair (®(m), S)(m)) such that |(£| =£ 0,
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©-1© =? -AC" 1 (p. 166 in [5]). Thus we have ©A + ©C = 0. Next we as-
sume |C| = 0; then there are unimodular matrices gug2e GL(m,Z) such

that &C&-1 = c = ( ^ 2) ( N ^09s> 1). Putting α = 'g^Agf1, we have

'αc — tg21 ^Cgz1 and this is a symmetric matrix. Decompose α as a =

(β(s) α \1 2). 'αc = ιca implies that ' α ^ is symmetric and taιcx = 0 and so
α3 α4/

α2 = 0. Take a symmetric coprime pair (©ίβ),©ίs)) such that © ^ + © A

= 0, and put © = ( S l Λ. © = f®1

 1 V Then (©, S)) is a symmetric

coprime pair and

O O/Vos aj \ l/\ 0/

On the other hand, &a + Qc = (&gi ιA + 2)£iC)gi* implies ©*g2 *A + 2)£ΊC

= 0. Here it is easy to see that (©'gf \ 2)gi) is a symmetric coprime pair.
This completes the proof. Q.E.D.

LEMMA 4. For Me Γn there are a unimodular matrix Ue GL(n, Z)

and NeJn>rM( /-/-i) such that the first r colums of CN vanishes.

Proof. Take g e GL(n - r, Z), Ue GL(n, Z) such that gCM'U = (0, C4);
/ *

. Put K = 1, J M ( ^ _ , ) ; then we have C, =

= ιCA implies tAιC1 = tC1Aι where we put A = Aκ, C = Cκ. By

Lemma 3 there is a symmetric coprime pair (©ίr), ®ίr)) such that ©jAx +

©id = 0. Take an element G e 4 r such that CG = (n1 n)' ^^

(f S)(l 1) (? ?)(c g) (» p ί
proof. Q.E.D.

We put Pn,r = {A= ( ^ j ^ e GL(n, Z)\A3 =

LEMMA 5. Let M, N be elements of Γn such that (9A = (9fλ = 0,

|C4||C4'| Φ 0 where we put CM = (% £?), CN = ( ^ ^'V If KMCV y.λ =

NCU

 V \ for Ke Δn,n U,Ve GL(n, Z), then we have CK = 0,tUe PnJV.

Proof. Put W=tUtV-1; then CKM = CKAM + DKCM = CNW. Putt-

ing Λ. - (t t). c - (I- S).«. - r !:)• *- (l\ f).
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dWz = O and (Mi = C2'W3. The assumption |C4'|=£0 implies W3 = 0.

Hence '[/ = W£Ve P^./V and ^Ax — 0. We have only to prove |AJ =£ 0.

i 2 -r 3 M is symmetric, we have tAιC2 + ^ C ^ = 0

and A3 = —'C^1 tC2Aι. Since the rank of the first r colums of M is r, we

have r = rank ί ̂ x \ = rank ί __tn-un )AX < rank A! < r. Thus we have

rank Ax = r, i.e., |Ai| =£ 0 and so ®x = 0. Q.E.D.

The following lemma is a key in this paper.

LEMMA 6. Let M be an element of Γn with rank CM = n — r. Then
there is an element Ne Δn>rM such that \CN\ Φ 0, (A^^ = Omod 1.

Proof. By virtue of Lemma 4 there exist PeΓn, UeGL(n,Z) such

t h a t Δn rM3PCU x r A CP = f J ζ 2 V r a n k CM = n-r y i e l d s | C 4 | ̂  0.

(A A \
. x

 4

2 ) ; then |A i |=£0 holds as in the proof of Lemma 5.

M
Take ί = h o e Jπ,r and put KP = JV'. Then AΛ.- = AP, C*, =

i m p l y | C ^ ' φ °> ( A ^ c ^ ) i = ! - T a k i n s N'(U u-) a s N ' w e

have \CN\ Φ 0, OUC^X = l r and Jn>rMsN. Q.E.D.

LEMMA 7. Lei C4, D3, A 6e elements of Mn_r(Z), Mn_r>r{Z), Mn__r(Z)
respectively. Suppose that \C^\Φ0, C/D4 is symmetric and (C4, Z>3? A) is
primitive. Then there is a symmetric coprime pair (C(n\ D(n)) such that C

= (0,C4), fl = (AA).

Proof. Since rank (C4, DA) = n — r, there exist matrices Z74 e Mn_r(Z),
VeGL(2(n- r),Z) such that (C4, A) = UA(0,ln-r)V and |l74|^=0. Put
g4 = Ur'Ct, S4 = [/4-

!A; then (S4, S)4) is primitive and S/®4 = U^CSDJUr1

is symmetric. Thus (®4, S)4) is a symmetric coprime pair. Since (C4, A, A)
is primitive, (A> C4) A) = (A5 U4(0, lπ_r) V) is also primitive. Hence (A> K)

is primitive and there is a unimodular matrix U = (X γT)eGL(n, Z).
/0 0 \ /I \ ^

Put C = Uy ̂  β- ), ΰ = Ul r ^ ); then (C, D) is a symmetric coprime pair
C ( £ ) ( C) (A ^ O (A A)and C = (0, £/4e4) = (0, C4), D = (A, ^©O = (A, A). This completes the

proof. Q.E.D.

Let C4, A> A be those as in Lemma 7 and let M be an element of
Γn such that M = (0, C4. A. A). By Lemma 6 there is K e Δntr such that
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\CN\Φ09 (A^C^XΞΞOmodl for N = KM. By Lemma 1 gN = M holds

/ * 0 \
for some g e GL(n - r, Z). Put P = l r \N; then P = gN = M =

\ 81

(0, C4, A , A), \CP\Φ0, and (ApCpOi = Omodl. We denote one of such

P's by M[C4,A, A] . Then Jn, rM[C4, A , A] is uniquely determined by

(C4, A> A) by Lemma 1.

