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PETAR MOMČILOVIĆ,∗∗ University of Michigan

Abstract

We consider a multiserver queue in the Halfin–Whitt regime: as the number of servers n
grows without a bound, the utilization approaches 1 from below at the rate �(1/

√
n).

Assuming that the service time distribution is lattice valued with a finite support, we
characterize the limiting scaled stationary queue length distribution in terms of the
stationary distribution of an explicitly constructed Markov chain. Furthermore, we
obtain an explicit expression for the critical exponent for the moment generating function
of a limiting stationary queue length. This exponent has a compact representation
in terms of three parameters: the amount of spare capacity and the coefficients of
variation of interarrival and service times. Interestingly, it matches an analogous exponent
corresponding to a single-server queue in the conventional heavy-traffic regime.
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1. Introduction

In their seminal paper Halfin and Whitt [22] formally introduced an unconventional heavy-
traffic regime for queueing models (dubbed thereafter the Halfin–Whitt regime). Unlike in the
traditional heavy-traffic approach, in their regime high utilization is achieved by simultaneously
increasing the arrival rate and the number of servers. This regime is also referred to as the
quality- and efficiency-driven (QED) regime, since it balances between the system utilization
and quality of service perceived by customers. Moreover, the QED regime can be understood
as critical with respect to the delay probability, i.e. the limiting delay probability is strictly in
(0, 1) in QED systems (the delay probabilities 0 and 1 correspond to the quality-driven and
efficiency-driven regimes, respectively). It should be noted that the QED regime was considered
by Erlang [15] in the context of numerical steady-state analysis of M/M/n and M/M/n/n systems.
An asymptotic analysis of the closely related Erlang loss function was carried out in [24]. A
formal analysis of a queue with exponential service times in the QED regime was completed
by Halfin and Whitt [22]. They established the criticality of the delay probability in terms of
the square root spare capacity rule, both in steady-state and transient regimes.

Queueing models in the QED regime have found applications primarily in the area of large-
scale call and customer contact centers [1], [18]. Hence, a number of related models have
been considered in the literature. Models with customer impatience relevant to call center
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management were studied in [16], [19], and [41]. Approximations that take into account
finiteness of buffers were introduced in [39] and [40]. Revenue maximization and constraint
satisfaction were considered in [2], [3], [11], [30], and [32]. Optimal stochastic control of QED
queues in various settings was examined in [5], [6], [23], and [37]; the problem of joint control
and staffing was studied in [7] and [20]. Most of the aforementioned results assume exponential
service times. This assumption significantly simplifies the analysis as we do not need to keep
a track of residual service times. The literature on QED systems with nonexponential service
time distribution is limited. Phase-type service time distribution in the transient regime was
considered in [35]. The case of deterministic service times in the steady-state regime was
examined in [25]. A more recent work [31] dealt with the transient distribution of the virtual
waiting time in the case of discrete service times with a finite support. A process-level limit for
the G/GI/n QED queue with general service time distributions was recently obtained in [36].

In this paper we examine the stationary behavior of a GI/GI/n system in the Halfin–Whitt
regime when service times are lattice valued with a finite support. More specifically, we consider
a sequence of first-come–first-served queues indexed by the number of servers n → ∞. The
utilization in the nth system is 1 − β/

√
n+ o(1/

√
n) for some parameter β > 0; equivalently,

the number of servers n is given by Rn + β
√
Rn + o(

√
Rn), where Rn is the offered load

of the nth system. The service distribution does not change with n. The stationary number
of customers and waiting time in the nth system are denoted by Qn and Wn, respectively.
The first main result of the paper states the existence of limiting random variables Q̂ and Ŵ
such that Qn/

√
n

d−→ Q̂ and
√
nWn d−→ Ŵ as n → ∞, where ‘

d−→’ denotes convergence in
distribution. The distribution of Q̂ is shown to correspond to the unique stationary distribution
of some underlying continuous-state Markov chain {(Q̂t , L̂t ), t ∈ Z+}, where {L̂t , t ∈ Z+}
is a limiting process corresponding to the vector of customers in different stages of service.
Our second main result identifies the exact exponential decay rate of the limiting variable
Q̂. Informally, we show that P[Q̂ > x] ≈ exp(−2βx/(c2

a + c2
s )) for large x, where ca is the

(limiting) coefficient of variation of interarrival times and cs is the coefficient of variation of
service times. Our analysis uses quadratic and geometric Lyapunov functions to establish the
tightness of the sequences {Qn/

√
n, n ≥ 1} and {√nWn, n ≥ 1}.

Next we list some notational conventions used throughout the paper. For two vectors x
and y with elements xi and yi , respectively, x · y denotes the dot product

∑
i xiyi . All

considered vectors are row vectors, and transposition of a vector x is denoted by x�. Let
K := (1, 2, . . . , K). For x ∈ R

m, ‖x‖ denotes the L1-norm, i.e. ‖x‖ = ∑m
i=1 |xi |. Denote by

T : R
K → R

K a linear operator defined by

T {(x1, . . . , xK)} = (x2, . . . , xK, 0).

Given a random variable (RV) X ∈ R, its moment generating function is MX(θ) := E[eθX].
For every θ > 0, we denote by Mθ the family of sequences of RVs {Xn, n ≥ 1} such that
lim supn→∞MXn(θ) < ∞; let M∞ = ⋂

θ>0 Mθ . Given an RV X, we write X ∈ Mθ or
X ∈ M∞ if E[eθX] < ∞ or E[eθX] < ∞ for every θ > 0. We denote by Eπ [·] the expectation
operator with respect to a probability measure π ; similarly, we use Pπ [·] when the probability
measure π is not clear from the context. For two reals x, y, we set x ∧ y = min{x, y},
x ∨ y = max{x, y}, x+ = x ∨ 0, and x− = (−x)+; when the argument of a unary operation is
a vector or matrix, it is understood that the operator is applied elementwise. The symbols Z+
and R+ denote nonnegative integers and reals, respectively.

The paper is organized as follows. In Section 2 we describe the considered model and
formally introduce the Halfin–Whitt (QED) regime. Our main results are stated in Section 3.
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Section 4 contains preliminary results. The proofs of the main results can be found in Sections 5,
6, and 7.

2. Model

2.1. Queueing system description

We consider a sequence of first-come–first-served queues indexed by the number of serversn.
Details of our model are as follows.

2.1.1. Service times. Service times are independent and identically distributed (i.i.d.) RVs,
equal in distribution to an RV S that does not depend on n and takes values in a finite set
{s1, . . . , sK} ⊂ R+. It is assumed that the set of service time values has a common divisor
s > 0, i.e. si = kis for some ki ∈ N, 1 ≤ i ≤ K . Under this assumption, without loss of
generality, we adopt s = 1 to be the largest common divisor of service time values. Let

pi := P[S = i], 0 ≤ i ≤ K,

whereK is the largest index such thatpK > 0. We assume thatp0 = 0, that is, no instantaneous
service is possible. Then the expected service time is µ−1 := E[S] = ∑K

i=1 ipi ; the variance
of S is denoted by σs and the coefficient of variation by cs = µσs . The steady-state behavior
of the system with deterministic service times (S = 1) has been characterized in [25] and,
thus, we consider σs > 0. In this case there exist two values of the service time that are
relatively prime, i.e. pipj > 0 for some relatively prime i �= j ; otherwise a simple time change
argument can be applied to rescale the service times. For convenience, let p = (p1, . . . , pK)

and p̃ = (p̃1, . . . , p̃K), where p̃i = P[S ≥ i] = ∑
j≥i pj describes the tail of the service time

distribution.

2.1.2. Arrival times. Customers arrive to the nth system according to a stationary renewal
process with interarrival times equal in distribution to τn. The arrival rate λn := 1/E[τn] is
such that λn → ∞ as n → ∞, while the coefficient of variation of interarrival times, ca,n,
satisfies ca,n → ca as n → ∞ for some 0 ≤ ca < ∞. In view of the assumption that
S ∈ N (s = 1), it is convenient to define Ant , t ∈ R, as the number of arrivals in the time
interval (t − 1, t] in the nth system. In addition, let ant denote the backward recurrence time
of the arrival process at time t , i.e. ant := inf{u > 0 : Ant−u,t > 0}, where Ans,t is the number
of arrivals in the time interval (s, t] for two reals s < t . Our proving method is based on an
analysis of a time-embedded process that has the Markov property. Hence, we require that
the arrival process has limited dependency in its structure. To this end, it is assumed that the
appropriately scaled number of arrivals, conditioned on the particular value of the backward
recurrence time a, converges to a Gaussian distribution uniformly in a, i.e. for every t ∈ R,

sup
a≥0

∣∣∣∣P
[
Ant − λn√

λn
≤ x

∣∣∣∣ ant−1 = a

]
− P[A ≤ x]

∣∣∣∣ → 0 as n → ∞, (1)

whereA is normally distributed with zero mean and variance c2
a . We assume additionally (since

convergence in distribution does not necessarily imply the convergence of moments) that

sup
a≥0

E

[
Ant − λn√

λn

∣∣∣∣ ant−1 = a

]
→ 0 as n → ∞ (2)
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and

lim sup
n→∞

sup
a≥0

E

[(
Ant − λn√

λn

)2 ∣∣∣∣ ant−1 = a

]
< ∞. (3)

There exists a broad class of arrival processes that satisfy these assumptions. The simplest one
is the class of renewal processes with interarrival times that have bounded conditional second
moments uniformly in ant = a. For example, let {ζi, i ∈ Z} be an i.i.d. sequence of nonnegative
RVs with unit mean and a finite second moment. By setting ζi/λn to be the ith interarrival time
in the nth process we obtain a process that satisfies the aforementioned assumptions due to the
central limit theorem for renewal processes [14, p. 114] when λn → ∞ as n → ∞.

Finally, since we consider multiserver queues in their steady states, the distribution of
interarrival times should be such that the stationary distributions of all considered quantities
exist and are unique (for all finite n). See the comments at the beginning of Section 3 and
[4, Chapter XII] for details.

2.1.3. Quantities of interest. The number of customers awaiting service in the nth queue at
time t is denoted by Qn

t , and the total number of customers in the system is denoted by Ynt .
The fact that Ynt = n+Qn

t when all servers are busy, while Qn
t = 0 when at least one server

is idle renders

Qn
t = (Y nt − n)+ (4)

for every time instant t . Let Lnt,k, k = 1, . . . , K , be the number of customers in service with
remaining service times in the interval (k−1, k] at time t . The notationLnt = (Lnt,1, . . . , L

n
t,K)

renders ‖Lnt ‖ ≤ n, with strict equality corresponding to the case when at least one server is
idle. The following identity then holds for all t ∈ R+:

Qn
t (n− ‖Lnt ‖) = 0. (5)

Let J nt,k, k = 1, . . . , K , be the number of customers with service requirement k that enter
service during the time interval (t − 1, t]; set J nt = (J nt,1, . . . , J

n
t,K). Thus, ‖J nt ‖ is the total

number of customers that enter service during the time interval (t − 1, t] and

Qn
t+1 = Qn

t + Ant+1 − ‖J nt+1‖. (6)

2.2. QED regime and scaling

The offered load in the nth system is λn/µ and, hence, the utilization is given by ρn :=
λn/nµ. In the Halfin–Whitt (QED) regime the relationship between the utilization and number
of servers satisfies

√
n(1 − ρn) → β as n → ∞ (7)

for some β > 0, or, equivalently, n = λn/µ+ β
√
λn/µ+ o(

√
λn/µ) as n → ∞. For

notational simplicity, we let βn be a quantity satisfying n = λn/µ+ βn
√
n, i.e.

