Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows

S. L. Yang1ab, D. P. Bu1b, J. Q. Wang1t, Z. Y. Hu1, D. Li1, H. Y. Wei1, L. Y. Zhou1 and J. J. Loor2

1State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; 2Department of Animal Sciences, University of Illinois, Urbana 61801, USA

(Received 11 June 2008; Accepted 11 June 2009; First published online 10 July 2009)

The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60:40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real-time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (\(P < 0.05\)) with oil supplementation compared with C. Concentration of ruminal NH\textsubscript{3}-N (4.4 v. 5.6 mmol/l) was greater (\(P < 0.05\)) due to oil compared with C. Compared with C, oil supplementation resulted in lower (\(P < 0.05\)) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 105 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (\(P < 0.05\)). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid was substantially lower (\(P < 0.05\)) when L was included. Compared to C, the amount of Ruminococcus albus decreased by an average of 40% regardless of oil level or type. Overall, the results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.

Implications

Level of dietary oil supplementation has been shown to reduce ruminal fermentation parameters in dairy cows. However, relatively little data exists pertaining to the effects of unsaturated oils on species of ruminal microorganisms. Lactating cows were fed linseed oil or soybean oil alone (4% of dry matter (DM)) or in combination (2% of DM from each oil) to examine effects on microbial populations, bacterial species and fermentation parameters. Oils reduced cellulolytic bacteria and protozoal counts, along with total ruminal volatile fatty acids compared to controls. Furthermore, linseed oil resulted in the most pronounced decrease in amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid assessed by real-time reverse transcriptase-PCR. The negative effect of polyunsaturated fatty acids on ruminal fermentation parameters is explained at least in part by reductions in cellulolytic bacteria.
Introduction

Supplemental oil in the diet of dairy cows changes the composition of milk fat and enhances the concentration of conjugated linoleic acid (CLA), which has been shown to have potential health benefits, including anticarcinogenic properties (Piperova et al., 2000; Roche et al., 2001; Loor et al., 2005a). Consumption of n-3 fatty acids also has been associated with positive effects on human health. Addition of soybean oil (SBO; high linoleic acid content) to lactating dairy cow diets is expected to increase n-6 and CLA, whereas linseed oil (LSO; high linolenic acid content) would increase n-3 and CLA in milk fat (Demeyer and Doreau, 1999; Dhiman et al., 2000; Chilliard et al., 2001). Further, oils higher in linoleic acid than in linolenic acid were more effective in enhancing CLA in milk fat (Bu et al., 2007).

In ruminants, feeding large amounts of vegetable oil has the potential to inhibit ruminal fermentation (Jenkins, 1993; Machmüller et al., 1998). High dietary oil levels have been shown to decrease the counts of ruminal bacteria and protozoa (Matsumoto et al., 1991; Dohme et al., 2001). It was found that when feeding 2.5% fish oil to lactating dairy cows, ruminal protozoa counts were higher as compared to 5% LSO and 5% sunflower oil (Loor et al., 2005b).

Negative effects on DM intake (DMI) and ruminal fermentation are often reported when unsaturated oils are fed, but some researchers have hypothesized that the negative effect of the unsaturated fatty acids on ruminal digestion would be minimized if the diet contained a higher proportion of forage due to the ability of forage to promote normal ruminal function for maximum biohydrogenation (Palmquist, 1988). As suggested previously, both increased biohydrogenation of polyunsaturated fatty acids (PUFA) as well as competition between bacteria and feed particles for adsorption of fatty acids can explain the lower toxicity of PUFA with high-forage diets. A recent study with lactating cows observed greater ruminal fiber digestibility but lower duodenal microbial-N flow when a high-forage (F : C = 65 : 35, DM basis) diet was supplemented with LSO at 3% of DM than a control (Ueda et al., 2003).

Linoleic and linolenic acid are the most abundant PUFA in fresh forage or feedstuffs (e.g. cottonseeds, linseeds) typically fed to dairy cows. It is not clear whether the presence of two (linoleic acid) vs. three (linolenic acid) double bonds affects the profiles of ruminal microorganisms to different extents. Maia et al. (2007) evaluated the effect of different fatty acids on growth of pure strains of ruminal bacteria. Linolenic acid was more toxic than linoleic acid, whereas eicosapentaenoic acid and docosahexaenoic acid were more toxic than linolenic acid. Although a few studies have examined the negative effect of unsaturated fatty acids on some ruminal microbiota (Ferlay et al., 1993; Oldick and Firkins, 2000), none has evaluated relative changes in the profiles of ruminal microbiota in response to dietary PUFA. Thus, the main objective of this study was to determine the effect of SBO and LSO supplementation of a high-forage diet (60% forage) on profiles of ruminal microorganisms.