Put

© = ifC D D °4' A ^ M

w' r i ( 4? 3? C4 Ά = A 'C4 and (C4, A , A) is primitive]'

For S, S' e &n>r we define S - S' by S' = gS for some g e GL(n - r, Z).

LEMMA 8. (J J n , r M = (J Λ.rM[C4, A , A ] ^ ^ r τ ), ^Λere ίΛe
ΛfGΓn V U~1/

rank CM = n-r

right hand is a disjoint union, (C4, A , A) (resp. tU) runs over representatives

of<5n,rl~ (resp. Pn,r\GL(n, Z)).
Proof. Take an element M of Γn such that rank CM = n — r. Then

there exist g e GL(n - r, Z), Ue GL(n, Z) such that g~λCM 'U'1 = (0, C4

(n"r)),

|C4 | Φ 0. Hence M e Jw,rM[C4, A , A ] f ^ Γ,-iV For W^= (Wl ^) e Pw, r

/ *
and A e GL(n — r, Z), we put 2V =

l r
Then

^N = (o hC w) ^ ° ^ s Thus M is contained in some coset Jn>rM[C4, A ,

Ty-x) for any specified representatives (C4y D3, D4), U. We must

prove the disjointness of the right hand. Suppose KM[C4, A , A]( ŷ

for (C 4 ,A,A), ( α , A , A ) e ( δ % , r / ^ , <£/,<[/'e

Pn>r\GL(n, Z), i ί e Jκ, r. There are some G,G'eΔn>r such that the first r-

colums of the C-parts of GM[C4, A , A], GfM\C[, A , A] vanish as in the

proof of Lemma 4. Hence Lemma 5 implies tΊUePn>r

ιUf. Thus we have

U = Uf and then KM[C,, A , A] - Af [Cί, A , A] implies £'(C4, A , A) =

(C4, A , A) where gf is a unimodular matrix defined by the right lower

(n - r) X (n - r) submatrix of K. Hence (C4, A , A ) = (C4', A , A).
Q.E.D.

We introduce another equivalence relation ^ in ©n>r. For (C4, A , A),
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{d, A, A') e ©„,,. we define (C4, A, A) « (Cί, A, A) by £(Cί, A, A) =

(C4, A + C4S3) A + CA) for some geGL(n - r, Z), S3 e Mn_r,r(Z), S4 =

*S4 e Mn_r{Z). It is easy to see that (C4'; A, A) » (C4 A, A) if and only

if Jn,rM[Cl, Di, A] = A,rM[Ct, A, W y f ) f o r s o m e S = tS = (s, t )

eAf,(Z).

THEOREM.

I J • J M r M = I ) J ,

where the right hand is a disjoint union, (C4, D39 D4) (resp. tU) runs over

representatives of © n > r /^ (resp. Pn>r\GL(n,Z)) and S runs over {S =

Proof. This is an immediate corollary of Lemma 8. Q.E.D,

We remark the following two propositions although they are not used

for our aim.

PROPOSITION 1. Take (C4, D3, D4) e ©TO,r and M, NeΓn such that M =

N = (0, d , A , A), ICM11 dv I Φ 0 (AMCM% ΞΞ ( A ^ 1 ) ! ΞΞ 0 mod 1. ΓΛen we

have GL{r,Z){CM\ = GL(r, Z)(CN\.

( A A\ (C C \

A1 ΛΊ> CM = ( -1 r)> ΆMCM = ιCMAM implies
gAxd = *dAi and A&1 = ^Afir1) is an integral matrix. Put K =

. We define similarly

0 lnj
V e Δn>r for N. Then Δn>rKM = Δn>rK'N and Lemma 5 imply

where ( ^ f^_,) e J,.r, t/ = ( g " ^ ) e GL(ra, Z). Then (A™), =

+ USCKM\ implies -(CJV)1 = -ϋiίC*),. Thus we have GL(r,

GL(r, ZXC),. Q.E.D.

Let (C4, A , A ) be an element of ©K i r and define matrices U = {jf jj\

4, S)4) and (C, D) as in the proof of Lemma 7; then C4 = ?74S4, A = U&*
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and A = Uz. Taking, 2ί4, 934 such that β* ®Λ e Γn_r we put

1.

l r 0
0 0

0 tU-i

0

0
1
0

0
0

0
%

0

0
0

1
0

0
®*

0

Then C4 - £74©4 and |C4 | ̂  0 imply | U,\ Φ 0 and | Ux - U2U^UZ\ Φ 0 follows

from

I IU = I * 2 4 3

\0 1 / V * *

Hence we have

( (ί/j — U2U^1U)~1 —(U — UL

- U^U^Ut - UzU^Us)-1 U,-1 + U^UIU,

Putting 't/- 1 = V, we have

/γi V"23IΛ /O *\

c 4

For this special extension M = (g jΛeΓn of (0, Ct, D3, A) we have

LEMMA 8. X= (Bt — AiC^D^ — Afi^Ds + Afi^CzC^D^Ci is integral.

Proof. X=(-Uι- V^Cr'D, + (V,% + ϋiejCfXA)«V,

- ' A ) ' ^ = - I , Q.E.D.

PROPOSITION 2. Take N = M[C4, A , A] A>r (C4, A , A) € ©n,r α^d α

half-integral symmetric matrix P{n) such that ^C^^P^C^ΐ1 is half-integral.

Then σ(PC^DN) mod Z is uniquely determined by (C4, A , A) and P.