βn := n− λn/µ√
n

→ β as n → ∞.
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Under such a scaling, the following centered and scaled versions of RVs indexed by t ∈ R+
are of interest:

Ânt := Ant − λn√
n

,

Q̂n
t := Qn

t√
n
,

L̂nt := Lnt − λnp̃√
n

,

Ĵ nt := ‖J nt ‖ − λn√
n

, (8)

Ĵ nt := J nt − ‖J nt ‖p√
n

,

Ŷ nt := Ynt − λn/µ√
n

. (9)

Given these definitions, the counterparts of (4), (5), and (6) are

Q̂n
t = (Ŷ nt − βn)

+, (10)

Q̂n
t

(
βn −

K∑
k=1

L̂nt,k

)
= 0,

and
Q̂n
t+1 = Q̂n

t + Ânt+1 − Ĵ nt+1, (11)

respectively.

3. Main results

A multiserver queue can be described by the standard Kiefer–Wolfowitz vector [26] of
residual workloads; see, e.g. [4, Section 2.3] and [8, Chapter XII]. Provided that the stability
condition ρn = λn/nµ < 1 is satisfied and the arrival process is renewal, in [26] it was estab-
lished that all relevant stationary measures exist when the system is observed just before arrivals,
i.e. stationary measures exist for this particular time-embedded process. In order to ensure the
existence of stationary probabilities for continuous-time processes {(Qn

t ,L
n
t ), t ∈ R+} and

{Wn
t , t ∈ R+}, additional conditions are needed [4, p. 348]. We assume that these stationary

distributions exist and are unique. Let πn be the stationary distribution of {(Q̂n
t , L̂

n
t ), t ∈ R+},

i.e. πn is time invariant with respect to t . We characterize the limit of πn as n → ∞
in terms of the stationary probability of a certain discrete-time process {(Q̂t , L̂t ), t ∈ Z+}.
Although the processes {(Q̂n

t , L̂
n
t ), t ∈ R+} are inherently continuous time, for the purposes

of characterizing their stationary distributions, it is sufficient to consider their time-embedded
versions (t ∈ Z+ due to the lattice-valued nature of service times, S ∈ N). Such an approach
has an advantage since these discrete-time processes have a tractable Markovian structure that
is amenable to the Lyapunov function method [33].

Next we construct the Markov chain {(Q̂t , L̂t ), t ∈ Z+} with state space R
K+1. To this end,

let {Ât , t ∈ Z+} be an i.i.d. sequence of zero mean normal RVs with variance µc2
a . Also, let

{Ĵt , t ∈ Z+} be an i.i.d. sequence of normal random vectors with the zero mean and covariance
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matrix µ�, where the elements of � are defined by


ij =
{
(1 − pi)pi, 1 ≤ i = j ≤ K,

−pipj , 1 ≤ i �= j ≤ K; (12)

the sequences {Ât , t ∈ Z} and {Ĵt , t ∈ Z} are mutually independent. The process

{(Q̂t , L̂t ), t ∈ Z+}
is defined by the following three recursions:

L̂t+1 = T {L̂t } + Ĵt+1 + Ĵt+1p, (13)

Q̂t+1 =
(
Q̂t + Ât+1 +

K∑
k=2

L̂t,k − β

)+
, (14)

Ĵt+1 = (Q̂t + Ât+1) ∧
(
β −

K∑
k=2

L̂t,k

)
, (15)

and an initial condition (Q̂0, L̂0) that is independent of {Ât , t ∈ Z+} and {Ĵt , t ∈ Z+}; the
random vector (Q̂0, L̂0) satisfies

∑K
k=1 L̂0,k ≤ β and Q̂0(

∑K
k=1 L̂0,k − β) = 0 by definition.

It is straightforward to verify that the preceding defines a continuous-state Markov chain due
to the i.i.d. nature of {Ât , t ∈ Z+} and {Ĵt , t ∈ Z+}. Observe that (13), (14), and (15) imply
that, for all t ∈ N,

∑K
k=1 L̂t,k ≤ β and

Q̂t

( K∑
k=1

L̂t,k − β

)
= 0.

We define a process {Ŷt , t ∈ Z+} by Ŷt = ∑K
k=1 L̂t,k + Q̂t and note that it satisfies Q̂t =

(Ŷt − β)+, t ∈ Z+; we refer to this process as the limiting number of customers in the queue.
Our first main result states the existence of a distributional limit of (Q̂n, L̂n) as n → ∞,

where the pair (Q̂n, L̂n) is distributed according to πn. In particular, we relate the sequence of
stationary distributions {πn, n ≥ 1} of {(Q̂n

t , L̂
n
t ), t ∈ R+} to the stationary distribution of the

discrete-time chain {(Q̂t , L̂t ), t ∈ Z+}. The proof is based on a tightness argument and can be
found in Section 5.

Theorem 1. We have πn
d−→ π∗ as n → ∞, where π∗ is the unique stationary distribution of

the Markov chain {(Q̂t , L̂t ), t ∈ Z+}.
Outline of the proof. The proof consists of three parts: (i) demonstrating that the sequence

{(Q̂n
t , L̂

n
t ), n ≥ 1} is tight with respect to the sequence of distributions {πn, n ≥ 1} (as

n → ∞), (ii) showing that the stationary distribution of {(Q̂n
t , L̂

n
t ), t ∈ R+} converges to a sta-

tionary distribution of {(Q̂t , L̂t ), t ∈ Z+} as n → ∞, and (iii) proving that {(Q̂t , L̂t ), t ∈ Z+}
has a unique stationary distribution π∗. We briefly outline the main argument for part (i), as the
proofs of parts (ii) and (iii) follow more or less a standard argument.

A polynomial function �θ(y, z) = (p̃ · y + α · z)θ is defined, with α ∈ R
K2

being fixed
(see Section 4.3); the function �1 can take negative values. For notational simplicity, let
Ȳ nt = (Ŷ nt , . . . , Ŷ

n
t−K+1) and Z̄nt = (Ẑnt , . . . , Ẑ

n
t−K+1), where Ẑnt = Ĵ nt + pÂnt . Based on
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preliminary results (see Sections 4.1 and 4.2), the following is derived (see Section 4.3) for an
explicitly constructed set Rn:

E[�2(Ȳ
n
t , Z̄

n
t ) 1{Ȳ nt−1 �∈ Rn} −�2(Ȳ

n
t−1, Z̄

n
t−1) | Ȳ nt−1, Z̄

n
t−1] ≤ −δ�1(Ȳ

n
t−1, Z̄

n
t−1)+ ψ

for some δ > 0, ψ < ∞, and all large enough n (see Proposition 2, below), and

lim sup
n→∞

Eπn [�2(Ȳ
n
t , Z̄

n
t ) 1{Ȳ nt−1, Z̄

n
t−1 ∈ Rn}] < ∞

(see Lemma 4, below). These two relationships can be combined (see Theorem 4, below) to
obtain

lim sup
n→∞

Eπn [�1(Ȳ
n
t , Z̄

n
t )] < ∞.

On the other hand, the expectation of the negative part of �1(Ȳ
n
t , Z̄

n
t ) is also bounded in the

limit (see Lemma 6, below):

lim sup
n→∞

Eπn [−�1(Ȳ
n
t , Z̄

n
t ) 1{�1(Ȳ

n
t , Z̄

n
t ) < 0}] < ∞.

Finally, the tightness of {Ŷ nt , n ≥ 1} (and hence of {Q̂n
t , n ≥ 1}, since Q̂n

t = (Ŷ nt − βn)
+) with

respect to stationary {πn, n ≥ 1} is due to Eπn [�1(Ȳ
n
t , Z̄

n
t )] = Eπn [p̃ · Ȳ nt ] = Eπn [Ŷ nt ]/µ.

Let (Q̂, L̂) be distributed according to π∗, i.e. ifQn is the stationary number of customers in
the nth queue thenQn/

√
n

d−→ Q̂ as n → ∞. It is immediate that P[Q̂ = 0] ∈ (0, 1), since the
distribution of the Gaussian term Ât in (13), (14), and (15) has infinite support. The convergence
πn

d−→ π∗ implies that P[Q̂n = 0] → P[Q̂ = 0] ∈ (0, 1) as n → ∞, and, thus, the system is
indeed in the QED regime.

Our second result establishes the critical exponent for the moment generating function of Q̂.
The proof can be found in Section 6. The theorem is stated for the limiting queue length Q̂.
With additional conditions on the arrival processes, a weaker result can be obtained for the
prelimit variables Q̂n by slightly modifying the proof of Theorem 2.

Theorem 2. Let θ∗ = 2β/(c2
a + c2

s ). Then E[eθQ̂] < ∞ if θ < θ∗ and E[eθQ̂] = ∞ if θ > θ∗.

Outline of the proof. Here we outline just the proof of the statement E[eθQ̂] < ∞ if θ < θ∗.
The key idea is to define a geometric Lyapunov function�θ(y, z) = exp(θ p̃ · y + θα · z) (see
Section 4.4) with α ∈ R

K2
being fixed. Based on the rules according to which the number of

customers in the system evolves (see Section 4.2), it is possible to define a set R (see Section 4.4)
such that

E[�θ(Ȳt , Z̄t ) 1{Ȳt−1 �∈ R} | Ȳt−1, Z̄t−1] ≤ (1 − δ)�θ (Ȳt−1, Z̄t−1)

for all θ < θ∗/µ and some δ < 1 (see Proposition 3, below), and Eπ∗ [�θ(Ȳt , Z̄t ) 1{Ȳt−1 ∈
R}] < ∞ for θ > 0 (see Lemma 7, below). The preceding two inequalities are combined to
conclude that Eπ∗ [�θ(Ȳt , Z̄t )] < ∞ for θ < θ∗/µ (see Theorem 3, below), and

Eπ∗ [exp(θ p̃ · Ȳt )] < ∞
follows since Ĵt and Ât are normally distributed by definition. Finally, the proof is concluded
by showing that

Eπ∗

[
exp

(
θ

∣∣∣∣ Ŷtµ − p̃ · Ȳt
∣∣∣∣
)]

< ∞ for all θ > 0.
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We remark that the criticality of the exponent θ∗ = 2β/(c2
a + c2

s ) is consistent with the
results obtained earlier in [22] and [25]. Namely, in the GI/M/n queue in the QED regime the
conditional limited scaled steady-state number of customers is exponentially distributed [22]:

x−1 log P[Q̂ > x | Q̂ > 0] = − 2β

c2
a + 1

, x > 0,

while, for the QED GI/D/n queue [25], we have, as x → ∞,

x−1 log P[Q̂ > x | Q̂ > 0] → −2β

c2
a

;

recall that in both cases P[Q̂ > 0] ∈ (0, 1) for each β > 0.
Furthermore, we point out that the same exponent θ∗ appears in the Kingman approxima-

tion [27], [28] for a single-server queue in the conventional heavy-traffic regime. Moreover,
the same exponent was established in analyses of queues with a fixed number of servers in the
same heavy-traffic regime. In particular, consider a sequence of single-server queues indexed
by n. The arrival rate to the nth system is λn → ∞, with the arrival process being renewal,
satisfying the central limit theorem and ca,n → ca as n → ∞. The service times of customers
are i.i.d. and equal in distribution to S/n (equivalently, the service capacity grows linearly
in n), and, thus, the utilization is given by ρn = λn/nµ. Let Q̃n be the stationary number of
customers awaiting service in the system indexed by n; Q̃n and the total number of customers
in the system differ by at most one at any point in time. If

√
n(1 − ρn) → β > 0 as n → ∞

then Q̃n/
√
n

d−→ Q̃ as n → ∞, where Q̃ is exponentially distributed [38, Section 9.6] (see also
[38, Section 5.7]):

x−1 log P[Q̃ > x] = −θ∗, x > 0,

where θ∗ is as given in Theorem 2. The agreement of the critical exponent θ∗ in the correspond-
ing single- and n-server (n → ∞) systems is interesting since the two evolve under different
rules. Observe that, as n → ∞, the total number of customers in the single-server system is
�(

√
n) as n → ∞, while, for the n-server system, that quantity is �(n) as n → ∞.

