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One-parameter Groups of Operators and
Discrete Hilbert Transforms

Laura De Carli and Gohin Shaikh Samad

Abstract. We show that the discrete Hilbert transform and the discrete Kak–Hilbert transform are
inûnitesimal generators of one-parameter groups of operators in ℓ2 .

1 Introduction

We are concerned with the family of operators {Tt}t∈R, initially deûned in the space
s0 of complex-valued sequences with compact support as follows:

(1.1) (Tt(a⃗))m =

⎧⎪⎪
⎨
⎪⎪⎩

sin(π t)
π ∑n∈Z

an
m−n+t if t /∈ Z,

(−1)tam+t if t ∈ Z.

When t is an integer, Tt(a⃗) = (−1)tτt(a⃗), where τk(a⃗)m = ak+m is the translation;
when t ∈ (−1, 1), these operators can be viewed as discrete versions of the Hilbert
transform in L2(R).

_eHilbert transform

H f (x) = p.v .
1
π ∫

∞

−∞

f (t)
x − t

dt,

initially deûned when f ∈ C∞0 (R), is the archetypal singular integral operator. Dis-
crete analogs of the Hilbert transform have important applications in science and
technology. _e following operator was introduced by D. Hilbert in 1909:

(1.2) (H(a⃗))m =
1
π
∑
n∈Z
n/=m

an

m − n
.

_is transformation is notwell suited for applications, for reasons thatwewill discuss
in Section 2; the operators

T 1
2
(a⃗) =

1
π
∑
n∈Z

an

m − n + 1
2

(E. C. Titchmarsh, 1926) and the Kak–Hilbert transform (S. Kak, 1970, [7])

(1.3) K(a⃗)(k) =
⎧⎪⎪
⎨
⎪⎪⎩

2
π ∑n even

an
k−n k odd,

2
π ∑n odd

an
k−n k even,
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share some of the features of the continuous Hilbert transform and are very relevant
in sciences and engineering. We will discuss these operators in Sections 2 and 3.
Weighted discrete Hilbert transforms and their connections with problems in com-
plex analysis are discussed in [2].

When 1 ≤ p < ∞, we denote by ℓp the space of complex-valued p-summable se-
quences, i.e.,

ℓp
= { a⃗ = (a j) j∈Z ∶ ∥a⃗∥ℓp = (∑

j∈Z
∣a j ∣

p
)

1
p
<∞} .

_en ℓ∞ is the space of bounded sequences equipped with the norm

∥a⃗∥ℓ∞ = sup
m∈Z

∣am ∣.

Our main result is the following theorem.

_eorem 1.1 _e family {Tt}t≥0 deûned in (1.1) is a strongly continuous group of
isometries in ℓ2; its inûnitesimal generator is πH, where H is the operator deûned in
(1.2).

To prove _eorem 1.1 we will prove that Ts ○ Tt = Ts+t ; (_eorem 4.1); that Tt
is an isometry for every t ∈ R (_eorem 4.5); that for every a⃗ ∈ ℓ2, the applica-
tion t → Tt(a⃗) is continuous in R (_eorem 4.3); and ûnally that, for every a⃗ ∈ ℓ2,
limt→0

Tt(a⃗)−a⃗
t = πH(a⃗) (_eorem 4.6).

_e proofs of these results are elementary and use only the identities in Section 2.3.
_eorem 4.5 seems to be known, but we could not ûnd references in the literature.
Some of the results in Section 4 can also be proved in the framework of the theory of
Toeplitz operators.1

In Section 3 we describe the properties of the Kak–Hilbert transform and prove
the following theorem.

_eorem 1.2 Let K be the discrete Kak-Hilbert transform (1.3). _en

Ut = cos tI + sin tK = Im(e−i t
(I + iK)), t ∈ R,

is a strongly continuous group of operators in ℓ2 generated by K.