Proof. Take MeΓn such that M = (0, C4, A , A) \CM\Φ 0, (A^M1), =

0 mod 1 and put CM = C, DM = Z); then we have

\ C Γ Ό , C4-
χA

and (C~lD\, {C-ιD%, (C^DX are only dependent of (C4, D3, D4). Take any
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extension N = M[Ct! Ds> D4] and define K, K', U, S as in the proof of
Proposition 1; then CN = CM implies UA = ln_r and we have

U& 0\A (Ux

o oΓM + \ o

Dχ-\ o oΓM + \ o

Hence ( C ^ 1 ^ - C^ 1 ^), = Cr^B, - A.Cx- A - A2C4-
JA + A.Cr

Now we suppose that M is a special extension in Lemma 8; then
- C^D^C, = 0 mod 1. Therefore σlPC^D,,) - σ(PC^DN) = σ(Pι{C]iιDM

- CfDM = σCCf'P.CfXCίC^A,- C^DNyCd) = 0 mod 1. Q.E.D.

§2.

Through this section we fix natural numbers r, n ,k such that 1 < r
< n — 1, k> n + r + 2, k = 0 mod 2. Denote by / a cusp form of degree
r and weight k which is also fixed.

For MeΓn we put

(/I Mχz) = f(M(zy\) i cMz + A , |-* ,

where M<Z> = (A^Z + 5Jf)(CifZ + DM)~\ (ZeHn), and (M<Z»! is the upper
left rxr submatrix of M<Zy as in § 1, and (f\M)(Z) = /(M<Z>*)M{Z}-fc

in the notation of Klingen [3]. It is easy to see that (/| M){Z) = (f\ NM){Z)
for any NeΔn>r.

Put EiZ) = YlM{f\M){Z) (resp. E2(Z) = Σ>M(f\M){Z)) where M runs
over representatives of Δn>r\Γn such that rank CM = n — r (resp. rank CM

LEMMA 1. Let N be an element of Γn such that rank CN <n — r and

(f\N)(Z) = 0 where Yput —— = (—(1 + δu) d \ Then we have
BY V 2 djij / ^F

= ImZ.

Proof. By Lemma 2 in § 1 there exist Me Δntn_u Ue GL(n, Z) such that

Λ l\f Ξ * 7 1 / / ^ I i T * τ ι i * Λ — I ^ 1 J-i — ι ^ ^ i C^ — 1 ^ 1 7 ^

( D D\ IZ Z\

0

 x β\ and Z = ί t £ J\ where Au , A and Zx are (n — 1) X

(τι - 1) matrices. Then we have CMZ + DM = (CίZl + j D l ^ V M<Z> =

VxZγ + BXC& + A)"1 *\ H e n c e (f\M)(Z) does not depend on Z2, Z4
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and so |9/9Y| (f\M)(Z) = 0. Since (f\N)(Z) = (f\MχUZ'U) and | Y\ \dβY\
is invariant under the transformation Y-» UY'U on {Yw\ Y> 0}, we have

\γ\
dY

(f\N)(Z) = \Y\ (f\M)(UZ'U)

= \Y\ (f\M)(UXtU+iY)
Y-+UYW

= o ,

where Z = X + iY.

PROPOSITION 1. E2(Z) has Fourier expansion
that a2(T) = 0 for T > 0.

Q.E.D.

a2(T)e(σ(TZ)) such

Proof. Put N=M[ — —) where N,MeΓn,
 tS=SeMn(Z). Then

rank C^ = rank Ci¥. Hence E2(Z + S) = E2(Z) for any S = 'S e
Thus S2(Z) has Fourier expansion 2]r a2(T)e(σ(TZ)). From Lemma 1 follows

= Σ (h(T) I -2πT\ e(σ(TZ)) = 0 .
dY

Hence a2{T) vanishes if T is positive definite.
For a natural number m we put

Am = {SeMm(Z)\S=tS},

A* = {Se Mm{Q)\S=tS: half-integral} .

At is the dual lattice of Am via σ{SS').
The following is well known ([1], [5], [8]).

LEMMA 2. For a positive definite matrix Y(m) and p > m + 1,

Q.E.D.

is absolutely convergent and

Γm(p) 2 | 7 + 2πiF\~p = 2"m ( m~1 ) / 2

FeΛm 77>q

w /iere Γm(p) = ^ ^ - D / 4 [ j^- 1 Γ(̂ o — y/2).

LEMMA 3. For a positive number a,

Σ \(2πi)-\Z+ aF)\~p
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where Z e Hm and p > m + 1.

Proof. This is an immediate corollary of Lemma|2. Q.E.D.

LEMMA 4. If a, b are complex numbers such that Re a > 0, then we have

exp (—ax2 + 2bx)dx = Vπ/α exp (b2la) ,

JR

where \lπ\a is real positive if a is real.

Proof. This is also well known. Q.E.D.

The following is an easy generalization.

LEMMA 5. If A is a symmetric matrix of Mm(C) such that Re A > 0

and b is an element of Cm, then we have

f exp ( - ιxAx + 2tbx)dx = Vdet (TΓA"1) exp {ιbA-ιb) ,

where Vdet (πA~ι) is real positive if A is real.

We need the following generalization.

LEMMA 6. If A is a symmetric matrix of Mn_r(C) such that Re A > 0

and Wir) > 0 and Q is an element of Mn_rfΐ(C), then we have

f exp (-2πσ(WίXAtX) + 2πσ(XQ))dX
J xeMr>n-r(R)

exp ί—

where V(det A 1 ) r is real positive if A real.

Proof. Put ιX = (%, , %) and ?Λ: = (xίf .• , x r ) e M 1 (»- r ) r(lϊ). Then

lΛ- \
we have σ{XAιX) = lx\ \x where M's are on the diagonal. Denot-

ing QW1 by (y1? « ,yr) where VF=VVF1>0, we have ^

C.Vi, , Wx. Thus the integral of the left side is

W\r'n f exp (~2πσ(XAtX) + 2πσ(XQW'ι))dX
J XeMr,n-AR)
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= I W1|
Cr-w>/22r(r-n)/IV(det A" 1 ) ' exp (—σdW'1 ' Q.EJD.