In conclusion of this section we state an analogue of Theorem 2 for stationary waiting times
using the distributional Little’s law [21] applied to the waiting room.

Corollary 1. We have
√
nWn d−→ Ŵ = Q̂/µ as n → ∞. Consequently, E[eθŴ ] < ∞ if θ <

µθ∗ and E[eθŴ ] = ∞ if θ > µθ∗.

Proof. See Section 7.

4. Preliminary results

This section contains four subsections. In the first subsection we consider a time-embedded
version of {(Q̂n

t ,L
n
t ), t ∈ R+}. The number of customers in the finite-n and limiting systems

is considered in the second subsection. Quadratic and geometric Lyapunov functions are
introduced and analyzed in the last two subsections.

4.1. Time-embedded process

In this subsection we examine the triple (Qn
t ,L

n
t , at ) ∈ Z

K+1+ × R+ and the laws governing
its evolution in time. The continuous-time process {(Qn

t ,L
n
t , a

n
t ), t ∈ R+} is not Markovian

due to the nonexponential nature of service times. Hence, in order to avoid enlarging the state
space, we consider its time-embedded version {(Qn

t ,L
n
t , a

n
t ), t ∈ Z+}, i.e. the original process
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observed at discrete-time instances t ∈ Z+ (recall from Section 2.2.1 that S ∈ N). As seen in
the following proposition, the evolution of the latter process is determined by the number of
arrivals (Ant ) and customers that enter service (J nt ) during a unit time interval.

Proposition 1. The process {(Qn
t ,L

n
t , a

n
t ), t ∈ Z+} is a Markov chain. For every t ∈ Z+, the

value of (Qn
t+1,L

n
t+1) satisfies

Lnt+1 = T {Lnt } + J nt+1, (16)

Qn
t+1 = (Qn

t + Ant+1 + ‖Lnt ‖ − n− Lnt,1)
+, (17)

where J nt+1 ∈ Z
K+ is a multinomially distributed random vector that obeys

‖J nt+1‖ = (Qn
t + Ant+1) ∧ (n− ‖Lnt,k‖ + Lnt,1) (18)

and
E[J nt+1 | ‖J nt+1‖] = ‖J nt+1‖p; (19)

given ‖J nt+1‖, vector J nt+1 is conditionally independent of {(Qn
t ,L

n
t , a

n
t ), t ∈ Z+}.

Proof. It is sufficient to demonstrate (16), (17), and (18); equality (19) is a straightforward
consequence of the i.i.d. nature of service times. The Markov property follows from these
relationships and the renewal structure of the arrival process.

Consider the number of customers that enter service in the time interval (t, t + 1]. At time t
there are ‖Lnt ‖ customers in service, by the definition of Lnt . Out of these ‖Lnt ‖ customers,
Lnt,1 depart from the system not later than time (t+1), since their residual service requirements
at time t are at most 1 (by the definition of Lnt,1). This yields n− ‖Lnt ‖ + Lnt,1 customers that
can potentially enter service in the time interval (t, t + 1]; recall that n− ‖Lnt ‖ is the number
of idle servers at time t . On the other hand, the number of customers that can enter service in
the time interval (t, t + 1] is at most Qn

t +Ant+1. Thus, the number of customers that do enter
service in the time interval (t, t + 1] is

‖J nt+1‖ = (Qn
t + Ant+1) ∧ (n− ‖Lnt ‖ + Lnt,1), (20)

rendering (18). Now, customers in service at time (t + 1) with residual service requirements
in (i − 1, i] are of two types: (i) customers already in service at time t and (ii) customers that
enter service in the time interval (t, t + 1]. Thus, formally

Lnt+1,i =
{
Lnt,i+1 + J nt+1,i , i = 1, . . . , K − 1,

J nt+1,i , i = K.
(21)

The multinomial distribution of J nt+1 follows from the assumption that customers’ service
requirements are i.i.d. RVs, independent from the arrival processes. Rewriting (21) in a vector
form renders (16).

In order to establish the value ofQn
t+1, it is sufficient to consider the difference between the

number of customers that could start receiving service in the time interval (t, t + 1] and the
actual number of customers that enter service, i.e. (6) and (20) yield

Qn
t+1 = Qn

t + Ant+1 − ‖J nt+1‖
= (Qn

t + Ant+1 + ‖Lnt ‖ − Lnt,1 − n)+,

and (17) holds. This concludes the proof.
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An analogue of Proposition 1 for scaled processes is stated next.

Corollary 2. The process {(Q̂n
t , L̂

n
t , a

n
t ), t ∈ Z+} is a Markov chain and it satisfies

L̂nt+1 = T {L̂nt } + Ĵ nt+1 + Ĵ nt+1p, (22)

Q̂n
t+1 =

(
Q̂n
t + Ânt+1 +

K∑
i=2

L̂nt,i − βn

)+
,

Ĵ nt+1 = (Q̂n
t + Ânt+1) ∧

(
βn −

K∑
i=2

L̂nt,i

)
,

where Ĵ nt+1, conditional on Ĵ nt+1, is independent of {(Q̂n
t , L̂

n
t , a

n
t ), t ∈ Z+}.

Proof. The Markov property follows from Proposition 1 and the fact that there exists a
one-to-one mapping between (Q̂n

t , L̂
n
t ) and (Qn

t ,L
n
t ). Now, (16) implies that

Lnt+1 − λnp̃ = T {Lnt } + J nt+1 − λnp̃

= (T {Lnt } − λn(p̃ − p))+ (J nt+1 − ‖J nt+1‖p)+ (‖J nt+1‖ − λn)p.

This equality and the observation that T {Lnt − λnp̃} = T {Lnt } − λn(p̃ − p) (owing to the
definition of p̃) yield (22). The remaining relationships are obtained similarly from their
counterparts (17) and (18).

Properties of the vector Ĵ nt are summarized in the following lemma.

Lemma 1. The vector Ĵ nt satisfies, for every k = 0, 1, . . . , n and θ > 0,

E[(K · Ĵ nt )2 | ‖J nt ‖ = k] = kσ 2
s

n
,

E[(Ĵ nt,j )2 | ‖J nt ‖ = k] = kpj (1 − pj )

n
,

E[exp(θK · Ĵ nt ) | ‖J nt ‖ = k] ≤
(

E

[
exp

(
θ
S − 1/µ√

n

)])n
.

Proof. Let {Si}ki=1 be a sequence of i.i.d. RVs equal in distribution to S. Then, the definition
of Ĵ nt renders

E[(K · Ĵ nt )2 | ‖J nt ‖ = k] = E

[( k∑
i=1

Si − 1/µ√
n

)2]
= kσ 2

s

n
.

The other two equalities are obtained in a similar straightforward fashion. The last inequality is
due to E[eθ(S−1/µ)/

√
n] ≥ 1. This follows from the convexity of eθ(x−1/µ)/

√
n in x and Jensen’s

inequality.

4.2. Number in system

This subsection is devoted to a detailed analysis of the rescaled number of customers in the
system {Ŷ nt , t ∈ Z+} and its limiting counterpart. The dynamics of {Ŷ nt , t ∈ Z+} are related
to a newly introduced process {Ẑnt , t ∈ Z+},

Ẑnt = (Ẑnt,1, . . . , Ẑ
n
t,K) := Ĵ nt + pÂnt , (23)
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and in particular to

V̂ nt :=
K∑
i=1

K∑
j=i
(Ĵ nt+1−i,j + pj Â

n
t+1−i ) (24)

=
K∑
i=1

K∑
j=i

Ẑnt+1−i,j , (25)

as stated in the next lemma. Informally, for large n, the process {V̂ nt , t ∈ Z+} serves as a proxy
for a scaled infinite-server process. We remark that the lemma is a discrete-time analogue of
Equation (1.1) of [36].

Lemma 2. The process {Ŷ nt , t ∈ Z+} satisfies, for all t ≥ K ,

Ŷ nt = V̂ nt +
K∑
i=1

pi(Ŷ
n
t−i − βn)

+.

Proof. Equalities (11) and (22) yield the following expression for the Kth element of the
vector L̂nt+1:

L̂nt+1,K = Ĵ nt+1,K + (Ânt+1 + Q̂n
t − Q̂n

t+1)pK.

Furthermore, using (22) iteratively, it is straightforward to obtain the remaining elements
of L̂nt+1. To this end, for j = 0, . . . , K − 1,

L̂nt+1+j,K−j =
j∑
i=0

(Ĵ nt+1+i,K−i + (Ânt+1+i + Q̂n
t+i − Q̂n

t+1+i )pK−i ),

which after a change of time indices renders, for t ≥ K and j = 1, . . . , K ,

L̂nt,j =
K+1−j∑
i=1

(Ĵ nt+1−i,j+i−1 + (Ânt+1−i + Q̂n
t−i − Q̂n

t−i+1)pj+i−1). (26)

Summing both sides of (26) over j = 1, . . . , K and using (24) results in

K∑
j=1

L̂nt,j =
K∑
i=1

( K∑
j=i

Ĵ nt+1−i,j + (Ânt+1−i + Q̂n
t−i − Q̂n

t−i+1)p̃i

)

= V̂ nt − Q̂n
t +

K∑
i=1

piQ̂
n
t−i .

The statement of the lemma follows from the preceding equality, (9), and (10).

The following corollary establishes a lower bound and upper bound on the value of Ŷ nt in
terms of the past values of {Ŷ nt , t ∈ Z+} and {V̂ nt , t ∈ Z+}.
Corollary 3. (i) For every k ∈ Z+ and t ≥ k +K ,

Ŷ nt ≤
k∑
i=0

(V̂ nt−i )
+ +

k+K∑
i=k+1

p̃i−k(Ŷ nt−i − βn)
+.
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(ii) For 1 ≤ i1, . . . , ik ≤ K , let p(k) = ∏k
j=1 pij and s(k) = ∑k

j=1 ij with s(0) = 0. Then, for
t ≥ s(k),

Ŷ nt ≥ p(k)Ŷ
n
t−s(k) −

k−1∑
j=0

(β − V̂ nt−s(j) )
+.

Proof. The proofs of the two parts follow by induction on k.

(i) The base of the induction (k = 0) is due to Lemma 2 and p̃i ≥ pi for i = 1, . . . , K . Then
the bound follows from the inductive assumption, Lemma 2, and p̃i = pi + p̃i+1 ≤ 1:

Ŷ nt ≤
k∑
i=0

(V̂ nt−i )
+ + (Ŷ nt−k−1)

+ +
k+K∑
i=k+2

p̃i−k(Ŷ nt−i − βn)
+

≤
k+1∑
i=0

(V̂ nt−i )
+ +

k+1+K∑
i=k+2

p̃i−k−1(Ŷ
n
t−i − βn)

+.

(ii) By Lemma 2 we have Ŷ nt ≥ V̂ nt + pi1(Ŷ
n
t−i1 − β)+, which implies that

Ŷ nt ≥ pi1 Ŷ
n
t−i1 − (β − V̂ nt )

≥ pi1 Ŷ
n
t−i1 − (β − V̂ nt )

+. (27)

The preceding inequality provides the base of the induction (k = 1). Now suppose that the
statement of the corollary holds for some k ≥ 1. Then combining (27), the inductive assumption,
and pi ≤ 1 yields

Ŷ nt ≥ p(k)Ŷ
n
t−s(k) −

k−1∑
j=0

(β − V̂t−s(j) )+ ≥ p(k+1)Ŷ
n
t−s(k+1)

−
k∑
j=0

(β − V̂t−s(j) )+,

where the second inequality is also due to s(k+1) = s(k) + ik+1.