In Sections 2.1 and 3 we discuss the ℓp − ℓp boundedness of the operators H, Tt ,
and K for 1 < p < ∞. It is noted in [8] that the operators Tt and H (and in general,
every operator L∶ ℓp → ℓp in the form of L(a⃗)m = ∑n am−ncn , with (cn)n∈Z ∈ ℓ∞)
can be associated with a Fourier multiplier operator acting on functions on the real
line. Indeed, we can associate with L the operator L̃∶ Lp(R)→ Lp(R),

L̃ f (x) = ∑
n∈Z

f (x − n)cn = ∫
R
f̂ (y)m(y)e2πix ydy,

wherem(y) is the periodic function onRwhose Fourier coeõcients are the cn ’s, and
f̂ (y) = ∫R f (x)e

−2πix ydx is the Fourier transform of f (x). For example, it is not too

1We are indebted to I. Verbitsky for this remark.
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diõcult to verify that the multiplier associated with the Kak–Hilbert transform (1.3)
is the “square wave” function that coincides with m(x) = i sgn(x) in (− 1

2 ,
1
2 ).

It is proved in [8] that the ℓp → ℓp operator norm of L is the same as the Lp(R)→

Lp(R) operator norm of L̃. In short,

(1.4) 9L9ℓp = 9L̃ 9Lp .

Since the L2(R) → L2(R) norm of a multiplier operator is the L∞(R) norm of the
multiplier (see e.g., [12]) it follows from (1.4) that 9L9ℓ2 = supx∈R ∣m(x)∣. _e eval-
uation of the Lp(R) → Lp(R) norm of multiplier operators is o�en a very diõcult
problem, but the equivalence (1.4) can be used to produce an upper bound for the
ℓp → ℓp norm of L. Indeed, we will prove in Section 3 (_eorems 3.2 and 3.1) that
9H9Lp ≤ 9H9ℓp ≤ 9K9ℓp = 9T 1

2
9ℓp . We conjecture that these norms are equal for

all values of p ∈ (1,∞).

2 Preliminaries

2.1 The Hilbert Transform

_eHilbert transform

H f (x) = p.v .
1
π ∫

∞

−∞

f (t)
x − t

dt,

initially deûned when f ∈ C∞0 (R), is an important singular integral operator. We
refer the reader to the excellent [5] for an introduction to the Hilbert transform and
singular integrals.

_eHilbert transform satisûes the identityH ○H( f ) = − f , which implies that H
is an isometry in L2(R).

When f is real-valued, f + iH f extends to an holomorphic function in the upper
complex half-plane. _is fundamental property of the Hilbert transform has been
used by S. Pichoridis [9] to evaluate the best constant in the inequality ofM. Riesz:

(2.1) ∥H f ∥Lp(R) ≤ np∥ f ∥Lp(R) , f ∈ C∞0 (R).

Here, 1 < p <∞ and np = max{tan(π/2p), cot(π/2p)}. See also [4] for a short proof
of Pichoridis’ result.
Discrete versions of the Hilbert transform have a variety of applications in signal

representation and processing. See, e.g., [10] and the references cited there.
To the best of our knowledge, the ℓ2 → ℓ2 norm of the operator H deûned in (1.2)

was estimated for the ûrst time by D. Hilbert, who in 1909 proved the inequality

(2.2) ∑
m∈Z
∑
n∈Z
n/=m

anbm

m − n
≤ c(∑

n∈Z
∣an ∣

2
)

1
2
(∑

m∈Z
∣bm ∣

2
)

1
2

with a constant c > π.2 _ree years later, Shur [11] proved that c = π is the best possible
constant in the inequality (2.2), or equivalently that 1 is the ℓ2 → ℓ2 operator norm of
H. See [3] for an elegant elementary proof of Shur’s inequality.

2_e original proof ûrst appeared in Weyl’s doctoral dissertation in 1908 [13].
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_us, H is not an isometry in ℓ2. Indeed, the proof in [3] shows that the equality
∥H(a⃗)∥ℓ2 = ∥a⃗∥ℓ2 only holdswhen a⃗ = 0. Also, it isnot true in general thatH○H(a⃗) =
−a⃗.

_e operator T1/2 is a good analog of the continuous Hilbert transform. By _eo-
rem 1.1, T1/2 is an isometry in ℓ2 and satisûes T 1

2
○ T 1

2
(a⃗) = −τ1(a⃗).

_e Kak-Hilbert transform deûned in (1.3) can be viewed as a “reduced” discrete
Hilbert transform (1.2). If we let χe ∶ ℓ2 → ℓ2 be such that χe(a⃗)n = an when n is even
and χe(a⃗)n = 0 when n is odd, andwe let χo(a⃗) = a⃗− χe(a⃗),we can easily verify that

K(a⃗) = 2( χo ○H ○ χe(a⃗) + χe ○H ○ χo(a⃗)) .