Material and methods

Animals and diets

Four primiparous Holstein cows equipped with a rumen cannula (# 1C; Bar Diamond, Inc., Boise, Idaho, USA) were used in a 4 × 4 Latin square design. The average body weight and days in milk at the beginning of the experiment were 521 ± 38 kg and 45 ± 10, respectively. Dietary treatments were: control diet (C), C with 4% supplemental (wt/wt basis) SBO (S), C with 4% LSO (L), and C with 2% SBO and 2% LSO (SL). The C diet contained 60% forage and 40% concentrate (Table 1). Each period was 21 days, including 14 days to allow the cows to adjust to the diet, followed by 7 days for sampling. Cows were housed in a tie-stall barn and fed individually. The total mixed ration (TMR) diets were mixed once a day and fed twice daily in equal portions at 0800 and 2000 h. The oils were stored in a cold room at 4°C and were mixed evenly with the concentrate each morning. Supplements were stored in the shade in a cool environment until fed. Orts were restricted.

Table 1 Ingredient and chemical composition of total mixed diets in cows fed a control diet or C supplemented with soybean oil, linseed oil and soybean oil plus linseed oil

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>C</th>
<th>S</th>
<th>L</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa hay</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Chinese wildrye (hay, ripe)</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>Maize silage</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>Maize</td>
<td>157</td>
<td>117</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>135</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>Cotton seed meal</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Calcium phosphate (dibasic)</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>NaCl</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Premix</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Nutrient composition (DM basis)

NE L (MJ/kg DM) | 6.0 | 6.6 | 6.6 | 6.6 |
Residual OM (OM minus CP, NDF and EE) | 390 | 360 | 360 | 360 |
CP | 161 | 161 | 161 |161 |
NDF | 423 | 414 | 414 |414 |
ADF | 272 | 270 | 270 |270 |
EE | 26 | 65 | 65 |65 |
Ca | 9 | 9 | 9 |9 |
Available P | 6 | 6 | 6 |6 |

DM = dry matter; OM = organic matter; EE = ether extract.

Cows were fed a basal diet (C) or basal diet supplemented with either 4.0% soybean oil (S), 4.0% linseed oil (L) or 2.0% soybean oil + 2.0% linseed oil (SL).

The NE L values (MJ/kg DM) were: SBO 6.9, LSO 7.2, and SL 7.5.

Available P was determined according to the NRC (2001) recommendations.

to 5% to 10% of intake on an as-fed basis. Procedures used for animal care and handling were approved and conducted under established standards of the Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.

Sampling and analysis

Samples of TMR were collected daily, frozen and stored at -20°C. Orts were sampled twice a week from each cow, composited for each treatment, frozen and stored at -20°C until analyses were performed. Weekly representative samples of TMR and orts from each treatment were analyzed for DM content. The DM content of feed ingredients was determined by oven-drying at 60°C for 48 h. Dried feed samples from each week during the experimental period were ground in a Cyclotec1093 mill (Tecator, Hoganas, Sweden) and analyzed for DM content. The DM content of feed ingredients was determined by oven-drying at 60°C for 48 h. Dried feed samples from each week during the experimental period were ground in a Cyclotec1093 mill (Tecator, Hoganas, Sweden) and analyzed for DM content.