In the rest of this subsection we state the limiting counterparts of the results derived for
{Ŷ nt , t ∈ Z+}. We start by introducing the limiting analogs of Ẑnt and V̂ nt . Define

Ẑt := Ĵt + pÂt

and

V̂t :=
K∑
i=1

K∑
j=i
(Ĵt+1−i,j + pj Ât+1−i ) =

K∑
i=1

K∑
j=i

Ẑt+1−i,j , (28)

where the Ẑt,is are the elements of Ẑt . Since Ĵt and Ât are normal RVs by definition, Ẑt is
normally distributed as well, and, for all t and i, we have

|Ẑt,i | ∈ M∞. (29)

The properties of {Ŷt , t ∈ Z+} are summarized in the following lemma, including limiting
counterparts of Lemma 2 and Corollary 3.
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Lemma 3. (i) The process {Ŷt , t ∈ Z+} satisfies, for all t ≥ K ,

Ŷt = V̂t +
K∑
i=1

pi(Ŷt−i − β)+.

(ii) For every t ∈ Z+,
(−Ŷt ) ∈ M∞.

(iii) For every k ∈ Z+ and t ≥ k +K ,

Ŷt ≤
k∑
i=0

(V̂t−i )+ +
k+K∑
i=k+1

p̃i−k(Ŷt−i − β)+.

(iv) For 1 ≤ i1, . . . , ik ≤ K , let p(k) = ∏k
j=1 pij and s(k) = ∑k

j=1 ij with s(0) = 0. Then, for
t ≥ s(k),

Ŷt ≥ p(k)Ŷt−s(k) −
k−1∑
j=0

(β − V̂t−s(j) )+.

Proof. (i) The proof is analogous to the proof of Lemma 2. Part (ii) follows from Ŷt ≥ V̂t ,
part (i), and the fact that Ât and Ĵt have normal distributions. The proofs of parts (iii) and (iv)
are analogous to the proof of Corollary 3.

4.3. Quadratic Lyapunov function

Here we introduce a quadratic Lyapunov function and prove some of its properties. To this
end, we define K vectors α1, . . . ,αK , where elements of the vector αk = (αk,1, . . . , αk,K) are
defined by

αk,j = (j − k)+; (30)

let α = (α1, . . . ,αK) ∈ R
K2

. A function �θ(y, z) : R
K+K2 → R is defined by

�θ(y, z) := (p̃ · y + α · z)θ (31)

and a set Rx by
Rx := {y ∈ R

K : yi < x for some i}. (32)

The case in which θ = 2 is of particular importance since it corresponds to a quadratic
Lyapunov function (see Appendix B for the definition) as established below. Finally, we
introduce Ȳ nt := (Ŷ nt , . . . , Ŷ

n
t−K+1) and Z̄nt := (Ẑnt , . . . , Ẑ

n
t−K+1); the ‘bar’ notation in Ȳ nt

and Z̄nt indicates that elements of these vectors refer to different time indices.

Proposition 2. There exist δ > 0, ψ < ∞, and n0 such that, for all n ≥ n0,

E[�2(Ȳ
n
t , Z̄

n
t ) 1{Ȳ nt−1 /∈ Rβn} −�2(Ȳ

n
t−1, Z̄

n
t−1) | Ȳ nt−1, Z̄

n
t−1] ≤ −δ�1(Ȳ

n
t−1, Z̄

n
t−1)+ ψ.

Proof. On the event {Ȳ nt−1 /∈ Rβn}, Lemma 2 renders in a vector form Ŷ nt = V̂ nt − βn +
p · Ȳ nt−1, and, since pi + p̃i+1 = p̃i by definition, it implies that p̃ · Ȳ nt = V̂ nt − βn + p̃ · Ȳ nt−1.
Thus, the linear combination of Ȳ nt and Z̄nt that appears in the definition of�θ can be expressed
as

p̃ · Ȳ nt + α · Z̄nt = V̂ nt − βn + p̃ · Ȳ nt−1 + α · Z̄nt
= p̃ · Ȳ nt−1 + α · Z̄nt−1 − βn +K · Ẑnt , (33)
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where the second equality follows from (25) and (30). Then, based on (33), we obtain

E[�2(Ȳ
n
t , Z̄

n
t ) 1{Ȳ nt−1 /∈ Rβn} | Ȳ nt−1, Z̄

n
t−1] −�2(Ȳ

n
t−1, Z̄

n
t−1)

≤ 2�1(Ȳ
n
t−1, Z̄

n
t−1)E[−βn +K · Ẑnt | Ȳ nt−1, Z̄

n
t−1]

+ E[(−βn +K · Ẑnt )2 | Ȳ nt−1, Z̄
n
t−1]. (34)

Now, by (23), the sum in (34) can be expressed in terms of Ânt and Ĵ nt as follows:

E[K · Ẑnt | Ȳ nt−1, Z̄
n
t−1] = E

[
Ânt

µ
+K · Ĵ nt

∣∣∣∣ Ȳ nt−1, Z̄
n
t−1

]

= E

[
Ânt

µ

∣∣∣∣ Ȳ nt−1, Z̄
n
t−1

]

≤ sup
a≥0

E

[
Ânt

µ

∣∣∣∣ ant−1 = a

]
, (35)

where the last inequality is due to the fact that Ânt is conditionally independent of Ĵ nt and
(Ȳ nt−1, Z̄

n
t−1) given at−1 (the arrival process is renewal). The second expectation on the right-

hand side of (34) can be upper bounded by utilizing the same fact in addition to the observation
that Ĵ nt is conditionally independent of Ânt and (Ȳ nt−1, Z̄

n
t−1) given Ĵ nt (see Corollary 2). These

two facts yield

E[(−βn +K · Ẑnt )2 | Ȳ nt−1, Z̄
n
t−1]

= E

[(
Ânt

µ
− βn

)2

+ (K · Ĵ nt )2
∣∣∣∣ Ȳ nt−1, Z̄

n
t−1

]

≤ sup
a≥0

E

[(
Ânt

µ
− βn

)2 ∣∣∣∣ ant−1 = a

]
+ max

0≤i≤nE[(K · Ĵ nt )2 | ‖J nt ‖ = i]

≤ sup
a≥0

E

[(
Ânt

µ
− βn

)2 ∣∣∣∣ ant−1 = a

]
+ σ 2

s , (36)

where the last inequality follows from Lemma 1 and ‖J nt ‖ ≤ n. The limit (as n → ∞) of the
right-hand side of the preceding inequality remains bounded owing to assumption (3) on the
arrival process (see Section 2.1.2) and the fact that service times are bounded (S ≤ K).

Combining (34) with (2), (35), and (36) yields the statement of the proposition.

Lemma 4. The following inequality holds:

lim sup
n→∞

Eπn [�2(Ȳ
n
t , Z̄

n
t ) 1{Ȳ nt−1 ∈ Rβn}] < ∞.

In the proof of Lemma 4 the following number-theoretic fact will be utilized. For complete-
ness, we provide its proof.

Lemma 5. Let p and q be two relatively prime numbers. For any K ∈ N, there exists k ∈ N

such that any l ∈ {k + 1, . . . , k +K} can be represented as l = ilp + jlq for some il, jl ∈ N.

Proof. Since p and q are relatively prime, then any m ∈ {1, 2, . . . , K} can be represented
as m = i′np + j ′

nq for some possibly negative integers i′n and j ′
n; see, e.g. [29, p. 104]. Let

t = maxm{i′n, j ′
n} + 1 and k = tp + tq. Then every l ∈ {k + 1, . . . , k + K} is given by

l = ilp + jlq, where il = (t + i′l−k) and jl = (t + j ′
l−k).
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Proof of Lemma 4. Let Rk
x = {y ∈ R

K : y1 ≥ x, . . . , yk−1 ≥ x, yk < x}, 1 ≤ k ≤ K . It
is sufficient to prove the statement of the lemma with Rβn replaced with Rk

βn
for an arbitrary

k ∈ {1, . . . , K} since Rβn = ⋃
k Rk

βn
. The proof is based on demonstrating the following

bound for some positive integer m and constants {ci, i = 0, . . . , m + k + K} and {di, i =
0, . . . , m+ k +K}:

�2(Ȳ
n
t , Z̄

n
t ) 1{Ȳ nt−1 ∈ Rk

βn
} ≤

(m+k+K∑
i=0

(ci + di |V̂ nt−i |)
)2

for all n, . (37)

Then the statement of the lemma follows from the definition of V̂ nt , Lemma 1, and (3) applied
in the unconditioned case; thus, we focus on demonstrating (37).

On the event {Ȳ nt−1 ∈ Rk
βn

}, applying Lemma 2 to Ŷ nt yields

Ŷ nt = V̂ nt +
k−1∑
i=1

pi(Ŷ
n
t−i − βn)+

K∑
i=k+1

pi(Ŷ
n
t−i − βn)

+

= V̂ nt +
k−1∑
i=1

gi(V̂
n
t−i − βn)+

K+k−1∑
i=k+1

hi(Ŷ
n
t−i − βn)

+, (38)

where the constants gi and hi can be computed in a recursive fashion; i.e. g0 = 1, gi =∑i−1
j=0 gjpi−j for i = 1, . . . , k−1 and hi = ∑k−1

j=(i−K)+ gjpi−j for i = k+1, . . . , K+k−1.
Hence, based on (38), there exist finite g and h such that

p̃ · Ȳ nt ≤ g

k−1∑
i=0

(V̂ nt−i )
+ + h

K+k−1∑
i=k+1

(Ŷ nt−i )
+. (39)

Next, on the event of interest, {Ȳ nt−1 ∈ Rk
βn

}, we upper bound the second sum in (39) in two
steps: (i) bound values of {Ŷ nt , t ∈ Z+} on a time interval of lengthK prior to time (t−k) based
on {Ŷ nt−k < βn} and (ii) obtain a desired bound based on (i). First, consider arbitrary i1, i2 ≤ K

such thatpi1pi2 > 0; such a pair of indices exists since σs > 0 (see Section 2.1.1). By Lemma 5,
there exists a sufficiently large m such that every element of {m+ 1,m+ 2, . . . , m+K} can
be represented as r1i1 + r2i2 for some nonnegative integers r1 and r2. Invoking the second part
of Corollary 3 and {Ŷ nt−k < βn} yields the existence of finite r , q, and m ≥ K such that

(Ŷ nt−k−i )
+ ≤ r + q

m+k+K∑
j=k

|V̂ nt−j |

for all i ∈ {m+ 1, . . . , m+K}; we also used |x+ y| ≤ |x| + |y| and the fact that the elements
of the sum are nonnegative. The preceding inequality and the first part of Corollary 3 assure
the existence of finite r ′ and q ′ such that

h

K+k−1∑
i=k+1

(Ŷ nt−i )
+ ≤ r ′ + q ′

m+k+K∑
i=k

|V̂ nt−i |, (40)

since each summand on the left-hand side is upper bounded by an expression that appears on
the right-hand side with r ′ and q ′ replaced by some other finite constants.
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Next, combining (39) and (40) provides the following bound on p̃ · Ȳ nt in terms of V̂ nt , . . . ,
V̂ nt−m−k−K :

p̃ · Ȳ nt ≤ g

k−1∑
i=0

(V̂ nt−i )
+ + r ′ + q ′

m+k+K∑
i=k

|V̂ nt−i | ≤ r ′ + g′
m+k+K∑
i=0

|V̂ nt−i |,

where g′ is finite. Finally, from (25) we know that the absolute value of α · Z̄nt is upper
bounded by a linear combination of |V̂ nt−i |s. Then, (37) follows from the preceding bound.
This completes the proof.

Lemma 6. The following inequality holds:

lim sup
n→∞

Eπn [−�1(Ȳ
n
t , Z̄

n
t ) 1{�1(Ȳ

n
t , Z̄

n
t ) < 0}] < ∞.