LEMMA 7. If N is an element of Γn such that \CN\ Φ 0, (ANC^1)ί ΞΞ

0 mod 1, then we have

where

(f\N)(Z) = \CN\k\Wi\-«

w_(Wi« W2\_

Proof. Put N=(£ p ) . Since B - AC'D = B- A%C-ιD) = (BιC

- A'D)'C-1 = - 'C- 1 , we have 2V<Z> = (AZ + B)(CZ + D)"1 = AC"1 -
ιC~\CZ + D)-1 = AC-1 - W-\ From the identity

W /I W.WrVriyw1 - WtWr1'Ws o
0

y i o\

follows

1 = / ( ^ . - wiwr1'^-1 *\

Hence we have

= I cι» Q-E.D.

Let i V = be an element of Γn such that \C\φO, (AC-1), =
/M< r >

Omodl, C3 = 0 where we decompose Λf6.Mn(C) as Λί = l 1
as in

§ 1 and take a natural number p such that pC1 is an integral matrix.

We fix N,p till Lemma 13. Now we calculate

Σ f\N[± (Z).

Put W = CZ'C + D'C. For S =

<

) e An we have

S'C-1 + D
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and CZ'C + (S'C'1 + D)ιC = W+ S. If, moreover, Sep2Λπ, then

f\N
C'S'C1

(Z)

First we calculate, for t > 0, te Λ*,

S2))) .

It equals

Σ e ( - ̂ ( ^2 + P2S2) Wr1 %W2 + p2S2)))

= Σ f e(-^(VΓ2+.

= e(-o(iw;wi-ltwr2)) Σ ί
S2 G -Sir, n — r ( ^ ) w -^ € -Λίr,» — r'

X

^ |

X exp ((^M'Qίi- 1 W

where we put Q = -2ip2Wr1 'W2t + i'S2.

Since

we have

4p2W2

 (S2 + S2Wt 'Sj'1),

x Σ β((4 P

4 )-y-4p 2 WS 2 +

Put f(zw) = Σι>^b(t)e(σ(tz)); then b(t) = OO*!*7*) is known [7].

LEMMA 8.

Σ

2 r ( r-M ) / 2p 2 r C r- r e ) I W4\-k Vάet(ί-1Wiy

X Σ
έ>0
ted*

M
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where the right hand is absolutely convergent

Proof. Define a matrix P e Mr(R) by

P = Ίm (W, - (W2 + X)W;1 \W2 + X)) - (X + Q) Im ( - W^)%X + Q),

where Q = Re W2 + Im W2He ( - W^XIm ( - Wr1))'1, ^ e Mr>n.r(R). Then
P is independent of X. Since (Wi - (W2 + X)^" 1 '(W^ + X))"1 is the
upper left r X r matrix of

* ?))"
we have Ŵ  — (P72 + X)W4"

lί(VΓ2 + Z) e Hr and its imaginary part is posi-
tive definite. Hence, putting X = — Q, we see that P is positive definite.
Now we have

t -(Wt

= exp (-2πσ(tP + t(S2 + Q) Im ( - WrJiS, + Q)))

< exp (-2πεσ(t + (S2 + QY(S2 + Q))) ,

where ε > 0 is defined by

P > e l r , I m ( - Wr 1 ) > VTln.r , t > VTlr for teΛ*,t>0.

Then it is easy to see that

, - (W2 + S,)^-1 '(W2 + Si)))

is absolutely convergent.
To prove that the right hand is absolutely convergent, it is enough

to show

Σ \e(σ(tWd
aeΛfr.n-rGZ)

= O(|ί|n-r exp (-2^e<K0)) for some ε > 0 .

;) + (4p4)"1^(-4p2W2

ίS2 + S^/S.Γ1)) is equal to
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and, taking a positive number et such that Im W > εγlM we have

\e(σ(tWd

< exp(-2πε1σ(ί

Hence we have only to prove that, for ε' = 2πε1(4p*)~ι,

Σ exp (-6 /(τ(S2

ίS ίr
1))=O(|ί|n- r) for t > 0, t e Λ* .

S<zQMr,n-r(.Z)

Without loss of generality we may assume that Γ 1 is in some Siegel

domain. Then there are positive constants ε2, ε3 such that

e2δ < Γ 1 < ε3̂  ,

where δ is a diagonal matrix defined by

o δr

Then £ < ε^cΓ1 and t e Λ* imply that δt < ες1. Therefore we have

M

= Σ exp (-ε4 g δrf?) (ε4 = ε'ε2)

= Π ( Σ exP(-εAs2))π-r < Π (l + 2 Σ «Φ (-«««««))""
i \seZ / i \ ŝ l y

- V V + 2l-exP(-εA)J

1 + exP(£Λ)-l) < ?

= Π (
2 y~

Now the calculation before Lemma 8 implies the identity in Lemma 8.
Q.E.D.

LEMMA 9. For t > 0, 16 A* we have
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IW4 + S4|-Vdet(r>(W4 + SύyφprWWt + StfSj-'
r

l(n-r)k/2πyn-r)(k-r/2)2(r-n)(n-r-l)/2p(r-n)(n-r+l)/£p4fo \{r-n){2k-n-\)/2

X Γn.r(k -

X

where bt is any fixed natural number such that btt~
λ is integral,

S2eMri7l_r(Z), and T runs over

{T\T>0, TeΛtr, ( ^ W 1 * + K

Proof. The left side equals

X Σ

Σ
eAn-r mod ip^

X (2πy-n^-r^2ir"ι)ln-r-1)/2(2πy('"rH'c-r/2Ψn_r(k - r/2)-1

X (4p46t)-(»-'J(*-"« Σ \T\k-(n+1»2e((4p%yισ(T(W4 + p'S'J) .
τeA*_r

From

Σ edipy'σiSΪS^Sd + (^^J-V^ΓSO)
S^eAn-r mod ip^bt

= UAp2bty
n-^n~r+l)<2 if (4p2)-1( ίS2r

1S2 + 6Γ1?7) e ̂ *_r ,
lθ otherwise

follows the identity in Lemma 9. Q.E.D.

