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Abstract. We report the first systematic study of the supercluster-void network in the ΛCDM
concordance cosmology treating voids and superclusters on an equal footing. We study the dark
matter density field in real space smoothed with the Ls = 5 h−1Mpc Gaussian window. Super-
clusters and voids are defined as individual members of over-dense and under-dense excursion
sets respectively. We determine the morphological properties of the cosmic web at a large num-
ber of dark matter density levels by computing Minkowski functionals for every supercluster
and void. At the adopted smoothing scale individual superclusters totally occupy no more than
about 5% of the total volume and contain no more than 20% of mass if the largest supercluster
is excluded. Likewise, individual voids totally occupy no more than 14% of volume and contain
no more than 4% of mass if the largest void is excluded. The genus of individual superclusters
can be ∼ 5 while the genus of individual voids reaches ∼ 55, implying significant amount of
substructure in superclusters and especially in voids. Large voids are typically distinctly non-
spherical.

1. Introduction
Redshift galaxy catalogues reveal a universe permeated by an interpenetrating network

of superclusters and voids. It therefore becomes important to understand and quantify
the geometrical and topological properties of large scale structure in an ΛCDM cosmology
in a deep and integrated manner. The main aim of this talk is to study the supercluster-
void network in ΛCDM cosmology with emphasis on the sizes, shapes and topologies
of individual superclusters and voids. Concretely, we study the geometry and topology
of isodensity surfaces δ(x) ≡ δρ(x)/ρ̄ = const. At a given threshold δth regions hav-
ing higher then threshold density (δ > δth) will be called “superclusters”, while regions
with δ < δth will be called “voids”. We employ an elaborate surface modeling scheme,
SURFGEN (short for ‘surface generator’), that allows us to determine the geometry, mor-
phology and topology of excursion sets defined on a density field in a very comprehensive
manner (Sheth et al. 2003). Working with the density field also permits us to determine
the morphological properties of the full excursion set describing the supercluster-void
network. More detailed information is then gleaned at one particular threshold (usually
associated with percolation) at which shapes and sizes of individual superclusters and
voids yield rich information about properties of the cosmic web to which we belong.

We use dark matter distributions in a flat model with Ω0 = 0.3, ΩΛ = 0.7, h = 0.7
(ΛCDM). The initial spectrum was taken with the shape parameter Γ = 0.21. The
amplitude (σ8 = 0.9) of the power spectrum in the model is set so as to reproduce the
observed abundance of rich galaxy clusters at the present epoch (see Jenkins et al. 1998
for details). The study of mock galaxy distributions was done by Sheth (2003).

SURFGEN operates on three-dimensional pixelized maps. Therefore we first gener-
ate the density field from the distribution of dark matter particles. This process was
described in detail in Sheth et al. (2003); here we present a brief summary. The data
consist of 2563 particles in a box of size 239.5 h−1Mpc. We fit a 1283 grid to the box.
We follow the smoothing technique used by Springel et al. (1998) which they adopted
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for their preliminary topological analysis of the Virgo simulations. We study the field
smoothed with Ls = 5 h−1Mpc which is a fiducial smoothing scale in many studies of
both density fields in N-body simulations and galaxy fields from redshift surveys; see for
example, Grogin & Geller (2000). The Gaussian kernel for smoothing that we adopt here
is W (r) = π−3/2L−3

s exp
(
−r2/L2

s

)
. Since the kernel is isotropic and uniform, it is likely

to diminish the true extent of anisotropy in filaments, pancakes and voids. This effect
could be minimized by considering adaptive kernels or smoothing techniques based on
the wavelet transform. An even more ambitious approach is to reconstruct density fields
using Delaunay tesselations using a technique reported by van de Weygaert (2002).

Four Minkowski functionals (MFs) are effective non-parametric descriptors of the mor-
phological properties of surfaces in three dimensions Mecke et al. (1994). They are: Vol-
ume V enclosed by the surface, S; Area A of the surface; Integrated mean curvature C of
the surface C = 1

2

∮
S

(
1

R1
+ 1

R2

)
da, where R1 and R2 are the principal radii of curvature

at a given point on the surface; and finally, the Euler characteristic χ = 1
2π

∮
S

(
1

R1R2

)
da.