Proof. Lemma 2 renders Ŷ nt ≥ V̂ nt , which leads to�1(Ȳ
n
t , Z̄

n
t ) ≥ ∑K

i=1 p̃i V̂
n
t+1−i + α · Z̄nt .

The statement follows from the preceding relationship, (3), (24), the Cauchy–Schwarz inequal-
ity, and Lemma 1.

4.4. Geometric Lyapunov function

In this subsection we introduce a family of Lyapunov functions parameterized by θ > 0 and
prove some of its properties. Given a parameter θ > 0, consider a function

�θ(y, z) : R
K+K2 → R+

defined by
�θ(y, z) := exp(θ p̃ · y + θα · z). (41)

We consider �θ as a function of the limiting pair (Ȳt , Z̄t ), where Ȳt := (Ŷt , . . . , Ŷt−K+1) and
Z̄t := (Ẑt , . . . , Ẑt−K+1). Proposition 3, below, establishes a negative drift of the Lyapunov
function �θ under an assumption that θ < θ∗/µ. Moreover, θ∗/µ is the critical exponent
under which �θ is a geometric Lyapunov function (see Appendix B for the definition). Recall
the definition of Rx from (32).

Proposition 3. For every θ < θ∗/µ, there exists δ = δθ > 0 such that

E[�θ(Ȳt , Z̄t ) 1{Ȳt−1 /∈ Rβ} | Ȳt−1, Z̄t−1] ≤ (1 − δ)�θ (Ȳt−1, Z̄t−1), (42)

and, for every θ > θ∗/µ, there exists δ = δθ > 0 such that

E[�θ(Ȳt , Z̄t ) | Ȳt−1, Z̄t−1] ≥ (1 + δ)�θ (Ȳt−1, Z̄t−1). (43)

Proof. The proof is similar to that of Proposition 2. From Lemma 3(i) we have, on the event
{Ȳt−1 /∈ Rβ},

p̃ · Ȳt + α · Z̄t = p̃ · Ȳt−1 + α · Z̄t−1 − β +K · Ẑt .
This results in

E[�θ(Ȳt , Z̄t ) 1{Ȳt−1 /∈ Rβ} | Ȳt−1, Z̄t−1]
= e−θβ E[exp(θK · Ẑt ) 1{Ȳt−1 /∈ Rβ} | Ȳt−1, Z̄t−1]�θ(Ȳt−1, Z̄t−1)

≤ e−θβ E[exp(θK · Ẑt ) | Ȳt−1, Z̄t−1]�θ(Ȳt−1, Z̄t−1)

= e−θβ E

[
exp

(
θÂt

µ

)]
E[exp(θK · Ĵt )]�θ(Ȳt−1, Z̄t−1), (44)
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where the last equality follows from the definition of Ẑt , and the mutual independence of Ât
and Ĵt as well as their independence of (Ȳt−1, Z̄t−1). By definition, the RV Ât is normally
distributed with zero mean and variance µc2

a and, hence,

E

[
exp

(
θÂt

µ

)]
= exp

(
θ2c2

a

2µ

)
. (45)

On the other hand, Ĵt is normal with covariance matrix µ� = µ(diag(p)− p�p) (see (12)),
where diag(p) is the diagonal matrix defined by p. Thus,

E[(K · Ĵt )2] = µK�(diag(p)− p�p)K = µ

K∑
j=1

j2pj − µ(K · p)2 = µσ 2
s ,

which in turn implies that E[exp(θK · Ĵt )] = exp(θ2c2
s /2µ). This equality, (44), and (45) result

in

E[�θ(Ȳt , Z̄t ) 1{Ȳt−1 /∈ Rβ} | Ȳt−1, Z̄t−1] ≤ e−θβ exp

(
θ2c2

a

2µ

)
exp

(
θ2c2

s

2µ

)
�θ(Ȳt−1, Z̄t−1),

and then (42) follows provided that −θβ+θ2c2
a/2µ+θ2c2

s /2µ < 0, or, equivalently, θ < θ∗/µ.
Therefore, the first part of the proposition is established.

The proof of (43) is very similar. We observe from Lemma 3(i) that Ŷt ≥ V̂t − β + p · Ȳt−1,
regardless of whether Ȳt−1 ∈ Rβ or Ȳt−1 �∈ Rβ . Repeating the analysis for the previous case
(θ < θ∗/µ), we obtain

E[�θ(Ȳt , Z̄t ) | Ȳt−1, Z̄t−1] ≥ e−θβ E[exp(θK · Ẑt ) | Ȳt−1, Z̄t−1]�θ(Ȳt−1, Z̄t−1)

= exp

(
−θβ + θ2c2

a

2µ
+ θ2c2

s

2µ

)
�θ(Ȳt−1, Z̄t−1);

thus, (43) holds provided that θ > θ∗/µ. This concludes the proof of the proposition.

The analogue of Lemma 4 for the geometric function applied to the limiting processes is
stated next. The proof is very similar to that of Lemma 4, except that the fact that Ât and Ĵt
are normally distributed is utilized.

Lemma 7. We have Eπ∗ [�θ(Ȳt , Z̄t ) 1{Ȳt−1 ∈ Rβ}] < ∞ for every θ > 0.

Proof. As in the proof of Lemma 4, it is sufficient to prove the statement of the lemma with
Rβ replaced with Rk

βn
for an arbitrary k ∈ {1, . . . , K}. Repeating the steps of the proof of

Lemma 4 yields the existence of some positive integer m and constants ci and di such that

�θ(Ȳt , Z̄t ) 1{Ȳt−1 ∈ Rk
β} ≤ exp

(m+k+K∑
i=0

(ci + di |V̂t−i |)
)
.

Then the statement of the lemma follows from the definition of V̂t , the Gaussian distribution of
its components, and Proposition 6 given in Appendix A.
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5. Proof of Theorem 1

The convergence in the statement of the theorem is established by proving the tightness of
all relevant RVs. Recall that a sequence of RVs {Xn, n ≥ 1} is tight [14, p. 87] if, for all ε > 0,
there exists an xε such that

sup
n→∞

P[Xn �∈ (−xε, xε]] ≤ ε.

Proposition 4. For a fixed t ≥ 0, the sequence {Ŷ nt , n ≥ 1} is tight with respect to the sequence
of probability measures {πn, n ≥ 1}.

Proof. Theorem 4, given in Appendix B, can be used to bound the sequence {Ŷ nt , n ≥ 1}
away from +∞. In order to obtain uniform boundedness away from −∞, we utilize the fact
that the negative part of Ŷ nt can be upper bounded by (V̂ nt )

− according to Lemma 3(i).
From Proposition 2, Lemma 4, Lemma 6, and Theorem 4, it follows that

lim sup
n→∞

Eπn [�1(Ȳ
n
t , Z̄

n
t )] < ∞.

Applying (3), (25), and Lemma 1, from (31) in the case in which θ = 1, we obtain

lim sup
n→∞

Eπn [p̃ · Ȳ nt ] < ∞. (46)

Next, Lemma 2 implies that Ŷ nt ≥ V̂ nt , leading to (Ŷ nt )
− ≤ |V̂ nt | =

√
(V̂ nt )

2, which, combined
with (3), (24), and Lemma 1, yields

lim sup
n→∞

Eπn [(Ŷ nt )−] < ∞. (47)

Now, in view of p̃1 = 1 we have Ŷ nt = p̃ · Ȳ nt − ∑K
k=2 p̃kŶ

n
t−k ≤ p̃ · Ȳ nt + ∑K

k=2 p̃k(Ŷ
n
t−k)−,

and it then follows, from (46) and (47), that

lim sup
n→∞

Eπn [Ŷ nt ] < ∞.

This bound together with (47) and the Markov inequality implies the tightness of the sequence
{Ŷ nt , n ≥ 1} with respect to the sequence of distributions {πn, n ≥ 1}.

For the purposes of the proof of Theorem 1, it is convenient to define the following sequence
of stationary random processes:

{ϒ̂nt = (Q̂n
t , L̂

n
t , Â

n
t , Ĵ

n
t , Ĵ

n
t , Ŷ

n
t , a

n
t ), t ∈ R+}

indexed by n. Assume that (Q̂n
t , L̂

n
t , a

n
t ) (or, equivalently, the extended process ϒ̂nt ) is dis-

tributed according to πn for all t ∈ R+ (see Section 3).

Corollary 4. For a fixed t ≥ 0, the sequence {ϒ̂nt , n ≥ 1} is tight with respect to the sequence
of probability measures {πn, n ≥ 1}.

Proof. The tightness of the RVs {Ânt , n ≥ 1} follows from (3) and the tightness of {Ŷ nt , n ≥
1} is due to Proposition 4. The tightness of {Q̂n

t , n ≥ 1} then follows from (10), and, thus,
(11) implies the tightness of {Ĵ nt , n ≥ 1}. The tightness of {Ĵ nt , n ≥ 1} implies, via (8), that
‖J nt ‖/µn → 1 with probability 1. Recalling that Ĵ nt conditional on Ĵ nt is independent of all
the other RVs (see Corollary 2), we obtain the tightness of the sequence {Ĵ nt , n ≥ 1}. Finally,
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iteratively applying (22), we obtain the tightness of L̂nt,K , L̂nt,K−1, and L̂nt,1. The tightness
of ant follows from the equilibrium assumption of the arrival processes, which implies that
E[ant ] = (c2

a,n + 1)/2λn = O(1/n) as n → ∞, owing to the assumption that ca,n → ca < ∞
as n → ∞. This completes the proof of the corollary.

The preceding result implies the weak convergence of πn along some subsequence {nk, k ≥
1} to some limiting probability measure π∗ [10, p. 59]. For now, let π∗ be any such limiting
measure. Later in this section we establish the uniqueness of π∗. Observe that the tightness of
{ϒnt , n ≥ 1} implies the tightness of {(ϒnt ,ϒnt+1), n ≥ 1}.
Proposition 5. Let {ϒnt , t ∈ Z+} be in stationarity, and suppose that

(ϒnt ,ϒ
n
t+1)

d−→ (ϒ̌t , ϒ̌t+1) as n → ∞
for some (ϒ̌t , ϒ̌t+1), where ϒ̌t = (Q̌t , Ľt , Ǎt , J̌t , J̌t , Y̌t , ǎt ). Then the RVs Ǎt+1 and ϒ̌t are
independent.

Proof. By (1) and (7), it follows that Ǎt+1 is equal in distribution to Ât+1. We need to show
that, for every real a and b,

P[Ǎt+1 ≤ a, ϒ̌t ≤ b] = P[Ǎt+1 ≤ a] P[ϒ̌t ≤ b], (48)

where, for the vector case, ‘≤’ is interpreted coordinatewise. Given a multidimensional RVX,
recall that a vector x is defined to be a continuity point if P[Xi = xi] = 0 for every coordinate i;
it is known that the set of continuity points is a dense uncountable set (see [14, Section 2.9]).
Since distribution functions are right continuous, it suffices to establish the identity (48) for
the case when a and b are continuity points of Ǎt+1 and ϒt , respectively, as in this case, by
the density property, we can find a sequence of continuity points (an, bn) ↓ (a, b) as n → ∞.
Thus, we need to establish (48) with a and b being continuity points.

The key to the proof is the observation that, conditional on the backward recurrence time ant ,
the RVs Ânt+1 and ϒ̂nt are independent, i.e.

Pπn [Ânt+1 ≤ a, ϒ̂nt ≤ b] =
∫ ∞

0
P[Ânt+1 ≤ a | ant = z] Pπn [ϒ̂nt ≤ b | ant = z] dP[ant ≤ z].

By assumption (1) we have

sup
z≥0

| P[Ânt+1 ≤ a | ant = z] − P[Ât+1 ≤ a]| ≤ ε

for all sufficiently large n. Therefore, for all such n, the following holds:

Pπn [Ânt+1 ≤ a, ϒ̂nt ≤ b] ≤ (P[Ǎt+1 ≤ a] + ε)

∫ ∞

0
Pπn [ϒ̂nt ≤ b | ant = z] dP[ant ≤ z]

≤ P[Ǎt+1 ≤ a] Pπn [ϒ̂nt ≤ b] + ε.