Now we have

(Z)

\C\k2r(r-π)/2p2r(r-n) Σ \t\(r-ny2b(t)
tGA*

S e M ( Z )

X (K M I
X e((4p4)"V((W4 + S J ' ^ Γ '

X rn_ r(/e - r/2)-1 Σ |ί|<I-«>/2(4p46t)
Cr-'t)(2S:-'1-1)/2

t,S2,T
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X |Γ|*-

where

t>0, teA*, S2eMr,n.r(Z), T>0,

Te Λ*_r , (4p2)-1( ίS2r
1S2 + b;ιT) 6 Λtr •

Put

P

then

P = ( 1 OVί 0 \/l -(2p2)-IΓ1SΛ
\-(2p2)-1 'Sj-1 lΛo (4p46()-12'/\0 1 /

implies that P is positive definite and \P\ = (4p46 ί)
Γ""|ί||T|. Our assump-

tions on ί, S2, T mean that ^ e A*, 2pΨ2 e Mr>B.r(Z), pΨ4 e A*.r, and 6,4p4P4

— 6/S2Γ
1S2 e Λ*_r. {ί, S2, T} and P correspond bijectively and

σ(WP) =

Thus we have

LEMMA 10.

Σ
1

_ I Q\k2(r-n)(n-l)/2p(r-n)(n+r+l)γn-r)k/2πyn-r)(k-r/2)

yζ p (h r/2)"1 y

where

Pie A*, 2p2P2eMr>n.r(Z), pΨ4eΛtr

LEMMA 11. Put G = {('SJCr1 - SftCr^Cr1), S/Cr 1)!^ ep2Mr,M.r(Z),

S4ep2Λ- r}, G ^ α α ^ Q S ^ I S . e M ^ . ^ Z X ^ e Λ - J . Then we have

[G': G] =p<I-r)(Iι+!-+1)α6s(|C1 |
ϊ-n |C4 |-

B-1).

Proof. By definition C = ( C l %) andpC'1 = pί0^ ~ C ^ ΐ C i l ) are

integral. It implies G' z> G. Put Go = MB_r,r(Z) x {CS^S^e An.r}\ then

[Go: G'] = αbs \C4\
r. As representatives of G0IG we can take representatives

of {C4S4|S4€/ί7!.r}/{S4

ίC4-
1|S4epMB.r} and then representatives of
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Hence we have

[G,: G] = [{CAIS4 e 4,-r} = {S/Cr11 S< epM,.,}]

X [M,. r. τ(Z): {'Sz'Cr11S2 ep2M,.r,r(Z)}]

= K _ r : p C4-MB_r Cr1]α&β|pι ' C f ψ " '

Thus we have [G': G] = p" ! - r ) ( I ! + ' +1)α6s(|C1r-'1 |C,|-"-').

It is obvious that

and

Q.E.D.

We take

such that CS is representatives of G'/G. For Me Γn, (f\M)(Z) is uniquely

determined by M. Hence we may write (f\M)(Z) for (/|M)(Z). Then

we have

Σ = Σ(f\(C,D

Σ Σ
ίί

For

M= N[ —
\0

S'

we have C¥ = CΛ. = C, DM = CSζ + D, (AMCi\ = 0 mod 1 and CMZ'CM
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+ DM

ιCM = W + CSί ιC. Applying Lemma 10, we have

4-D/2

P>0

X e(σ(P(W + CSί'Q) ,

where a = i< -'>*2(r-">("-1>^2ff)("-r>(*-r/1).Γ1l_r(* - r/2)"1, and P runs over

{P > 0 |P, e Λ*, 2p2P2 e Λfr.m_r(Z)f p 2P 4 e Λ*_r} .

We fix P such that P, e Λ*, 2p2P2 6 M r,.. τ(Z), p 2P 4 e Λ*_r and we put
χ(g) = e ^ σ t e ^ P J + 2αfe2

ίC2P2) + c;fe'C4P4)) for g = (gί»-'•->, βί- '•-•'>) e G'.
It is easy to see that χ(g) = 1 for ge G and e(σ(PCS'C)) = χ((C4'S2, C4S4))

= χ(CS) for S = (,g | 2 ) e Λn. Therefore the definition of Si implies

Σ e(σ(PCS<<C)) = Σ Xte).
i gsβ'/β

χ is trivial if and only if 2ίC1P2C4e Afr>n_r(Z) and 'C^Q +'C/
'CtPfii 6 Λ*_r. Put T = lCPC; then we have

LEMMA 12. P, e A*, 2pΨ2 e Mr,n_r(Z), p 2P 4 e Λ*_r, 2'CΛG. e M r,B. r(Z)
'C2P2C4 + •C/P.C + 'C.Pfi, e Λ*_r if and only if Te A* and 'C^Tfir1

= ('C-'TC'1), e A*.