DNA extraction

Total DNA from the ruminal fluid was extracted as described by Tajima et al. (2001), with some modifications, using a Mini Bead-Beater-1 (Biospec Products, Inc., Bartlesville, Oklahoma, OK, USA) for cell lysis. Briefly, 0.5 ml ruminal fluid mixed with 900 μl cetyl trimethyl ammonium bromide (CTAB) solution (100 mM Tris-HCl, 100 mM EDTA, 100 mM Na₂PO₄, 1.5 M NaCl, 1% CTAB, pH 8.0) in a 2 ml tube containing 1 g glass beads (150 μm in diameter) was shaken for 1 min at 4200 r.p.m. in a Mini Bead Beater. Tubes were then centrifuged at 12 000 $\times g$ for 10 min. The supernatant was transferred to a fresh tube and extracted with buffered phenol, chloroform and isomyl alcohol (volume ratio, 25 : 24 : 1). The result supernatant was precipitated with two volumes of cold ethanol for 1 to 2 h. After centrifugation at 12 000 $\times g$ for 10 min at room temperature, the eluted DNA was washed with 70% ethanol, dried, dissolved in sterile Tris-EDTA (TE) buffer (1 M Tris-HCl, 0.5 M EDTA, pH 8.0), and treated with DNase-free RNase A. Samples were re-extracted with buffered phenol, precipitated with ethanol and dissolved in TE buffer. DNA was purified with the DNA fragment purification kit (TaKaRa Biotechnology Co., Ltd, Dalian, China) according to the manufacturer’s recommendations. Eluted DNA was dissolved in sterile TE buffer, and stored at -20°C. DNA concentrations were measured at 260 nm with a Beckman DU800 spectrophotometer (Beckman Co., Fullerton, CA, USA). On average, the DNA used for these experiments possessed an A₂60/A₂80 ratio of 1.8.

Design and synthesis of PCR primers

Primers designed to detect the target species are listed in Table 2. Although primers to detect the chosen bacteria are available (Asanuma et al., 2001; Kolke and Kobayashi, 2001), we elected to re-design primers to obtain products of 80 to 300 bp (base pairs) as typical recommended (http://www.takara.com.cn/newproducts/015.htm). The 16S rDNA sequences of interest were downloaded from GenBank. Sequence regions specific for a given species (with 97% similarity) were searched online against the GenBank database using the Basic Local Alignment Search Tool (BLAST) family of programs to ensure the specificity of primers. The primers satisfied requirements of species conservation within a given bacteria, and specificity from other clusters of species in the phylogenetic tree. Primer sequences were then tested against online nucleotide databases to ensure their specificity. These primers also were tested for the requirements imposed by real-time quantitative PCR (see further below). Primers were designed and sequences were edited using DNASTar 5.0 (DNASTAR Inc., Madison, WI, USA). Oligonucleotides were synthesized by Sangon (Sangon Biological Engineering Technology and Service Co., Ltd, Shanghai, China).

Conventional PCR

PCR was performed with the Takara Taq™ PCR kit (TaKaRa Biotechnology Co., Ltd) using PE9700 thermal cycler (PerkinElmer, Waltham, MA, USA). Amplification conditions were: one cycle at 95°C for 3 min of denaturation, 35 cycles at 95°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C for 1 min. A total of 25 μl of PCR mixture contained:
2.5 μl 10× PCR buffer (100 mM Tris-HCl (pH 8.3), 500 mM KCl, 15 mM MgCl2), 10 μM each primer and 20 ng of purified template DNA concentration, 2 μl dNTP mixture (each deoxynucleoside triphosphate 2.5 mM), 2.5 U TaqTM DNA polymerase. PCR products were separated by electrophoresis on agarose gels and stained with ethidium bromide. PCR products were cloned into the TA cloning kit (TaKaRa Biotechnology Co., Ltd), and the transformants were picked randomly. Recombinant plasmids were extracted using the TaKaRa MiniBEST Plasmid Purification Kit Version 2.0 (TaKaRa Biotechnology Co., Ltd). After PCR amplification with the DNA plasmid (amplification conditions as described above), the species-specific amplification was confirmed by sequencing (Sangon Biological Engineering Technology and Service Co., Ltd). Dilutions of purified plasmid DNA from each strain were used to construct species-specific calibration curves. These calibration curves were used for calculation of the copy of targeted species in total rumen DNA. The value of the slope of the species-specific calibration curves ranged between −3.2 and −3.6.

Sequence of amplicons
The specificity of amplification was confirmed by sequencing (Sangon Biological Engineering Technology and Service Co., Ltd). After detection of species-specific PCR amplifications in total rumen DNA, the PCR products were cloned into the TA cloning kit (TaKaRa Biotechnology Co., Ltd), and the transformants were picked randomly. Recombinant plasmids were extracted using the TaKaRa MiniBEST Plasmid Purification Kit Version 2.0 (TaKaRa Biotechnology Co., Ltd). After PCR amplification with the DNA plasmid (amplification conditions as described above), the species-specific amplification was confirmed by sequencing (Sangon Biological Engineering Technology and Service Co., Ltd). Dilutions of purified plasmid DNA from each strain were used to construct species-specific calibration curves. These calibration curves were used for calculation of the copy of targeted species in total rumen DNA. The value of the slope of the species-specific calibration curves ranged between −3.2 and −3.6.