Recall that b is a continuity point of ϒ̂nt . Then the weak convergence, ϒ̂nt
d−→ ϒ̌t , implies that

Pπn [ϒ̂nt ≤ b] → P[ϒ̌t ≤ b] as n → ∞, resulting in

lim sup
n→∞

Pπn [Ânt+1 ≤ a, ϒ̂nt ≤ b] ≤ P[Ǎt+1 ≤ a] P[ϒ̌t ≤ b] + ε.
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Similarly, we establish

lim inf
n→∞ Pπn [Ânt+1 ≤ a, ϒ̂nt ≤ b] ≥ P[Ǎt+1 ≤ a] P[ϒ̌t ≤ b] − ε.

On the other hand, by the assumed weak convergence we have

Pπn [Ânt+1 ≤ a, ϒ̂nt ≤ b] → P[Ǎt+1 ≤ a, ϒ̌t ≤ b]

as n → ∞ since (a, b) is a continuity point of the vector (Ǎt+1, ϒ̌t ). Parameter ε is arbitrary
and, hence, the assertion of the proposition follows.

We have now developed the necessary tools for proving Theorem 1. In the first part of
the proof we show the existence of a weak subsequential limit of ϒ̂nt , as n → ∞, that must
correspond to the stationary distribution of the Markov chain defined by (13), (14), and (15)
(see Section 3). In the second part of the proof we argue that a stationary distribution of this
Markov chain is unique.

Part 1. By Corollary 4, there exists a subsequence {nk, k ≥ 1} along which a weak
convergence (ϒ̂nkt , ϒ̂

nk
t+1)

d−→ (ϒ̌t , ϒ̌t+1) as k → ∞ takes place [14, Section 2.2] for a fixed
t and a pair of random vectors ϒ̌· = (Q̌·, Ľ·, Ǎ·, J̌·, J̌·, Y̌·, ǎ·). The continuous mapping
theorem [10, Section 2] yields the following two weak limits along {nk, k ≥ 1}:

(
Q̂
nk
t + Â

nk
t+1 +

K∑
j=2

L̂
nk
t,j − βnk

)+
d−→

(
Q̌t + Ǎt+1 +

K∑
j=2

Ľt,j − β

)+
,

(Q̂
nk
t + Â

nk
t+1) ∧

(
βnk −

K∑
j=2

L̂
nk
t,j

)
d−→ (Q̌t + Ǎt+1) ∧

(
β −

K∑
j=2

Ľt,j

)
.

Then, from the preceding and Corollary 2, the following relations follow for the elements of
ϒ̌t and ϒ̌t+1:

Ľt+1 = T {Ľt } + J̌t+1 + J̌t+1p,

Q̌t+1 =
(
Q̌t + Ǎt+1 +

K∑
j=2

Ľt,j − β

)+
,

J̌t+1 = (Q̌t + Ǎt+1) ∧
(
β −

K∑
j=2

Ľt,j

)
.

Now, note that Ânt
d−→ Ât and Ĵ nt

d−→ Ĵt as n → ∞ for every t ∈ Z+. These weak limits are
due to central limit theorems for renewal processes [10, p. 154] and vectors in R

K [9, p. 385],
respectively. Moreover, Ât and Ĵt are mutually independent in addition to the independence
of Ǎt+1 and ϒ̌t (see Proposition 5). Since πn is the stationary distribution of {ϒ̂nt , t ∈ Z+},
we find that the distribution of ϒ̌t coincides with a stationary distribution of the Markov chain
specified by (13), (14), and (15).

Part 2. We established in part 1 that every weak subsequential limit ϒ̌t of ϒ̂nt is a stationary
distribution of the Markov chain {ϒ̂t , t ∈ Z+} defined by (13), (14), and (15). It remains to
establish the uniqueness of the stationary measure π∗ of {ϒ̂t , t ∈ Z+}. The uniqueness of this
measure also implies the convergence πn

d−→ π∗, using standard results of weak convergence
theory [10, p. 59].
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The proof of uniqueness uses the framework of Harris chains and Harris recurrence. All
of the definitions and results are adopted from [14, Chapter 5]. Recall that the Markov chain
{(Q̂t , L̂t ), t ∈ Z+} is a Harris chain if there exist two (measurable) sets A, B ⊂ R

K+1 and a
probability measure ν concentrated on B such that, for every x ∈ R

K+1,∑
t≥0

P[(Q̂t , L̂t ) ∈ A | (Q̂0, L̂0) = x] > 0,

and there exists ε > 0 such that, for every C ⊂ B,

inf
x∈A

P[(Q̂t+1, L̂t+1) ∈ C | (Q̂t , L̂t ) = x] ≥ εν(C). (49)

Moreover, if these conditions hold for some B = A, and the Markov chain admits a stationary
distribution, then the Markov chain is also mixing and, as a result, the stationary distribution
is unique (see [14, Theorem 6.8] and the comment on aperiodicity just preceding it). Note that
if π is a stationary distribution of {(Q̂t , L̂t ), t ∈ Z+} then π is also a stationary distribution of
{(Q̂2Kt , L̂2Kt ), t ∈ Z+}. In view of this, (49) can be replaced by

inf
x∈A

P[(Q̂t+2K, L̂t+2K) ∈ C | (Q̂t , L̂t ) = x] ≥ εν(C). (50)

Thus, our task of proving the uniqueness of the stationary distribution π∗ is reduced to con-
structing the set A = B satisfying the assumptions above. For this purpose, we set

A =
{
x ∈ R

K+1 : x1 = 0, |xj | < β

K2 , j = 2, . . . , K + 1

}
.

Namely, (Q̂t , L̂t ) ∈ A implies that the queue length Q̂t is equal to 0 and each L̂t,j , 1 ≤ j ≤ K ,
is upper bounded by β/K2 in absolute value. We set B = A and claim that A satisfies the
requirements when ν is the uniform distribution on A. For a pair of positive constants c and
C, define an event U by

U = {Ât+i < −C, i = 1, . . . , K} ∩ {|Ât+i | < c, i = K + 1, . . . , 2K},
and note that P[U] > 0, owing to the Gaussian nature of Ât .

First, we show that P[(Q̂t+2K, L̂t+2K) ∈ A | (Q̂t , L̂t ) = x] > 0 for every x. To this end,
given (13), (14), (15), and (Q̂t , L̂t ) = x, there exists large enough C so that

P

[
Q̂t+K = 0,

K∨
i=1

L̂t+K,i < −β
∣∣∣∣ U

]
> 0. (51)

To verify this claim, note that (13) implies that

L̂t+K,i =
K∑
j=i
(Ĵt+K+i−j,j + pj Ĵt+K+i−j ) (52)

and that P[∨K
i,j=1 |Ĵt+i,j | ≤ ε] > 0 for any ε > 0, owing to the normal distribution. Then, by

selectingC > (Q̂t + ‖L̂t‖ + β + εK)/pK and small enough ε, recursions (14) and (15) render
Q̂t+1 = 0 and Ĵt+1 = Q̂t + Ât+1 ≤ −(β + εK)/pK on the event U ∩ {∨K

i,j=1 |Ĵt+i,j | ≤ ε};
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this leads to L̂t+1,K ≤ ε−β−εK by (52). Next, on the same event Q̂t+2 = 0, Ĵt+2 = Ât+2 ≤
−(β + εK)/pK , L̂t+2,K ≤ −β−ε(K−1), and L̂t+2,K−1 ≤ −β−ε(K−2). Further iteration
over the time index and (52) yield (51).

In addition, for small enough c in the definition of U, on the event {Q̂t+K = 0,
∨
i L̂t+K,i <−β}, we have Qt+K+i = 0 and Ĵt+K+i = Ât+K+i for i = 1, . . . , K by a similar argument as

above. Then the components 2, . . . , K + 1 of (Q̂t+2K, L̂t+2K) are bounded in absolute value
by β/K2 provided that

Ĵ ′
i =

K∑
j=i

Ĵt+2K+i−j,j ∈
{[

− β

K2 ,
β

K2

]
−

K∑
j=i

pj Ât+2K+i−j
}

for i = 1, . . . , K. (53)

We denote by E the conjunction of U and the event described by (53). Recall that {Ĵt , t ∈ Z+} is
an i.i.d. sequence of multivariate Gaussian random vectors, independent from all other RVs, with
the covariance matrix µ� (see (12)). Thus, (Ĵ ′

1, . . . , Ĵ
′
K) is a zero-mean multivariate Gaussian

vector with E[Ĵ ′2
i ] = µ

∑K
j=i (1 − pj )pj and E[Ĵ ′

i Ĵ
′
j ] = −µ∑K

k=j pk+i−jpk, i < j . In
particular, it has a continuous positive density everywhere on R

K . To this end, assume that
(Ĵ ′
i , Ĵ

′
i+1, . . . , Ĵ

′
K) has a continuous positive density everywhere on R

K+1−i ; this assumption
holds for i = K because pK > 0. Then, (Ĵ ′

i−1, Ĵ
′
i , . . . , Ĵ

′
K) has a continuous density

everywhere on R
K+2−i since

Ĵ ′
i−1 = Ĵt+K+i−1,K +

K−1∑
j=i−1

Ĵt+2K+i−1−j,j ,

Ĵt+K+i−1,K is independent of {Ĵt+K+j , j = i, . . . , K} and (Ĵ ′
i , Ĵ

′
i+1, . . . , Ĵ

′
K) is a determin-

istic function of {Ĵt+K+j , j = i, . . . , K}. Then, clearly, P[E | (Q̂t , L̂t ) = x] > 0 for every x.
Second, as in the preceding, by continuity and strict positivity of the density of Ât and Ĵ ′

i ,
there exists α > 0 such that, for every set C ⊂ A,

inf
x∈A

P[(Q̂t+2K, L̂t+2K) ∈ C | (Q̂t , L̂t ) = x] ≥ αν(C),

and requirement (50) holds. Thus, {(Q̂t , L̂t ), t ∈ Z+} is indeed a Harris chain that admits a
unique stationary distribution. This completes the proof.

6. Proof of Theorem 2

This section is devoted to proving our second main result, Theorem 2. The approach is
based on the results of Section 4.4 for the limiting Markov chain {ϒ̂t , t ∈ Z+} in steady state.
The proof utilizes the following preparatory lemma. The operators ‘≤’ and ‘≥’ are interpreted
elementwise.

Lemma 8. Let

�� =
[
p

I 0�
]
,

where I is the (K − 1)× (K − 1) identity matrix and 0 is a (K − 1)-dimensional vector of 0s.
Then, for t ≥ K − 1 and k ≥ 0,

−V̄t+k − βBk ≤ Ȳt+k − (Ȳt )
+�k ≤ V̄t+k,
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where Bk = (k, (k − 1)+, . . . , (k −K + 1)+) and

V̄t =
( t∑
i=t−K+1

|V̂i |,
t−1∑

i=t−K+1

|V̂i |, . . . ,
t−K+1∑
i=t−K+1

|V̂i |
)
.

Remark 1. Note that�� is an irreducible, aperiodic stochastic matrix since ‖p‖ = 1, pK > 0,
and there exist relatively prime i and j such that pipj > 0 (see Section 2.1.1). Therefore,
�k → (ψ�, . . . ,ψ�) as k → ∞ for some unique probability vector ψ .