Proof. T = ιCPC implies Γ, = tCιPιCι, T2 = 'QP& + 'QP.C,, Γ4 =
'C^Cz + 'Ct'PiQ + 'CzPzCt + 'CtPtCt. The assumptions on P imply
'Cr'T.Cr1 = PιeA* and so 7\eΛr*. 2Γ2 = ^CP.Q + 2 (dP2C4e Λfr,m.,.(Z)
holds since P t e A*, VdPJC e Mr.,.r(Z). T4 = 'C^C, + ('C/P.C, + ιC2P2Ct

+ 'CiP4C4) e A*_r. Thus "only if" part has been proved. Conversely, as-
sume Te At, 'Cr'Tfir1 e A*. Then P t = 'Cr'Tfir1 e A*, 'QP.C, + 'C/P.Q
+ 'C^Q = T4 - 'QP.C, 6 Λ*_r, 2ίC1P2C4 = 2Γ2 - 2ίC1P,C2 e Mr.,.r(Z), 2p2P2

= 2(ptCr1)(tC1P2C4)(pC4-
1) e Mr,,.r(Z) follow easily. From P4 - 'Cr'T.C:1 +

'C^CJCr1 and pC"1 = p(°f ~%^f'λ) e MK(Z) follows

4 e 4f_r.
 4 Q.E.D.

Summarizing we have

LEMMA 13.

https://doi.org/10.1017/S002776300001847X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001847X


QUADRATIC FORMS 113

Γ>0

X \T\k-in+1)/2e(σ(TC-ιD))e(σ(TZ)) ,

where we suppose b^C^TC-1),) = 0 if QC'TC1), $A*.

This lemma, Proposition 1 and Theorem in § 1 imply the former part

of the following

THEOREM. Let r, n, k, be natural numbers such that 1 < r < n — 1,

k>n + r + 2, k = 0 mod 2, and let f(z{r)) = Σt>o b(t)e(σ(tz)) be a cusp form

of degree r and weight k. If we put

EMZ,f) = ̂ Σ (f\MXZ) = Σ a(T,f)e(σ(TZ)) ,

n'r n reΛ*

then we have

a(T,f) = a
(

X
for T > 0, where Mx stands for the upper left r X r matrix of M, (C, D)

stands for any fixed symmetric coprime pair such that

and (AC~1)ι = 0 mod 1 for some („ jΛ e Γn, and

X (π^-^-'-^fϊ1 Γ(k - (r +

Moreover we have a(T,f) = 0{\Tl\-{1c-r-l)/2\T\k-{n+l)/2) if T > 0 rarcs over any

fixed Sίegel domain.

To prove the latter part we prepare the following

LEMMA 14. The number of (D3, D4) such that (C4, D39 D4) is repre-

sentatives of &n,r\tt for fixed C4(|C4| Φ 0) is at most abs\C,\r δΓr δn.r

where δx \ | δn_r are elementary divisors of C4.
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Proof. By the definition of the relation « the number of inequi-

valent (C4, A> A ) for fixed C4 is at most [Mn_r>r(Z): CMn-rΛ^)] X

[{A e Mn.r(Z) I C ^ A = '(C^A)}: C4Λn_r]. [Mn. r, r(Z): C4Mn_r,r(Z)] = αfo|C4 |
r

is obvious. The latter part equals [{S = f S e Mn_r(Q)\ C,Se Mn_r(Z)} : Λn_r],

Put C4 = gxδg2 where g4 e GL(n — r, Z),

Then {S = *S 6 Mn_r(Q) \ C4S e Mn.r(Z)} = {S = 'S 6 Mn. r(Q) | ̂ S e Mm. r(Z)}.

Hence the latter part equals δΓr 3»-r. Q.E.D.

We can take

'c.J
as representatives of GL(n - r, Z)\{C4 e Mn_r{Z)\\C,\ Φ 0}. h

then δΓr - - ί n . r = ^i(^Λ) •••(«!-•• ί n . r ) < c^cc) -.. (ct cn_ r) where

δi I I δn-r are elementary divisors of C4. Hence we have

xa(τj) = o( Σ ic4
\(C4,i>3,2>4)e@»,r/«

ίί/ePn,r\Gi(n,2)

= Σ (πΓc«)"*+ r(«S" r c,,-r)(c2

x of Σ K^-IΓT -^Γ^
VZ7€Pn.r\C?Z,(n,Z)

where the sum of cέ is equal to ζ(k — n) n " r , and the last sum is a so-
called Selberg's zeta function and the order of the magnitude is
|2τi|(r+i-*>/2|Γ|*-(n+i>/2 j£ τ r u n g o y e r a n y fiχed siegel domain (p. 143 and

Theorem in p. 144 in [5]). This completes the proof of Theorem.

§3.

Let k, n be natural numbers such that k>n + 2, k = 0 mod 2 and

put
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where (C, D) runs over representatives of GL(n, Z)\{symmetric coprime
pairs}. Our aim is to prove

THEOREM. Put

El(Z) = Σ a(T)e(σ(TZ)) .

Then there are positive numbers cί9 c2 such that

^ C 2 1 1 1 for 1 ^> u .

Put SΓ = 2 ^ β(-σ(ϊ!B)MΛ)-* for Te Λ* where # runs over all n X n
rational symmetric matrices modulo 1 and v(R) is the product of deno-
minators of elementary divisors of R. Then it is known that

a(T) = const. X \T\k-{n+l)/2Sτ for T> 0 ([9]) .

On the other hand Sτ = ΣICΓ'eί-ίKΓC-1!))) w h e ^ e (C, D) runs over the
set {(C, D) I symmetric coprime pair, |C|=£0}/~. Here by definition
(C\D') ~ (C,D) if and only if there are U e GL(n, Z), S e Λn such that
(Cr, DO = U(C, D + CS). We take as representatives of C matrices of the
form

< Cj

then the number of the choice of D for C is at most ci cn as in the
proof of Theorem in § 2. Thus we have

| S Γ | < Σ (Π c,)-fc(Π ci-1) Π cT1-1 = ζ(k - n)» .
Ci = l

To complete the proof we must show |S Γ | > e where ε is a positive
number independent of T.