Real-time PCR
Quantification of each bacterial species was performed with an Applied Biosystems 7500 System Real-Time PCR (Model 7500; Applied Biosystems, Foster city, CA, USA). Optimal amplification conditions for each primer pair were achieved. The reaction mixture in 25 μl of the final volume contained 12.5 μl of SYBR green PCR 2× Mastermix (OBT Instruments Co., Ltd, Beijing, China), primer and template DNA (described in Table 2). Amplification involved one cycle at 95°C for 10 min for initial denaturation, and then 40 cycles at 95°C for 15 s, followed by annealing at 60°C for 30 s, and then 1 min at 72°C. Detection of fluorescent product was set at the last step of each cycle. Specificity of amplification was performed by analysis of melting curves after each amplification. The melting curve was obtained by slow heating at 0.1°C/s increments from 65°C to 95°C, with fluorescence recording at 0.1°C intervals. Additional specificity analyses included product size verification by gel electrophoresis of samples after the PCR run, and melting point determination analysis (Figure 1).

Nucleotide sequence accession number
The 16S rDNA sequences described in this paper have been deposited in the GenBank database under accession no. AJ169412 (Butyrivibrio fibrisolvens), X85098 (Ruminococcus albus), X85097 (Ruminococcus flavefaciens) and AJ496032 (Fibrobacter succinogenes).

Data analysis
All data were analyzed as a 4 × 4 Latin square using the MIXED procedure of SAS 8.2 (SAS Institute Inc., Cary, NC, USA). The statistical model included cow as random effect, and period and treatment as fixed effects. For the statistical analysis of ruminal fluid characteristics (pH, VFA, NH3-N) and microorganism counts, sampling time and sampling time × treatment were added to the model and analyzed using repeated measures. Orthogonal contrasts included: C v. oil-supplemented diets to test the effect of oil supplementation; S v. L to test the effect of high S v. high L intake; and SL v. S + L to test the additive effect of S and L. The significance level was declared at P < 0.05 unless otherwise noted. Trends for significance were declared at P = 0.05 to 0.10.

Table 2 PCR primers and template DNA for detection of ruminal bacteria

<table>
<thead>
<tr>
<th>Target bacterium (Strain)</th>
<th>Primer</th>
<th>Primer concentration (μM)</th>
<th>Purified template DNA (ng)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrobacter succinogenes (ATCC 19169)</td>
<td>Forward</td>
<td>5'-GCCTAAATTTGCAATTCAGCAG-3'</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-TCTCCGTCGCCAGGTCAGGAG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruminococcus flavefaciens</td>
<td>Forward</td>
<td>5'-GATGCGGCTTGCAGGAGAAGC-3'</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-CATCTGGCACTACAACGAAA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyrivibrio fibrisolvens</td>
<td>Forward</td>
<td>5'-TACGCTGAGGATCTGATTCGTGC-3'</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-CGTATCCACCGGACGCACGC-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruminococcus albus</td>
<td>Forward</td>
<td>5'-GGGTAGGGATGTGAAACCTCTCTTT-3'</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-CCTAATATCTACGCAATTCACC-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Amplification of the targeted species in total ruminal fluid DNA. DNA size marker (2000 bp) is in the far right lane.
Results

Chemical composition of the experimental diets

Ingredients and chemical composition of the diets are shown in Table 1. Each treatment contained 60% forage and 40% concentrate. Oils used for diets S, L and SL were substituted for corn grain on a weight basis to achieve the desired level of supplementation. Replacing corn grain with oil supplements increased the energy content of diets in the S, L and SL diets compared with the control (6.61 vs. 5.98 MJ/kg of feed DM). Because the oil content of corn grain is typically <5% of dry matter (e.g. Dhiman et al., 1999; Loor et al., 2002), it is unlikely that it provided a quantitatively significant amount of PUFA for biohydrogenation. Milk yield and DMI during the study averaged 14.1 ± 0.3 (P = 0.75) and 12.6 ± 0.6 (P = 0.28) kg/day and no differences (P > 0.05) were observed between diets.