The genus is uniquely related to the Euler characteristic G = 1 − χ/2 and thus carries
exactly the same information. We measure the above parameters for every region in both
over-dense and under-dense excursion sets at 99 density thresholds equispaced in the
filling factor from FF = 0.01 to FF = 0.99 where FF is the fraction of the total volume
occupied by the excursion set. As demonstrated in Sahni et al. (1998) and Sathyaprakash
et al. (1998), particular ratios of the MFs called “Shapefinders” provide us with a set of
non-parametric measures of sizes and shapes of objects. Therefore, in addition to deter-
mining MFs we shall also derive three quantities having the dimension of length that can
be associated with three characteristic sizes: T (Thickness), B (Breadth) and L (Length)
defined as follows: T = 3V/A, B = A/C, L = C/4π. The three Shapefinders describ-
ing an individual region bounded by one or several isolated surfaces of constant density
have dimension of length and provide us with an estimate of the region extensions. The
choice of the coefficients in the above equations results in a sphere having all three sizes
equal to its radius T = B = L = R. It is worth noting that T , B and L are only the
estimates of three basic sizes (semi-axes) of an object, which work quite well on objects
such as a triaxial ellipsoid and a torus. An indicator of ‘shape’ is provided by a pair of
dimensionless Shapefinder statistics P = (B − T )/(B + T ); F = (L − B)/(L + B),
where P and F are measures of Planarity and Filamentarity respectively (P, F � 1). A
sphere has P = F = 0, an ideal filament has P = 0, F = 1, while P = 1, F = 0 for an
ideal pancake.

2. Results
Understanding percolation is essential for understanding the morphology of the super-

cluster – void network. Percolation is important because the properties of superclusters
and voids radically change at the percolation transitions (see Fig. 1). At relatively high
thresholds δC > 1.8, corresponding to small filling factors FFC < 0.07, the largest
supercluster has insignificant volume and mass compared to the total volume or mass
contained in the over-dense excursion set, δ > δTH. During the percolation transition at
FFC ≈ 0.07, corresponding to δC ≈ 1.8, both volume and mass in the largest supercluster
rapidly grow, overtaking the volume and mass in the entire excursion set, and completely
dominating the entire sample from this point onwards. The largest void behaves in a
qualitatively similar manner if plotted versus FFV . At FFV < 0.22, δV < −0.5 its volume
is small compared to the volume of the under-dense excursion set, δ < δTH, but at the
percolation transition FFV ≈ 0.22, δV ≈ −0.5, it takes over and from then on it remains
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Figure 1. Left: the fractions of the total volume occupied by the largest supercluster (thick
dashed line), all superclusters but the largest one (thick solid line), largest void (thin dashed
line), and all voids but the largest one (thin solid line) are shown for the density field in the
ΛCDM model smoothed with Ls=5 h−1Mpc as a function of the filling factor, FFC . Right: the
estimates of the percolation thresholds. Thick lines show the rate of growth δm(i)/δ(FF ) for
four estimators (Shandarin et al. 2003) for superclusters as a function of FFC . All four curves
consistently peak at FFC = 0.07. Thin lines show similar quantities for voids with a distinct
peak at FFC = 0.22. Vertical dotted lines mark the percolation thresholds.

the dominant structure in the under-dense excursion set. Since FFC ≡ 1−FFV the void
percolation transition takes place at FFC ≈ 0.78 as shown in Fig. 1 (left panel). Two
obvious conclusions can be drawn from the above discussion. First, at percolation the
object having the largest volume becomes very different from all the remaining objects,
therefore it must be studied separately. Second, individual objects – both superclusters
and voids – must be studied in the corresponding phase before percolation occurs in the
corresponding phase. Both superclusters and voids reach their largest sizes, volumes and
masses just before percolation sets in. The percolation thresholds can be accurately mea-
sured from the peaks in the rate of growth of the MFs of the largest supercluster or void
as a function of FF (Fig. 1 right panel).

It is interesting to compare the percolation and genus statistics. Both were suggested
as tests for the connectedness of the large-scale structure. First, Zel’dovich and Shandarin
(Zel’dovich 1982, Shandarin 1983, Shandarin & Zel’dovich 1983) raised the question of
topology of large-scale structure and suggested percolation statistic as a discriminator
between models. The percolation test was first applied to a redshift catalog compiled
by J. Huchra and Rood (Zel’dovich et al. 1982; Einasto et al. 1984) who found that the
connectedness in this catalog was significantly stronger than for a Poisson distribution. In
contrast, a non-dynamical model having approximately correct correlation functions up
to the fourth order (Soneira & Peebles 1978) showed significantly weaker connectedness
than in the observed catalog. Thus, percolation was able to detect connectedness in the
galaxy distribution. It was also demonstrated that three lowest order correlation functions
(two-, three- and four-point functions) are not sufficient to detect the connectedness in
the galaxy distribution. Figure 2 illustrates the difference between the global genus (Fig.
2 left panel) and percolation statistic (Fig. 1 left panel and Fig. 2 right panel): at the
percolation threshold many properties of the excursion set significantly change while the
global genus curve remain smooth and featureless.
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Figure 2. Left: the global genus is shown as a function of the filling factor for the density field
smoothed with Ls = 5 h−1 Mpc. The half of the curve corresponding to high density thresholds
is plotted as a function of FFC (solid line) while the other half corresponding to low density
thresholds is plotted as a function of FFV (dashed line). For comparison, the dotted line shows
the Gaussian genus curve having the same amplitude. Right: the percolation transitions in the
same density field as indicated by the genus of the largest supercluster (solid line) and largest
void (dashed line). The vertical dotted lines mark two percolation thresholds in the ΛCDM
(FF ≈ 0.07 and FF ≈ 0.22) and Gaussian field (FF ≈ 0.16) in both panels.