Proof of Lemma 8. The proof is by induction over k. First, we claim that the statement holds
for k = 0:

−V̄t − βB0 ≤ Ȳt − (Ȳt )
+ ≤ V̄t ,

or in the scalar form

−
t−j∑

i=t−K+1

|V̂i | ≤ Ŷt−j − (Ŷt−j )+ ≤
t−j∑

i=t−K+1

|V̂i |,

where j = 0, 1, . . . , K − 1. The upper bound is trivial owing to the nonnegativity of |V̂i |
for all i; the same holds for the lower bound when Ŷt−j ≥ 0. The case in which Ŷt−j < 0
is covered by Lemma 3(i) since it implies that Ŷt−j ≥ V̂t−j . Now, assume that the statement
holds for some k and note that

(Ȳt )
+� =

( K∑
i=1

piŶ
+
t+1−i , Ŷ

+
t , Ŷ

+
t−1, . . . , Ŷ

+
t−K+2

)
,

V̄t� ≤
( t∑
i=t−K+1

|V̂i |,
t∑

i=t−K+1

|V̂i |,
t−1∑

i=t−K+1

|V̂i |, . . . ,
t−K+2∑
i=t−K+1

|V̂i |
)
.

Consider the upper bound first. The preceding two relationships, Lemma 3(i), and the inductive
assumption yield

Ȳt+k+1 ≤ (Ȳt+k)+� + (|V̂t+k+1|, 0, . . . , 0)

≤ (Ȳt )
+�k+1 + V̄t+k� + (|V̂t+k+1|, 0, . . . , 0)

≤ (Ȳt )
+�k+1 + V̄t+k+1,

where (x−β)+ ≤ x+ is also used. As far as the lower bound is concerned, the same arguments
and (x − β)+ ≥ x+ − β result in

Ȳt+k+1 ≥ (Ȳt+k)+� − (|V̂t+k+1| + β, 0, . . . , 0)

≥ (Ȳt )
+�k+1 − V̄t+k� − βBk� − (|V̂t+k+1| + β, 0, . . . , 0)

≥ (Ȳt )
+�k+1 − V̄t+k+1 − βBk+1.

We now proceed with the proof of Theorem 2.
Proposition 3, Lemma 7, and Theorem 3 of Appendix B (where each �n is identified with

{ϒ̂t , t ∈ Z}, πn = π∗, and Rβn = Rβ ) yield

Eπ∗ [�θ(Ȳt , Z̄t )] < ∞ for every θ < θ∗/µ. (54)

https://doi.org/10.1239/aap/1214950216 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950216


Steady-state analysis of a multiserver queue 571

On the other hand, taking the expectation (with respect to π∗) of both sides of (43) implies that

Eπ∗ [�θ(Ȳt , Z̄t )] = ∞ for every θ > θ∗/µ. (55)

Next, definition (41) of �θ renders p̃ · Ȳt = θ−1 log�θ(Ȳt , Z̄t )− α · Z̄t . This equality,
(54), (55), the normal distribution of Z̄t , and Proposition 7 of Appendix A result in

Eπ∗ [exp(θ p̃ · Ȳt )] < ∞ for every θ < θ∗/µ, (56)

while
Eπ∗ [exp(θ p̃ · Ȳt )] = ∞ for every θ > θ∗/µ. (57)

Given (56) and (57), in order to complete the proof of the theorem it is sufficient to prove that,
for every θ > 0,

Eπ∗ [exp(θ |µ−1Ŷt − p̃ · Ȳt |)] < ∞, (58)

or, equivalently, |µ−1Ŷt − p̃ · Ȳt | ∈ M∞, assuming the stationarity of {Ŷt , t ∈ Z}. Informally,
(58) implies that the stationary RVs µ−1Ŷt and p̃ · Ȳt have the same exponential decay rate.

The rest of the proof is devoted to establishing (58). Given that µ−1Ŷt = ∑
k p̃kŶt , by

Proposition 6 of Appendix A it suffices to show that |Ŷt − Ŷt−k| ∈ M∞ for every k = 1, . . . ,
K− 1 and stationary {Ŷt , t ∈ Z}. Consider an arbitrary such k and note that Lemma 8 renders,
for j ≥ 1 and t ≥ K − 1,

−V̄t+j − βBj ≤ Ȳt+j − (Ȳt )
+�j ≤ V̄t+j .

Rewriting the preceding relationship in a scalar form renders

−
t+j−k∑

i=t−K+1

|V̂i | − (j − k)+β ≤ Ŷt+j−k −
K−1∑
i=0

(�j )i+1,k+1Ŷ
+
t−i ≤

t+j−k∑
i=t−K+1

|V̂i |,

and, hence,

|Ŷt+j − Ŷt+j−k| ≤
K−1∑
i=0

|(�j )i+1,1 −(�j )i+1,k+1|Ŷ+
t−i+2

t+j∑
i=t−K+1

|V̂i |+2(j+K+1)β. (59)

In view of Remark 1, the speed of convergence of �k in k is exponential [12, p. 211], i.e. there
exist constants C and γ < 1 such that

sup
1≤i≤K

|(�j )i,1 − (�j )i,k+1| ≤ Cγ j .

Then, (59) and the preceding inequality yield

|Ŷt+j − Ŷt+j−k| ≤ Cγ j
K−1∑
i=0

Ŷ+
t−i + 2

t+j∑
i=t−K+1

|V̂i | + 2(j +K + 1)β. (60)

Now, observe that the last two terms on the right-hand side of the preceding inequality are
elements of M∞ owing to (28), (29), and Proposition 6 of Appendix A. In addition, from
Ŷt = p̃ · Ȳt − ∑K

i=2 p̃i Ŷt−i+1 (Lemma 3(i)), (56), Lemma 3(ii), and Proposition 6, it follows
that Ŷt ∈ Mθ ′ for some sufficiently small θ ′ > 0. By stationarity of {Ŷt , t ∈ Z+}, this applies to
every term in the first sum on the right-hand side of (60). It then follows that |Ŷt − Ŷt−k| ∈ Mθ ′′
with θ ′′ = γ−j θ ′/CK . Since j is arbitrary, by taking it sufficiently large, we establish that
|Ŷt − Ŷt−k| ∈ M∞. This concludes the proof of (58) and the proof of the theorem.
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7. Proof of Corollary 1

First, we note that, for x ≥ 0, as n → ∞,

An
0,x/

√
n√

n
→ µx (61)

in probability. Let {τn,i , i ≥ 1} be interarrival times in the nth system, with τn,1 being the
time of the first arrival after time t = 0. The limit is based on the following: (i) {A0,t ≥ k} =
{∑k

i=1 τn,i ≤ t} for t ≥ 0 and k ≥ 1; (ii) for large enough n, Markov’s inequality yields, for
ε > 0,

P

[�(µx+ε)√n�∑
i=2

τn,i ≤ x√
n

]
≤ P

[�(µx+ε)√n�∑
i=2

(
τn,i − 1

λn

)
≤ − 2ε

µ
√
n

]

≤ µ2(µx + ε)ε−2n3/2 var(τn,2) → 0 as n → ∞,

and, similarly,

P

[�(µx−ε)√n�∑
i=2

τn,i >
x√
n

]
→ 0 as n → ∞;

and (iii) the arrival processes are in stationarity and, thus, τn,1 has the equilibrium distribution
and does not impact (61).

Second, from the distributional Little’s law [21] it follows thatQn equals in distribution the
number of arrivals in a renewal process Ant during the time interval of length Wn (recall that
{Ant , t ∈ R} is in stationarity), i.e. Qn = An0,Wn in distribution. Then, for every x > 0, the
event {Wn ≤ x} implies that {Qn ≤ An0,x} and, therefore,

Pπn [
√
nWn ≤ x] ≤ Pπn

[
Qn

√
n

≤
An

0,x/
√
n√

n

]
.

The distribution of Q̂ is continuous everywhere on (0,∞), as seen from the presence of Ât+1 in
the expression for Q̂t+1 in (14). Letting n → ∞ in the preceding inequality and applying (61)
yields

lim sup
n→∞

Pπn [
√
nWn ≤ x] ≤ Pπ∗ [Q̂ ≤ µx].

Similarly, for every x > 0, the event {Wn > x} implies that {Qn ≥ An0,x}, leading to

Pπn [
√
nWn > x] ≤ Pπn

[
Qn

√
n

≥
An

0,x/
√
n√

n

]

and
lim inf
n→∞ Pπn [

√
nWn ≤ x] ≥ Pπ∗ [Q̂ ≤ µx].

The preceding establishes Pπn [
√
nWn ≤ x] → Pπ∗ [Q̂ ≤ µx] as n → ∞ for every x > 0. The

assertion then follows.
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8. Conclusions

We analyzed a stationary multiserver queue in the Halfin–Whitt (QED) regime when the ser-
vice times have a lattice-valued distribution with a finite support. The steady-state distribution
of the appropriately scaled queue length was described in terms of the steady-state distribution
of a continuous-state Markov chain; we can estimate the steady-state distribution of this chain
either numerically or by simulations. We also established that the large-deviations rate of the
limiting queue length in steady state is given by θ∗ = 2β/(c2

a + c2
s ), where β is the extra

capacity parameter of the model and ca and cs are the coefficients of variation of interarrival
and service times, respectively. We conjecture that the expression for θ∗ remains valid for a
broad class of service time distributions.

Appendix A. Moment generating functions

Here we state some basic properties of moment generating functions. The proofs of these
facts are obvious.

Proposition 6. Any affine combination of (not necessarily independent) nonnegative elements
of M∞ is an element of M∞.

Proposition 7. Suppose that {Xn, n ≥ 1} ∈ Mθ for some θ > 0 and {Yn, n ≥ 1} ∈ M∞.
Then {Xn + Yn, n ≥ 1} ∈ Mθ ′ for every θ ′ < θ .

Appendix B. Lyapunov functions

The following definitions play a key role in the proofs of our main results.

Definition 1. (Geometric Lyapunov function.) Let � = {�t, t ∈ Z+} be a discrete-time
Markov chain defined on a state space X, equipped with a σ -algebra F . A function � : X →
R+ is defined to be a geometric Lyapunov function for� with a geometric drift size 0 < δ < 1
and exception set R ⊂ X if, for every x ∈ X \ R,

E[�(�1) | �0 = x] ≤ (1 − δ)�(x).

Definition 2. (Quadratic Lyapunov function.) Under the same setting as Definition 1, a
function � : X → R is defined to be a quadratic Lyapunov function for � with exception
set R ⊂ X and parameters δ > 0 and 0 ≤ ψ < ∞ if, for every x ∈ X \ R,

E[�2(�1) | �0 = x] −�2(x) ≤ −δ�(x)+ ψ.

Informally, the following result shows that if a sequence of Markov chains admits the same
geometric Lyapunov function that is uniformly bounded in expectation in the exception region,
then this function is uniformly bounded in expectation in general. Our definition of a geometric
Lyapunov function as well as the following result is fairly standard [17], [33].

Theorem 3. Let {�n, n ≥ 1} be a sequence of discrete-time Markov chains with Xn and πn
being the state space and a stationary distribution of �n, respectively. Suppose that, for every
n ≥ 1, the function� : ∪ Xn → R+ is a geometric Lyapunov function for �n with drift δ and
exception set Rn ⊂ Xn. If

CR := lim sup
n→∞

Eπn [�(�n1) 1{�n0 ∈ Rn}] < ∞ (62)

https://doi.org/10.1239/aap/1214950216 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950216


574 D. GAMARNIK AND P. MOMČILOVIĆ

then

lim sup
n→∞

Eπn [�(�n1)] ≤ CR

δ
.

Remark 2. Note that the uniqueness of a stationary distribution πn is not assumed. Theorem 3
holds for every sequence of stationary distributions.

Remark 3. Our treatment of the geometric Lyapunov function is unconventional. Typically
it is assumed that in the exception region the jumps �(�n1) − �(�n0) are deterministically
bounded; see, e.g. [33]. The intuition behind our result is as follows. The expected value of
the Lyapunov function is uniformly bounded (in n) since (i) when the chain is in the exception
region, � is bounded by assumption (in the next time step), and (ii) when the chain is outside
of the exception region, there is a downward uniform drift decreasing the expected value of�.