S. Kak proved in [7] that K ○K(a⃗) = −a⃗, from which follows that K is an isometry in
ℓ2. For 1 < p <∞, and in [8,_eorem 4.3], the ℓp → ℓp operator norm of H is at least
np , where np is the constant in (2.1). Equality is proved for special values of p.

It is also proved in [8] that the operators Tt are bounded in ℓp for 1 < p < ∞ and
9Tt9ℓp ≥ 9 cos(πt)I + sin(πt)H9Lp , where I f = f . _e evaluation of the ℓp → ℓp

operator norms of H and Tt is a tantalizing long-standing open problem.

2.2 Groups and Semigroups of Operators

Let X be a Banach space with norm ∥ ⋅ ∥ and let L(X) be the collection of linear and
bounded operators on X. A one parameter group of operators is a mapping U ∶R →
L(X) such that (a) U(0) is the identity operator in L(X) and (b) U(s) ○ U(t) =

U(s + t) whenever s, t ∈ R. In particular, U(−s) = U−1(s).
A semigroup is a mapping U ∶ [0,∞) → L(X) that satisûes (a) and (b) whenever

s, t ≥ 0. We say that a group (or semigroup) U is strongly continuous if

lim
t→t0

∥U(t)(x) −U(t0)(x)∥ = 0

for every x ∈ X. WhenU is a semigroup,we also require that limt→0+ ∥U(t)(x)−x∥ =
0. We say that U is contractive if ∥U(t)(x)∥ ≤ ∥x∥ for every x ∈ X and every t ∈ R (or
for every t ≥ 0 if U is a semigroup).

_e inûnitesimal generator A of a strongly continuous group (or semigroup) U(t)
can be introduced as the operator deûned by

(2.3) A(x) =∶
d
dt

U ∣t=0 = lim
h→0+

U(h)(x) − x
h

, x ∈ D(A),

where D(A) is the set of all x ∈ X for which the above limit exists. Using the strong
continuity ofU(t), it is possible to prove thatD(A) is dense in X. It can also be proved
that the equation below is valid for every x ∈ D(A),

(2.4) U(t)(x) =∶ e tA(x) =
∞

∑
n=0

A(n)(x)tn

n!
,

where A(n) denotes the iterated compositions of A.
_e Hille–Yosida theorem gives necessary and suõcient conditions for an opera-

tor A whose domain is dense in X to be the inûnitesimal generators of a contractive
semigroup.
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_eorem 2.1 LetAbe a linear operator deûned on a linear subspace D(A) of a Banach
space X. _en A is the inûnitesimal generator of a contractive semigroup if and only if
(i) A− λI is invertible for every λ ∈ (0,∞),
(ii) ∥(A− λI)−1(x)∥ < ∥x∥λ for every x ∈ D(A) and λ > 0.

_eHille–Yosida theorem is fundamental in the applications to partial diòerential
equations. Indeed, if A is the inûnitesimal generator of a semigroup (or group) U(t)
in a Banach space X, the vector function u(t) = U(t)(u0) solves the abstract initial
value problem

⎧⎪⎪
⎨
⎪⎪⎩

u′(t) = Au(t) t > 0 (t ∈ R),
u(0) = u0

for any given initial value u0 ∈ D(A).
We refer the reader to the classical textbooks [6, 14] for more applications and re-

sults.

2.3 Partial Fraction Decomposition

_e partial fraction expression of the cotangent function was proved by Euler in his
Introductio in Analysis Inûnitorum (1784) for every non-integer x, and is regarded as
one of themost interesting formulas involving elementary functions:

(2.5) π cot(πx) =
1
x
+

∞

∑
n=1

1
x + n

+
1

x − n
.

An elegant proof of this identity can be found in [1, p. 149]. Using (2.5), we can easily
prove the following identity,which is valid for every non-integers u, v ∈ R,with u /= v,

(2.6)
∞

∑
m=−∞

1
(m − u)(m − v)

=
π(cot(πv) − cot(πu))

u − v
.