Put SP(T) = ΣR e(-σ(TR))v(R)-k where R runs over all n X n rational
symmetric matrices modulo 1 such that v(R) is a power of p. Then

f o r T7 > 0, Te Λ*. Put

a n d A ^ ( Γ ) = # { C e M ^ - ( z > m o d 9!Q'\ιCJC - Γ) e Λ*}.

https://doi.org/10.1017/S002776300001847X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001847X


116 YOSHIYUKI KITAOKA

Then we have

SP(T) = (pa)n(n+υ/2-2knApa(T)

for sufficiently large α.

LEMMA 1. For WeΛn we put

G(W; pa) = Σ
C mod pa

primitive mod p

Then we have

ίp2kn{a-ι)G(p^^W;p) i/ W Ξ 0 mod/" 1 ,
G(W;pa) = < .

{ 0 otherwise.

Proof. For a primitive element C1 of M2fc)7i(Z) we take a unimodular

matrix Ϊ7 = (Cx *). From

follows that W=0 modp if and only if CλW = 0 mod p. Lemma is

obvious for a = 1. We assume α > 2. Decompose Ce M2}C)n(Z) as C = Ĉ

+ pa~λC2. Then C is primitive modp if and only if C2 is primitive modp.

Hence we have

G(W;pa)= Σ eip-^CJC.W)) Σ e(2p~'σ(tC1JC2W)) .
C\ m o d p i - i Ci modp
Cχ\ primitive mod p

2σ(tC1JC2W) = 0 modp for any C2 if and only if 2WtCiJ = 0 modp, and it is

equivalent to W= 0 modp. Thus we have

0 otherwise.

Now our lemma is inductively proved. Q.E.D.

Put

f C; primitive modp,
A'AT> - f | C β ^ ( Z ) modp.

LEMMA 2.

for a>l,TeΛ*.
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Proof.

= Σ Σ
WeΛn mod pa C mod pa

primitive mod p

= Σ
WeAn modpα

= Σ l
WeAn τaodp

e(p-aσ(('CJC - T)W))

G(W;pa)e(-p-aσ(TW))

Q.E.D.

LEMMA 3.

SP(T) >pnln+l)/2-2knA'p(T) for TeΛ* .

Proof. This follows from Apa(T) > A'pa(T). Q.E.D.

LEMMA 4. There is a positive number ε such that S2(T) > ε for
TeΛ*.

Proof. A'2{T) is uniquely determined by T mod 2. Hence the values
of A'2{T) is a finite set. Hence we have only to prove A'2{T) Φ 0 for
TeΛ*. By the theory of quadratic forms TeΛ* is equivalent over Z2

to a direct sum of

Since A'2(T + 2T) = A^T) for T, T e il*, we may assume that T is a
direct sum of

2 \1 0/ ' 2 Vl 2/ '

and 0. Hence we may suppose

[A,

ηπ Ar

where

= A r i = l ( ° 1 ) , A r = l ( ° X ) or 1 ( 2 X )
9\1 (\l 9\1 Π/ 9 \1 9/
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u% = = un_2r = 0 and uu u2 = 0 or e Z2

X (93:18 in [6]). Denote by t

the number of ut such that ut = 0. It is easy to see that JL J(-, π )
r + ί- l V 1 U/

r - 1

represents primitively J_ At J_ (0). To prove A2(T) ^ 0 we have only to
i = l ί

show that J_ έ( i n) represents Ar, Ar _]_ (MX), Ar _J_ (MJ) J_ (W2), (M, e
*-(r + ί-l) V1 U /

Z?), primitively according as t = n — 2r, n — 2r — 1, n — 2r — 2.

(i) The case of ί = n - 2r, n - 2r - 1; then 2(k - r - t + 1) - 3 >

3 and I i d Λ is Z2-maximal. Hence J_ \\Λ A represents Ar
Jc-r-t + l \J- W/ Λ-r-ί + 1 \J- v/

_]_ (z/j), (wj e Z2

X). 2"1 det (2Ar J_ (2Wi)) e Z2

X implies t h a t this representation

is primitive.

(ii) The case of t = n - 2r - 2; then k - r + l - t > b .

yield that _L i ί i Q) represents Ar J_ (u?) J_ (w2) primitively. Thus we have

proved A%T) φ 0 for Te A*. Q.E.D.

If SP(T) > (1 - p~2)4?z for odd prime p, then

s r = π sp(T) > s2(T) π (l - P~T > *' > o

holds, and it completes the proof. From now we show

SP(T) > (1 - p-2)4re for odd prime p,TeΛ% .

We fix an odd prime p. Let L be a hyperbolic space of dim2& over

Fp = Z/(p); then A^(T) is equal to the number of isometries from the

quadratic space over Fp corresponding to T to L where isometries are

supposed to be injective. For quadratic spaces M, N over Fp we denote

by A(M, N) the number of isometries from M to N. Our aim is to prove

that

A(T, L) > p2*»-»<»+D/2(i _ p-yn for a n y q u a d r a t i c s p a c e

T of dimension n.

Let T be a quadratic space of dim ra over Fp and T = TQ _[_ R where

R is the radical of T. Define a quadratic space Lx by L = To J_ Lλ then

, L) = A(T0, L)A(R, L,) and
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S l

if t = 0 mod 2 ,

±p- fc) Πχ ( I - P 2 5 ' 2 * )
S ' if * = 1 mod 2 ,

where £ = dim To ([8]).

From k> n + 2 and τι > £ follows

A(T0, L) > p - « « + w « ( i _ p-y» .