Ruminal fermentation parameters

Average ruminal pH and concentrations of total VFA and NH₃-N are shown in Table 3. Effect of time and time × treatment was not significant. Ruminal pH did not differ among treatments. Ruminal NH₃-N concentration was greater (4.4 vs. 5.6 mmol/l), and the concentration of total VFA (110 vs. 105 mmol/l) was lower due to oil supplementation. Molar proportion of acetate was not affected significantly, whereas that of propionate was significantly increased and butyrate significantly decreased for oil supplementation. Feeding the blend of S and L (SL) increased (P < 0.05) NH₃-N concentration to a greater extent than feeding them separately.

Microorganism counts

Cows fed diets with supplemental oil had lower (P < 0.05) cellulolytic bacteria (3.25 × 10⁸ vs. 4.66 × 10⁸ colony-forming units (CFU/ml) and protozoa counts (9.04 × 10⁴ vs. 12.92 × 10⁴ cells/ml), but higher proteolytic bacteria (7.01 × 10⁵ vs. 6.08 × 10⁵ CFU/ml) counts compared with cows fed the control diet (P < 0.05) (Table 4). Cows fed supplemental oil had numerically lower total viable bacteria than cows fed the control diet. Counts of total viable bacteria, proteolytic bacteria, cellulolytic bacteria and protozoa in cows fed S or L were similar.

Table 3 Ruminal pH, VFA and ammonia-N concentration in cows fed a control diet or C supplemented with soybean oil, linseed oil or soybean oil plus linseed oil

<table>
<thead>
<tr>
<th>Diet</th>
<th>Contrast</th>
<th>C v. oil</th>
<th>S v. L</th>
<th>S L v. S + L</th>
<th>P =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean s.e.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.43</td>
<td>6.41</td>
<td>6.34</td>
<td>6.38</td>
<td>0.03</td>
</tr>
<tr>
<td>Total VFA (mmol/l)</td>
<td>110</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>4.26</td>
</tr>
<tr>
<td>Acetate (mol/100 mol)</td>
<td>69.4</td>
<td>70.2</td>
<td>69.7</td>
<td>69.6</td>
<td>0.69</td>
</tr>
<tr>
<td>Propionate (mol/100 mol)</td>
<td>19.5</td>
<td>19.6</td>
<td>20.4</td>
<td>20.2</td>
<td>0.28</td>
</tr>
<tr>
<td>Butyrate (mol/100 mol)</td>
<td>9.4</td>
<td>9.2</td>
<td>9.0</td>
<td>8.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Valerate (mol/100 mol)</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>NH₃-N (mmol/l)</td>
<td>4.4</td>
<td>5.5</td>
<td>5.5</td>
<td>5.8</td>
<td>0.09</td>
</tr>
</tbody>
</table>

VFA = volatile fatty acids.
*Cows were fed a basal diet (C) or basal diet supplemented with either 4.0% soybean oil (S), 4.0% linseed oil (L) or 2.0% soybean oil + 2.0% linseed oil (SL).
*C v. oil = C versus oil (S, L, SL).
*P < 0.05; **P < 0.01; ***P < 0.001.

Table 4 Colony counts of ruminal microorganisms from cows fed a control diet and C supplemented with soybean oil, linseed oil, and soybean oil plus linseed oil

<table>
<thead>
<tr>
<th>Diet</th>
<th>Contrast</th>
<th>C v. oil</th>
<th>S v. L</th>
<th>S L v. S + L</th>
<th>P =</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylolytic bacteria (×10⁷ CFU/ml)</td>
<td>8.28</td>
<td>10.60</td>
<td>7.62</td>
<td>11.00</td>
<td>1.04</td>
</tr>
<tr>
<td>Total viable bacteria (×10⁵ CFU/ml)</td>
<td>6.19</td>
<td>5.89</td>
<td>5.06</td>
<td>5.69</td>
<td>0.77</td>
</tr>
<tr>
<td>Proteolytic bacteria (×10⁵ CFU/ml)</td>
<td>6.08</td>
<td>6.81</td>
<td>6.80</td>
<td>7.41</td>
<td>0.40</td>
</tr>
<tr>
<td>Cellulolytic bacteria (×10⁵ CFU/ml)</td>
<td>4.66</td>
<td>3.30</td>
<td>2.82</td>
<td>3.63</td>
<td>0.30</td>
</tr>
<tr>
<td>Protozoa (×10⁴ cells/ml)</td>
<td>12.92</td>
<td>9.92</td>
<td>8.17</td>
<td>9.04</td>
<td>1.11</td>
</tr>
</tbody>
</table>