Proof of Theorem 3. The proof is similar to the approach taken in [17], and it is based on
the monotone convergence theorem. Assumption (62) implies the existence of n0 such that
Eπn [�(�n1) 1{�n0 ∈ Rn}] < ∞ for all n > n0. Fix an arbitrary such n, introduce the following
two conditional expectations:

Gb(x) := E[�(�n1) ∧ b | �n0 = x],
H(x) := E[�(�n1) 1{�n0 ∈ Rn} | �n0 = x],

and let G(x) = G∞(x) for notational simplicity. Then, by the Lyapunov nature of �, the
difference of G(x) and �(x) for x ∈ Xn can be bounded as

G(x)−�(x) ≤
{

−δ�(x), x ∈ Xn \ Rn,

H(x)−�(x), x ∈ Rn,

the second case being in fact the equality. Owing to the nonnegativity of H(·) and �(·), the
two cases in the preceding inequality can be combined into

G(x)−�(x) ≤ −δ�(x)+H(x) for all x ∈ Xn; (63)

recall that 0 < δ < 1 by Definition 1. Furthermore, the preceding inequality, Gb(x) ≤ b (by
definition) and the nonnegativity of H(·) yield

Gb(x)−�(x) ∧ b ≤ H(x), x ∈ Xn; (64)

the validity of the inequality can be verified by considering separately the cases �(x) < b and
�(x) ≥ b. Then, (64) implies that

Eπn [Gb(�n0)−�(�n0) ∧ b] ≤ Eπn [H(�n0)] < ∞, (65)

where the strict inequality is due to the choice of n > n0.
Now, the monotone convergence theorem renders {Gb(x)−�(x)∧b} → {G(x)−�(x)} as

b → ∞ for every x ∈ Xn. Using Fatou’s lemma, applicable due to (65) (see also [13, p. 44]),
we obtain

Eπn [G(�n0)−�(�n0)] = Eπn
[

lim
b→∞{Gb(�n0)−�(�n0) ∧ b}

]
≥ lim sup

b→∞
Eπn [Gb(�n0)−�(�n0) ∧ b]

= 0, (66)

where the last equality follows from the stationary nature of the distribution πn.
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Finally, (63) and (66) result in −δ Eπn [�(�n0)] + Eπn [H(�n0)] ≥ 0, and the conclusion of
the theorem follows since this inequality holds for every n > n0.

Theorem 4. Let {�n, n ≥ 1} be a sequence of discrete-time Markov chains with Xn and πn
being the state space and a stationary distribution of �n, respectively. Suppose that, for every
n ≥ 1, the function � : ∪ Xn → R satisfies

E[�2(�n1) 1{�n0 �∈ Rn} −�2(�n0) | �n0] ≤ −δ�(�n0)+ ψ (67)

for some δ > 0, 0 ≤ ψ < ∞, and Rn ⊂ Xn. If

CR := lim sup
n→∞

Eπn [�2(�n1) 1{�n0 ∈ Rn}] < ∞ (68)

and

C0 := lim sup
n→∞

Eπn [−�(�n0) 1{�(�n0) < 0}] < ∞, (69)

then

lim sup
n→∞

Eπn [�(�n1)] ≤ CR + C0 + ψ

δ
.

Remark 4. A nonstandard part of our definition of the quadratic Lyapunov function is allowing
� to be negative. Our second result in this section shows that if a sequence of Markov chains
admits the same quadratic Lyapunov function that is uniformly bounded in expectation in the
exception region, then the (linear part of this) function is uniformly bounded away from +∞.

Proof of Theorem 4. The proofs of Theorems 3 and 4 are similar. Assumptions (68) and (69)
imply the existence of n0 such that Eπn [�2(�n1) 1{�n0 ∈ Rn} − �(�n0) 1{�(�n0) < 0}] < ∞
for all n > n0. Fix an arbitrary such n, introduce the following two conditional expectations:

Gb(x) := E[�2(�n1) ∧ b | �n0 = x],
H(x) := E[�2(�n1) 1{�n0 ∈ Rn} | �n0 = x],

and let G(x) = G∞(x) for notational simplicity. Then, by (67), the difference of G(x) and
�2(x) for x ∈ Xn can be bounded as

G(x)−�2(x) ≤ −δ�(x)+ ψ +H(x). (70)

Furthermore, the preceding inequality, Gb(x) ≤ b (by definition), and the nonnegativity of
H(·) yield

Gb(x)−�2(x) ∧ b ≤ −δ�(x) 1{�(x) < 0} + ψ +H(x), x ∈ Xn; (71)

the validity of the inequality can be verified by considering separately the cases�2(x) < b and
�2(x) ≥ b. Then, (71) implies that

Eπn [Gb(�n0)−�(�n0)∧b] ≤ δ Eπn [−�(�n0) 1{�(�n0) < 0}]+ψ+Eπn [H(�n0)] < ∞, (72)

where the strict inequality is due to the choice of n > n0.
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Now, the monotone convergence theorem renders {Gb(x)−�2(x)∧b} → {G(x)−�2(x)}
as b → ∞ for every x ∈ Xn. Using Fatou’s lemma, applicable due to (72), we obtain

Eπn [G(�n0)−�2(�n0)] = Eπn
[

lim
b→∞{Gb(�n0)−�2(�n0) ∧ b}

]
≥ lim sup

b→∞
Eπn [Gb(�n0)−�2(�n0) ∧ b]

= 0, (73)

where the last equality follows from the stationary nature of the distribution πn.
Finally, (70) and (73) result in −δ Eπn [�(�n0)]+ψ + Eπn [H(�n0)] ≥ 0, and the conclusion

of the theorem follows since this inequality holds for every n > n0.

Acknowledgements

PM thanks Itay Gurvich and Avishai Mandelbaum for discussions on the QED regime. DG
gratefully acknowledges support from the NSF, grant number CMMI-0726733.

References

[1] Aksin, Z., Armony, M. and Mehrotra, V. (2007). The modern call center: a multi-disciplinary perspective
on operations management research. Production Operat. Manag. 16, 665–668.

[2] Armony, M. and Maglaras, C. (2004). Contact centers with a call-back option and real-time delay information.
Operat. Res. 52, 527–545.

[3] Armony, M. and Maglaras, C. (2004). On customer contact centers with a call-back option: customer
decisions, sequencing rules and system design. Operat. Res. 52, 271–292.

[4] Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.
[5] Atar, R. (2005). A diffusion model of scheduling control in queueing systems with many servers. Ann. Appl.

Prob. 15, 820–852.
[6] Atar, R. (2005). Scheduling control for queueing systems with many servers: asymptotic optimality in heavy

traffic. Ann. Appl. Prob. 15, 2606–2650.
[7] Atar, R., Mandelbaum, A. and Reiman, M. (2004). Scheduling a multi class queue with many exponential

servers: asymptotic optimality in heavy traffic. Ann. Appl. Prob. 14, 1084–1134.
[8] Baccelli, F. and Brémaud, P. (2003). Elements of Queueing Theory, 2nd edn. Springer, Berlin.
[9] Billingsley, P. (1995). Probability and Measure, 3rd edn. John Wiley, New York.

[10] Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. Wiley, New York.
[11] Borst, S., Mandelbaum, A. and Reiman, M. (2004). Dimensioning of large call centers. Operat. Res. 52,

17–34.
[12] Brémaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues. Springer, New York.
[13] Chung, K. L. (1974). A Course in Probability Theory, 2nd edn. Academic Press, New York.
[14] Durrett, R. (2005). Probability: Theory and Examples, 3rd edn. Thomson, Belmont, CA.
[15] Erlang, A. K. (1948). On the rational determination of the number of circuits. In The Life and Works of A. K.

Erlang, eds E. Brockmeyer et al., The Copenhagen Telephone Company, pp. 216–221.
[16] Fleming, P., Stolyar, A. and Simon, B. (1994). Heavy traffic limit for a mobile phone system loss model. In

Proc. 2nd Internat. Conf. Telecommun. Syst. Model. Analysis (Nashville, TN).
[17] Gamarnik, D. and Zeevi, A. (2006). Validity of heavy traffic steady-state approximations in open queueing

networks. Ann. Appl. Prob. 16, 56–90.
[18] Gans, N., Koole, G. and Mandelbaum, A. (2003). Telephone call centers: tutorial, review and research

prospects. Manufacturing Service Operat. Manag. 5, 79–141.
[19] Garnett, O., Mandelbaum, A. and Reiman, M. (2002). Designing a call center with impatient customers.

Manufacturing Service Operat. Manag. 4, 208–227.
[20] Gurvich, I., Armony, M. and Mandelbaum, A. (2008). Service level differentiation in call centers with fully

flexible servers. Manag. Sci. 54, 279–294.
[21] Haji, R. and Newell, G. (1971). A relationship between stationary queue and waiting time distributions.

J. Appl. Prob. 8, 617–620.
[22] Halfin, S. and Whitt, W. (1981). Heavy-traffic limits for queues with many exponential servers. Operat. Res.

29, 567–588.

https://doi.org/10.1239/aap/1214950216 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950216


Steady-state analysis of a multiserver queue 577

[23] Harrison, J. M. and Zeevi, A. (2004). Dynamic scheduling of a multiclass queue in the Halfin–Whitt heavy
traffic regime. Operat. Res. 52, 243–257.

[24] Jagerman, D. (1974). Some properties of the Erlang loss function. Bell System Tech. J. 53, 525–551.
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[31] Mandelbaum, A. and Momčilović, P. (2008). Queues with many servers: the virtual waiting-time process in

the QED regime. To appear in Math. Operat. Res.
[32] Mandelbaum, A. and Zeltyn, S. (2006). Staffing many-server queues with impatient customers: constraint

satisfaction in call centers. Preprint, Faculty of Industrial Engineering and Management, Technion – Israel
Institute of Technology.

[33] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
[34] Puhalskii, A. (1994). On the invariance principle for the first passage time. Math. Operat. Res. 19, 946–954.
[35] Puhalskii, A. and Reiman, M. (2000). The multiclass GI/PH/N queue in the Halfin–Whitt regime. Adv. Appl.

Prob. 32, 564–595.
[36] Reed, J. (2007). The G/GI/N queue in the Halfin–Whitt regime. Preprint, Stern School of Business, New York

University.
[37] Tezcan, T. (2008). Optimal control of distributed parallel server systems under the Halfin and Whitt regime.

Math. Operat. Res. 33, 51–90.
[38] Whitt, W. (2002). Stochastic-Process Limits. Springer, New York.
[39] Whitt, W. (2004). A diffusion approximation for the G/GI/n/m queue. Operat. Res. 52, 922–941.
[40] Whitt, W. (2005). Heavy-traffic limits for the G/H∗

2/n/m queue. Math. Operat. Res. 30, 1–27.
[41] Zeltyn, S. and Mandelbaum, A. (2005). Call centers with impatient customers: many-server asymptotics of

the M/M/n+G queue. Queueing Syst. Theory Appl. 51, 361–402.

https://doi.org/10.1239/aap/1214950216 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950216

	1 Introduction
	2 Model
	2.1 Queueing system description
	2.1.1 Service times.
	2.1.2 Arrival times.
	2.1.3 Quantities of interest.

	2.2 QED regime and scaling

	3 Main results
	4 Preliminary results
	4.1 Time-embedded process
	4.2 Number in system
	4.3 Quadratic Lyapunov function
	4.4 Geometric Lyapunov function

	5 Proof of Theorem 1
	6 Proof of Theorem 2
	7 Proof of Corollary 1
	8 Conclusions
	A Moment generating functions
	B Lyapunov functions
	Acknowledgements
	References

