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LINEAR HAHN-BANACH EXTENSION OPERATORS

by BRAILEY SIMS and DAVID YOST

(Received 5th May 1987)

Given any subspace N of a Banach space X, there is a subspace M containing N and
of the same density character as N, for which there exists a linear Hahn-Banach
extension operator from M* to A'*. This result was first proved by Heinrich and
Mankiewicz [4, Proposition 3.4] using some of the deeper results of Model Theory.
More precisely, they used the Banach space version of the Lowenheim-Skolem theorem
due to Stern [11], which in turn relies on the Lowenheim-Skolem and Keisler-Shelah
theorems from Model Theory. Previously Lindenstrauss [7], using a finite dimensional
lemma and a compactness argument, obtained a version of this for reflexive spaces. We
shall show that the same finite dimensional lemma leads directly to the general result,
without any appeal to Model Theory.

Using Model Theoretic methods, Heinrich and Mankiewicz [4] developed a substan-
tial theory for Lipschitz and uniform homeomorphisms of Banach spaces. A careful
reading of their work shows that their results on Lipschitz homeomorphisms, and
certain of their results on uniform homeomorphisms [4, Proposition 4.1 and Theorem
5.1], follow from the above result (on linear extension operators), without any further
need for Model Theory. Thus our proof provides a purely analytic approach to these
aspects of their theory.

Let X be a Banach space and let M be a closed subspace of X. For each bounded
linear functional / : M-*R; that is, for / an element of the dual space M*, we define

where RM:X*-*M* is the natural restriction operator/i-*/|M. Thus H^f) is the set of
Hahn-Banach extensions of / to X. It is nonempty, courtesy of the Hahn-Banach
Theorem, w*—compact and convex.

A selector T:M*^X* with TfeH^f) for all feM* is a Hahn-Banach extension
operator for M. Clearly such a T is norm preserving.

It is natural to consider the question of when T can be chosen to be linear. Clearly
this is always the case when I is a Hilbert space. That the converse is also true is
demonstrated in the proposition below.

We begin with the following easily verified observations.

53

https://doi.org/10.1017/S0013091500006908 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006908


54 BRAILEY SIMS AND DAVID YOST

Observation (1). If T:M*^X* is a linear Hahn-Banach extension operator, then
P: = TRM: X*^X* is a norm-1 projection with range T(M*) and KerP = Mx.

Observation (2). (i) If M is the range of a norm-1 projection P on X, then P* is a
linear Hahn-Banach extension operator from M* to X*.

Dually,
(ii) If T:M*->X* is a linear Hahn-Bariach extension operator, then T* is a norm-1

projection of X** onto M**.

Proposition. Every (2-dimensional) subspace of X admits a linear Hahn-Banach
extension operator if (and only if) X is a Hilbert space.

Proof. Let N be a 3-dimensional subspace of X and let M be a 2-dimensional
subspace of N. Then by (2) (ii) there exists a norm-1 projection from X** onto
M** = M, and so by restriction from N onto M. Hence by Kakutani [5] A" is a Hilbert
space.

An isomorphic version of this is given by Fakhoury [1, Theoreme 3.7].
The above proposition suggests that subspaces which admit a linear Hahn-Banach

extension operator may not be very common. On the other hand, the main theorem
shows that, in some sense, subspaces with this property are plentiful. As previously
noted, our proof needs the following lemma due to Lindenstrauss [7].

Lemma. Let F be a finite dimensional subspace of X and let keN and e>0 be given.
Then there exists a finite dimensional subspace Z>F such that for all subspaces E^F
with dimE/F^k there is a linear mapping T:E->Z with | |T | |^ l+e and T\F = Id.

Theorem. Let N be a subspace of a Banach space X. Then there exists a subspace
M^.N with dens M = densN and a linear Hahn-Banach extension operator T:M*^X*.

Proof. We first prove the result for N separable. Let (x^=l be a dense sequence in
N. Starting with Mo: = {0} we inductively define subspaces Mn by: Mn is the subspace Z
given by the above lemma with F: = (Mn_1;xn>, k: = n and e:=l/«. Put M:= \JnMn.
Clearly M is separable and contains N.

Now for each n define

ln: = {E^X:E^Mn and

and let

Since Eneln and Emelm implies En + Em + MdimEn+dimEmeIdimEn+dimEm we have that /,
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ordered by inclusion, is a directed set. Hence the family of sets of the form
{£e / :£2£ 0 } , with Eoel, is a subbase for a filter. Let U be any extension of this filter
to an ultra-filter on /. Further we note that for xsX we have that Ix: = {EeI:xeE} =

For each Eel let n(E): = max {n:EeIn}, which exists since the dimension of £ is finite.
Then by the lemma there exists T£:£->Mn(£)+1<M with TE\MniE) = Id and ||T£||^1 +

Extend TE (non-linearly) to X by setting

^x), if x e £;
otherwise.

Regarding T^x) as an element of M** we define T on M* by

T(/)(x): = lim(f£x)(/).
v

For the definition and existence of limits over ultra-filters in compact Hausdorff spaces
see, for example, [10].