CFU = colony-forming units.
*Cows were fed a basal diet (C) or basal diet supplemented with either 4.0% soybean oil (S), 4.0% linseed oil (L) or 2.0% soybean oil + 2.0% linseed oil (SL).
*C v. oil = C versus oil (S, L, SL).
*P < 0.05; **P < 0.01; ***P < 0.001.
Supplemental oil affects ruminal ecology

Quantification of ruminal bacteria
The resulting primer set (Table 2) produced PCR products of the expected size with test strains. All PCR products were of the expected size (Figure 1). The results of quantification are shown in Table 5. Overall, the quantity of B. fibrisolvens, R. albus and F. succinogenes DNA decreased (P < 0.05) by 18%, 42% and 67%, respectively, when cows were fed supplemental oil compared with control. Among oil treatments, DNA quantity of B. fibrisolvens and R. flavefaciens decreased (P < 0.05) by 35% and 25% in cows fed L v. S.

Discussion
Ruminal fermentation
Oil supplementation in our study led to lower total VFA concentration. It is suggested that unsaturated FA from oil could have interfered with ruminal fermentation resulting in greater gut fill. This is supported by the observed 3% reduction in ‘residual organic matter’ digestion (which could be mainly starch) (Table 1), which accounted for the reduction in VFA concentration (ca. 4% reduction). Additionally, the shift in carbohydrate sources (i.e. relatively more (hemi) cellulose due to less corn grain) because of the substitution of grain for oil in the diets coupled with the reduction in cell wall fermentation due to reduced bacterial activity, partly explained the reduction in total VFA concentrations.

Dietary oil supplementation effects on ruminal NH\textsubscript{3}-N concentration have been variable. For example, in studies with sheep fed hay and concentrate, a decrease in ruminal NH\textsubscript{3}-N was observed in steers fed grass silage and concentrate (Scollan et al., 2001) or fed supplemental SBO or LSO (Brokaw et al., 2001; Ueda et al., 2004). Unsaturated fatty acids have been reported to have direct inhibitory effects on ruminal protozoa (Oldick and Firkins, 2000). Linoleic acid is toxic to ruminal protozoa and previous research has shown a consistent decrease in protozoal counts in vivo (Sutton et al., 1983; Hristov et al., 2005) and in vitro (Newbold and Chamberlain, 1988). Hristov et al. (2005) reported in vitro data showing 48%, 88% and 100% eradication of ruminal protozoa with inclusion of 0.25%, 0.5% and 1% linoleic acid, respectively, in the incubation media. Another study showed that oleic acid at 0.25%, 0.5% and 1% decreased protozoal counts by 26%, 45% and 78%, respectively (Hristov et al., 2004).

Further, Oldick and Firkins (2000) observed a linear decrease in ruminal protozoa with increasing degree of

Table 5 Quantification of ruminal bacteria by real time PCR in cows fed a control diet and C supplemented with soybean oil, linseed oil and soybean oil plus linseed oil

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Contrast</th>
<th>Copies per template DNA (ng) Mean s.e. P</th>
<th>C v. oilb</th>
<th>S v. L</th>
<th>SL v. S + L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyrivibrio fibrisolvens × 108</td>
<td>C</td>
<td>3.31</td>
<td>3.12</td>
<td>2.04</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>9.51</td>
<td>5.05</td>
<td>5.69</td>
<td>5.89</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>7.95</td>
<td>4.83</td>
<td>0.48</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>SL</td>
<td>2.08</td>
<td>1.99</td>
<td>1.50</td>
<td>1.87</td>
</tr>
</tbody>
</table>

aCows were fed a basal diet (C) or basal diet supplemented with either 4.0% soybean oil (S), 4.0% linseed oil (L) or 2.0% soybean oil + 2.0% linseed oil (SL).

bC v. oil = C versus oil (S, L, SL).