Figure 3. Left: length, breadth, and thickness versus mass for superclusters and versus volume
for voids. Solid circles show the relation at percolation thresholds: FFC = 0.07 for superclusters
and FFV = 0.22 for voids. Crosses show the parameters before percolation (FFC = 0.06 for
superclusters and FFV = 0.21 for voids) and empty triangles after percolation (FFC = 0.08
for superclusters and FFV = 0.23 for voids). Solid lines show the radius of the sphere having
the same volume as the supercluster or void. Right: planarity and filamentarity vs mass (for
superclusters) and vs volume (for voids) at percolation. Notations are as in the left panel.

Three characteristic sizes and shapes of superclusters and voids can be estimated from
the MFs. It is surprising that the thickness of superclusters depends on the threshold quite
weakly; it is within 4−6h−1 Mpc interval for a range of thresholds between 0 < δ < 6. This
may indicate that the actual thickness of superclusters is significantly smaller and the
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Figure 4. Left: genus-mass relation for superclusters. Right: genus-volume relation for voids.
Every isolated supercluster and void having genus greater than zero at all density thresholds is
shown.

measured values reflect the width of the smoothing window. The breadth of superclusters
is not much greater than the thickness and it is likely that it is also affected by the width
of the filtering window. Voids are a little fatter than superclusters and their thickness
reaches about 9h−1 Mpc at the percolation threshold. Voids are also wider and longer
than superclusters. Recalling that the size parameters are normalized to the radius of the
sphere rather than to the diameter, we conclude that the longest 25% of superclusters
are longer than about 50h−1 Mpc and 25% of voids are longer than about 60h−1 Mpc.

The correlation of the sizes (L, B, T ) and shape parameters (P , F ) of superclusters
and voids with the masses (superclusters) and volumes (voids) are shown in Fig. 3. It
was expected that all three sizes of the superclusters may correlate with their masses
and the sizes of the voids correlate with their volumes. It is perhaps also not surprising
that the filamentarity of superclusters increases with the mass. However, the strong
correlation of the filamentarity (F ) of voids with their volumes is quite unexpected and
may require reconsidering some theoretical models of the void evolution. Figure 4 (left
panel) demonstrates that the planarity of superclusters is quite small, indicating that
pancakes are not typical structures in the ΛCDM cosmology. In addition, we have found
a very strong indication of complex geometry and nontrivial topology in the largest
superclusters (Fig. 4 left panel) and especially in voids (Fig. 4 right panel).

3. Summary
Individual superclusters totally occupy no more than about 5% of the total volume

and comprise no more than 20% of mass if the largest (i.e. percolating) supercluster is
excluded. The maximum of the total volume and mass comprised by all superclusters,
except the largest one, is reached approximately at the percolation threshold: δ ≈ 1.8
corresponding to FFC ≈ 0.07. Individual voids totally occupy no more than 14% of vol-
ume and contain no more than 4% of mass if the largest void is excluded. The maximum
of the total volume and mass comprised by all voids except the largest one is reached at
about the void percolation threshold: δ ≈ −0.5 corresponding to FFV ≈ 0.22. Between
these two percolation thresholds all superclusters and voids except the largest ones take

https://doi.org/10.1017/S1743921304000110 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304000110


50 Sergei F. Shandarin

up no more than about 10% of volume and mass. Both the largest supercluster and void
span throughout the whole space and have a very large genus. Therefore neither of them
has well defined sizes, volumes, masses or easily defined shapes.

The sizes of voids are significantly larger than those of superclusters even in the den-
sity field smoothed with Ls = 5h−1 Mpc. The length of a quarter of the most massive
superclusters exceeds 50h−1 Mpc. The most voluminous voids are even longer: 25% of
them are longer than 60h−1 Mpc. The longest non-percolating supercluster is as long as
100h−1 Mpc and the longest non-percolating void is as long as 200h−1 Mpc. Both are
comparable to the size of the box (239.5h−1 Mpc) and therefore may be affected by the
boundaries.

The genus value of individual superclusters can be ∼ 5 while the genus of individual
voids can reach ∼ 55 (Fig. 4). This implies significant amount of substructure in super-
clusters and especially in voids. This is in a general agreement with other studies of voids
(Kofman et al. 1992; Peebles 2001; Gottlöber et al. 2003).

One of our main results is that voids, as defined through the density field, can be
distinctly non-spherical. Whether this result carries over to voids in galaxy surveys will
depend upon the nature of the baryon-dark matter biasing and also on whether the
density field is sampled in real or in redshift space.

The percolation thresholds as well as some other parameters depend on the smoothing
scale and for smaller smoothing scales or adaptive filtering windows the supercluster
percolation threshold must decrease (FF perc.

C < 0.07) and the void percolation threshold
increase (FF perc.

V > 0.22).
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