It is now routine to verify that T is the required linear Hahn-Banach extension
operator for M. For example, to establish that T(/) e X*, we need only note that given
x,yeX we have

fE(x + y) = T^x +y)= TEx + TEy = fEx + %y,

for all EeIxnIyeU.
The general result we now establish by transfinite induction on dens N.
Suppose densN>S<0. Let r\ be the first ordinal of cardinality densN, and let

{xx:<x<n} be dense in N. The argument above yields a separable subspace MNo

containing {xa:a<N0} and a linear Hahn-Banach extension operator Tx0:M$0-*X*
By the induction hypothesis, if X0<a<f; we can find a subspace Ma with (J^<aAf^u
{xjcM, , densMx^card a. and a linear Hahn-Banach extension operator TX:M*-*X*.

Put M: = \jx<nMx. Clearly N^M and densM = densN. Now define T:M*->X* by

where U is any non-trivial ultra-filter on {a:a.<n}. It is readily verified that T is a linear
Hahn-Banach extension operator for M, thereby establishing the theorem.

Combining this result with Observation (1) we have the following.

Corollary [4, p. 227]. / / X is the dual of a non-separable Banach space then X
contains uncountably many proper norm-one complemented subspaces.

Similarly from Observation 2(ii) we have
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Corollary [7]. / / X is reflexive then, every subspace of X is contained in a norm-one
complemented subspace with the same density character.

Various other results on Hahn-Banach extension operators are scattered throughout
the literature. Questions concerning uniqueness of extensions, existence of linear
selections and continuity properties of the mapping /'-•HM(/) arise naturally. We shall
conclude with a few observations and a brief survey of known results.

Let us note that the mapping f^-^H^f) is norm to w*-upper semicontinuous. To see
this let | | / n - / | | ->0 in M* and let JVbea w*-neighbourhood of H^f). If H^Q is not
eventually in N we may, by passing to a subsequence if necessary, assume that
HM(fn)zN for any n. But, then for each n there exists gn e tf^/jyv. Let (gn) be a
subnet converging w* to g, then g$N. Now

and for meM, g{m) is a cluster point of the sequence (gn(m)) = (fn(m)) which converges to
f(m). Thus geHM(f), contradicting g$N.

The question of when T is unique (that is, when H^f) is a singleton set for all
/ eM*) has been considered by Taylor [13] and Foguel [2]. Their results show that
there is a unique Hahn-Banach extension operator for every M ̂  X if and only if X* is
strictly convex. Phelps [9] proved that a given subspace M has a unique Hahn-Banach
extension operator if and only if M 1 contains a unique closest point to each element of
X*.

When T is unique it is by the above result norm to w* continuous. We ask, is the
converse also true? That is, if there is a norm to w* continuous Hahn-Banach extension
operator for M, is HM{f) necessarily a singleton set for each /eM*? The analogy with
the Duality map, see for example [3], should be noted.

We finally summarize sufficient conditions for a fixed subspace to admit a linear
Hahn-Banach extension operator.

Fakhoury [1, Corollaire 2.16] shows that a subspace M admits a linear Hahn-
Banach extension operator to <M,x> for each x in X if and only if for every n the
following condition 3Pn is satisfied: If mum2,..-,mnsM and rur2,...,rn>0 are such that
P)iBr.(m;)#0, then Mn f)i flr.(m,)#0. Lima [6, Proposition 3.2] gave a different proof
of this result, via a consideration of the following question: When, given n > 2, and any
/i./z,-••>/,. eM* with X"/i = 0 ' c a n w e f m d JieH\f(fi) with £? j | = 0? H e characterized
such M as those for which &„ holds for the prescribed n [6, Theorem 3.1]. He also
showed [6, Theorem 4.8] that if Sfn holds for all n and in addition M is weakly
Hahn-Banach smooth in X [12], then M admits a linear Hahn-Banach extension
operator to all of X. In particular this last condition is satisfied when the extension
operator is unique.

An alternative condition sufficient for a linear Hahn-Banach extension operator for
M follows directly from Pefczynski [8, pp. 61-62]. Namely: M admits a linear Hahn-
Banach extension operator if there exists a retract R:X->M such that for some r>0 and

https://doi.org/10.1017/S0013091500006908 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006908


LINEAR HAHN-BANACH EXTENSION OPERATORS 57

all x,yeX we have ||Kx-.Ry||^r whenever ||x —y||^r. This is also proved in [1,
Corollaire 2.12].

We remark that if M^X and M is a Lindenstrauss space (that is, an Lj-predual)
then there is a linear Hahn-Banach extension operator from M* to X*. This follows
directly from the injectivity of M**. See Fakhoury [1, Corollaire 3.3].

Fakhoury [1, Theoreme 3.1] shows that a subspace M of X admits a linear Hahn-
Banach extension operator if and only if every finite rank (compact/weakly compact)
linear operator from M into another Banach space has a finite rank (compact/weakly
compact) norm preserving extension to all of X.
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