Since, then, A(T, L) > p2kn-nin+l)/2(l - p'2Yn follows from A(Λ, A) >

p-(«-ί)(»-ί+i)/2+(2*-ί)(»-ί)(1 _p-2)2(»-ί)> w e have only to prove

LEMMA 5. Let M be a regular quadratic space over Fp of dim M = m

and let N be a totally isotropic quadratic space over Fp of dim N = s.

Then we have

A(N, M) > p-^+υ/2+™*(i _ p-ψ if m>2s + 3 .

Proof. Put N = Fp[vu , vs], M = H\_ Mx where if is a hyperbolic

plane. For quadratic spaces we denote by Q, B associated quadratic

forms and bilinear forms (Q(x) = B(x, x)). Take a basis {e, f] of H such

that Q(e) = Q(f) = 0, B(e, f) = 1. Let a be an isometry from N to M such

that σfa) = e, and put σ(Vi) = α̂ e + bj + ^ (α ,̂ 6̂  e Fp, ut e M^). Then

B(vu Vi) = B{σ(vύ, σivj) = bt = 0. Since σ is injective, u2, , us are

linearly independent and B(uί9 uό) = 0 for i, j . If, conversely, MΛ>, , ws

e Mi are linearly independent and B(wί9 Wj) = 0 for i, j , then μ(v^) = β,

^(yj = α̂ β + wt (at e Fp, ί > 2) define an isometry from N to M. Thus we

have

A(NS, M) = p°->a(M)A(Ns_u MJ ,

where Nt denotes a totally isotropic quadratic space of dim i and a(M)

is the number of (non-zero) isotropic vectors of M.

Put M = _L H J_ Mo; then we have
S-l

A(NS, M) = P-'O^JL H _L M.) A(iV..„ _L H JL Mβ)
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If dim Mo= 1 mod 2, then we have

a(± H± Mo) =^+m-2(«-l)-

since 2ί + m - 2(s - 1) - 1 > 2.

If dim Mo = 0 mod 2, then we have

/ τ τ *Λ [P2r~ι + Pr — Pr~ι — 1 if Mo is hyperbolic ,
a[_l_ H±_ Mo) = <

\ < / Ip2^"1 — Pr + Pr~ι — 1 otherwise ,

where

2r = 2i + m - 2(s - 1) = dim J_ H J_
i

Hence

holds.

Thus we have

t,M)>p s ( 5- 1 ) / 2πV*+ r

Q.E.D.

COROLLARY. // n, ^ are natural numbers such that k > 2n + 2, k = 0

mod 2 and /(Z) = 2] a(T)e(σ(TZ))(Z e Hn) is a modular form of degree n

and weight k, then we have

a(T) = O(|T|fc-(*+1)/2) for Γ > 0 .

Proof It is known that there exist cusp forms fr of degree r and

weight k such that f(Z) = Σ Ή ^V(^, Λ) + α ^ ( ^ ) + A(^), (α 6 C) ([3]).

Since a(lUTU) = a(T) for t/e GL(τι, Z), we may assume that T is in some

fixed Siegel domain. Theorem in § 2 and our theorem imply the

corollary. Q.E.D.

§4.

Let A be an even integral unimodular positive definite symmetric

matrix of rank m; then m =0 mod 8. Put
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θn(Z,A)= Σ e(±σ('CACZ)), ZeHn.
CeMm,n(Z) \ 2 /

Then θn{Z, A) is a modular form of degree n and weight m/2. Then there

exist cusp forms fr of degree r and weight τn/2 such that

θn(Z, A) = E?»(Z) + Σ # » W fr) + A(Z) for n < m/4 - 1 .
l

If

then

τι-1 _<m-ί)/2

\Tr-n-»12 Π SP(T) for T> 0 ,
P

where SP(T) = Σ ^ e(-o-(ri?)>(jR)-m/2 where iϊ runs over all n X τι rational

symmetric matrices modulo 1 such that the product v(R) of denominators

of elementary divisors of R is a power of p.

Put

θn(Z, A) = Σ ^(T 7 , AM

and

Then we have, summarizing,

THEOREM. If n < m/4 - 1, Te A^ T>0, then Nn(T, A) = am/2>n(T) +

Σr^αί?7,/,.) + O(|T|m/4). //, moreover, T runs in any fixed Sίegel domain,

then

am/2>n(T) - IΓr-*-"" , a(T,fr) =

where Tr stands for the upper left r X r submatrix of T.

For n X n positive definite matrix S we denote by m(S) the minimal

value of *xSx (xe Zn — {0}). It is well known that there is a constant μn

such that m(S) < μn ty\S\ for any n X n positive definite matrix S.

COROLLARY. If n < m/4 — 1, then
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Nn(T, A) = am/2,n(T) + O(m(Ty-m/* \ T\(m-n~1)/2) for T>0,TeΛ% .

Especially Nn(T, A) > 0 if m(T) is sufficiently large.

Proof.

= O(m(T)-r{m/2-r-1)/2) .

On the other hand

IT\m / i(m(T)1~m / 4\T\ ( m~n~1 ) / 2)~1 = m(T)m/4~ι \τv>2n+2-my*

Since r(m/2 - r - l)/2 > m/4 - 1 for 1 < r < n < m/4 - 1, we have α(Γ, fr)
= O(m(Ty~m/4\T\(m-n-1)/2), \T\m/i = O(m(Ty-m/4\T\(m-n-ί)/2), if \T\ > 1.

There are only finitely many equivalence classes of TeΛ% such that
T> 0, | Γ | < 1. This completes the proof. Q.E.D.

Remark. Let f(Z) = 2] a(T)e(σ(TZ)) be a modular form of degree n,
weight k(βjZ) with level such that the constant term of f(Z) at any
cusps vanishes. Results in [2] and here seem to suggest that a{T) —
= O(m(Ty-k/2\T\k-(n+1)/2) for T> 0 if, at least, 2k > 2n + 3.
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