*P < 0.05; ***P < 0.001.
unsaturation of dietary fats. In our study, a marked decrease in protozoa and cellulolytic bacteria numbers were observed when oils were supplemented. These effects were possibly associated with direct inhibition and/or coating action of the unsaturated fatty acids on microorganisms.

There is a paucity of data regarding the effects of supplemental oil on other bacterial (except for cellulolytic bacteria) populations in cattle. In the present study, total viable bacteria and amylolytic bacteria counts were not affected by oil. However, oil resulted in greater proteolytic bacteria counts possibly resulting from a decrease in protozoa as observed in cows fed L or S compared with fish oil (Loor et al., 2005b).

The extreme complexity of the ruminal microbiota has been uncovered in numerous publications that employed isolation of pure cultures. However, culture-based approaches are very time- and labor-consuming, and the results, which are based on phenotypic characteristics, are not precise or conclusive. Modern molecular techniques based on sequence comparison of nucleic acids (DNA and RNA) offer certain advantages. These techniques can be used to provide molecular characterization and a classification scheme that predicts natural evolutionary relationships without cultivating the microorganisms (Mackie et al., 2000), but also can be suitable for quantifying microorganisms (Reilly and Attwood, 1998). Advances in molecular microbial technique allowed us to quantify four ruminal bacteria that play key roles in aspects of ruminal biohydrogenation (e.g. lipid metabolism in ruminants). We specifically set out to design and validate PCR primers for detection of the chosen ruminal bacteria. These primers were designed to satisfy the stringent criteria required in real-time PCR quantification of a target in a microbial community DNA mixture. Butyrivibrio fibrisolvens is the most active bacterial species in the biohydrogenation of PUFA in the rumen (Jenkins, 1993). Ruminococcus albus also plays a role in the biohydrogenation of PUFA in the rumen. They remove unsaturated double bonds in order to detoxify the PUFA and enable growth of the bacterium (Devillier et al., 2006).

In the present study, we observed that cows fed S or L or SL had lower DNA quantity of ruminal bacteria associated with biohydrogenation (B. fibrisolvens and R. albus) and also fibrolytic bacteria (F. succinogenes and R. flavefaciens). Kepler et al. (1966) reported that PUFA were particularly toxic, and other long-chain fatty acids were toxic to some of the cellulolytic bacteria also found in the rumen (Maczulak et al., 1981). Furthermore, it appeared that L had a more potent inhibitory effect on ruminal microflora. In the present study, cows fed L had lower DNA quantity of B. fibrisolvens and R. flavefaciens compared with cows fed S. Our results (except for R. albus) were consistent with those from a recent study by Maia et al. (2007), who reported that linoleic acid was more toxic than linoleic acid. In fact, the inhibitory effect of unsaturated oils on ruminal bacteria appears to be associated with the degree of unsaturation of the fatty acids, e.g. two unsaturated double bonds (linoleic acid) vs. three double bonds (linolenic acid). Oldick and Firkins (2000) observed a linear decrease in ruminal protozoa with an increasing degree of unsaturation of dietary fats when diets (48.5% maize silage and 51.5% concentrate) added 4.85% fat from prills of partially hydrogenated tallow, tallow or animal-vegetable fat.

Conclusions

Similar to previous studies, we observed that oil supplementation (4% of diet DM) to dairy cows decreases ruminal fermentation leading to lower VFA concentrations. Populations of ruminal microorganisms also were affected by LSO and SBO, with total protozoa and cellulolytic bacteria being reduced, and total proteolytic bacteria being increased by oils. Our data are some of the first to use molecular techniques to quantify detrimental effects of dietary PUFA on key ruminal bacteria with major roles in fiber digestion and biohydrogenation. In this context, our results clearly showed that, at the same level of supplementation linolenic acid was more toxic than linoleic acid in reducing the amount of B. fibrisolvens, F. succinogenes and R. flavefaciens. Detrimental effects of oils on ruminal microorganisms could partly explain the observed effects on ruminal fermentation parameters.

Acknowledgements

This work was partially funded by the Ministry of Science and Technology and Ministry of Agricultural grants (Nos. 2006BAD12B08, 2006BAD04A08 and 2006DFB32160). The authors sincerely thank the staff of the ruminant nutrition Lab, Institute of Animal Science, Chinese Academy of Agricultural Science for all their full practical assistance and technical support. The authors also appreciate Dr Weidong Deng for providing help with bacterial cultures.

References

especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids.
China NY/t34 2004. Feeding standard of dairy cattle. China nongye hangye
biaozhun/Tujiang-34. China Agricultural Publisher, Beijing, China (in Chinese).
Conjugated linoleic acid content of milk and cheese from cows fed extruded
Conjugated linoleic acid (CLA) content of milk form cows offered diets rich in
linoleic acid contents in blood in bovine rumen, blood, and milk. Journal of
Dairy Science 84, 3986–3999.
Hristov AN, Kennington LR, McGuire MA and Hunt CW 2005. Effect of diets
containing linoleic acid- or oleic acid-rich oils on ruminal fermentation and
nutrient digestibility, and performance and fatty acid composition of adipose
and muscle tissues of finishing cattle. Journal of Animal Science 83,
2693–2704.
Hristov AN, Kennington LR, McGuire MA and Hunt CW 2005. Effect of diets
containing linoleic acid- or oleic acid-rich oils on ruminal fermentation and
nutrient digestibility, and performance and fatty acid composition of adipose
of supplementation of soybean oil and linseed oil on digestibility of organic
Ikwuegbu OA and Sutton JD 1982. The effect of varying the amount of linseed
oil supplementation on rumen metabolism in sheep. The British Journal of
Nutrition 48, 365–375.
Jenkins TC 1993. Lipid metabolism in the rumen. Journal of Dairy Science 76,
3851–3863.
assays for the rumen cellulytic bacteria: Fibrobacter succinogenes,
Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology
Letters 204, 361–366.
Loor JJ, Herbein JH and Polan CE 2002. Trans18:1 and 18:2 isomers in blood
plasma and milk fat of grazing cows fed a grain-supplement containing
solvent-extracted or mechanically-extracted soybean meal. Journal of Dairy
Science 85, 1197–1207.
Loor JJ, Ueda K, Ferlay A, Chilliard Y and Doreau M 2005b. Intestinal flow and
digestibility of trans fatty acids and conjugated linoleic acids (CLA) in dairy
cows fed a high-concentrate diet supplemented with fish oil, linseed oil, or
Lu DX and Xie CW 1991. Modern research methods and technologies in
acids on growth of rumen bacteria. Applied and Environmental Microbiology 42,
856–862.
Maia MRG, Chaudhary LC, Figueres L and Wallace RJ 2007. Metabolism of
polyunsaturated fatty acids and their toxicity to the microflora of the rumen.
Antonie van Leeuwenhoek 91, 303–314.
effects of medium-chain fatty acids and their derivatives on goat rumen
The Proceedings of the Nutrition Society 47, 154A.
Oldick BS and Firkins JL 2000. Effects of degree of fat saturation on fiber
digestion and microbial protein synthesis when diets are fed twelve times
Orskov ER, Hine RS and Grubb DA 1978. The effect of urea on digestion and
voluntary intake by sheep of diets supplemented with fat. Animal Production
27, 241–245.
Palmquist DL 1988. The feeding value of fats. In Feed science (ed. ER Ørskov),
Piperova LS, Teter BB, Bruckental J, Sampugna J, Mills SE, Yurawecz MP,
Fritsche J, Ku K and Erdman RA 2000. Mammary lipogenic enzyme activity,
trans fatty acids and conjugated linoleic acids are altered in lactating dairy
Royle K and Attwood GT 1998. Detection of clostridium proteoclasticum and
closely related strains in the rumen by competitive PCR. Applied and
Environmental Microbiology 64, 907–913.
Biohydrogenation and digestion of long chain fatty acids in steers fed on
Sutton JD, Knight R, McAllan AB and Smith RH 1983. Digestion and synthesis
in the rumen of sheep given diets supplemented with free and protected oils.
The British Journal of Nutrition 49, 419–432.
Diet-dependent shift in the bacterial population of the rumen revealed with
real-time PCR. Applied and Environmental Microbiology 67, 2766–2774.
linseed oil supplementation on ruminal digestion in dairy cows fed diets with
Van Soest PJ, Robertson JB and Lewis BA 1991. Methods for dietary fiber,
nuetral detergent fiber, and nonstarch polysaccharides in relation to animal
White TW, Grainger RB, Baker FH and Stroud JW 1958. Effect of supplemental
fat on digestion and the ruminal calcium requirement of sheep. Journal of
Animal Science 17, 797–803.