We will also use the following well known identities. When d is not an integer,

∑
n∈Z

1
(n + d)2 = π2 csc2(dπ),

and when d is an integer,

∑
n∈Z
n/=−d

1
(n + d)2 =

π2

3
.

3 The Kak–Hilbert Transform

As recalled in Section 2.1, the Kak–Hilbert transform (1.3) shares a remarkable num-
ber of properties with the continuous Hilbert transform. Recalling the deûnitions of
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χe and χo from Section 2.1, we can easily verify that

K(χo(a⃗))2m =
2
π
∑
n∈Z

a2n+1

2m − 2n − 1
=

1
π
∑
n∈Z

a2n+1

(m − 1) − n + 1
2

= τ−1T 1
2
(τ1δ2(a⃗))m ,

(3.1)

wherewe have le� δ2((a j) j∈Z) = (a2 j) j∈Z and τk((b j) j∈Z) = (b j+k) j∈Z. Similarly, we
prove that

(3.2) K(χe(a⃗))2m+1 = T 1
2
(δ2(a⃗))m .

Note also that K(χe(a⃗))h = 0 when h is even and K(χo(a⃗))h = 0 when h is odd.
_erefore, for every p > 0

(3.3) ∑
m∈Z

∣K(a⃗)m ∣
p
= ∑

m∈Z
∣K(χe(a⃗))2m ∣

p
+ ∑

m∈Z
∣K(χo(a⃗))2m+1∣

p .

We prove the following theorem.

_eorem 3.1 For every 1 < p <∞

(3.4) 9K9ℓp = 9T 1
2
9ℓp .

Proof Let tp be the ℓp → ℓp operator norm of T 1
2
. By (3.1), (3.2), and (3.3)

∥K(a⃗)∥p
ℓp = ∑

m∈Z
∣K(χe(a⃗)))2m ∣

p
+ ∑

m∈Z
∣K(χo(a⃗))2m+1∣

p

= ∑
m∈Z

∣T 1
2
(δ2(a⃗))m ∣

p
+ ∑

m∈Z
∣τ−1T 1

2
(τ1(δ2(a⃗)))m ∣

p

≤ tpp(∥δ2(a⃗)∥
p
ℓp + ∥τ1(δ2(a⃗))∥

p
ℓp) = tpp∥a⃗∥

p
ℓp ,

from which it follows that 9K9ℓp ≤ tp .
Let us show that ∥K(a⃗)∥ℓp ≥ tp . We let E = {a⃗ ∈ ℓp ∶ χo(a⃗) = 0⃗} and observe that

for every a⃗ ∈ E, we have that ∥a⃗∥ℓp = ∥δ2(a⃗)∥ℓp . In view of K(χe(a⃗)) = T 1
2
(δ2(a⃗)),

we can write the following chain of inequalities:

9K9ℓp ≥ sup
a⃗∈E

∥K(a⃗)∥ℓp
∥a⃗∥ℓp

= sup
a⃗∈E

∥T 1
2
(δ2(a⃗))∥ℓp

∥δ2(a⃗)∥ℓp
= sup
b⃗∈ℓp

∥T 1
2
(b⃗)∥ℓp

∥b⃗∥ℓp
= tp ,

as required.

We let

K̃(a⃗)m = (2H − K)(a⃗) = 2( χe ○H ○ χe(a⃗) + χo ○H ○ χo(a⃗)) .

_us, K̃(χe(a⃗))h = 0 when h is odd and K̃(χo(a⃗))h = 0 when h is even, and for every
p > 0,

∑
m∈Z

∣K̃(a⃗)m ∣
p
= ∑

m∈Z
∣K̃(χe(a⃗))2m ∣

p
+ ∑

m∈Z
∣K̃(χo(a⃗))2m+1∣

p .

We can easily verify that

K̃( χe(a⃗)) 2m = H(δ2(a⃗))m , K̃( χo(a⃗)) 2m+1 = H( τ1δ2(a⃗))m .
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We prove the following theorem.

_eorem 3.2 For every 1 < p <∞,

9K̃9ℓp = 9H9ℓp ,(3.5)
9K9ℓp ≥ 9H 9ℓp .(3.6)

Proof _e proof of (3.5) is similar to that of (3.4). To prove (3.6), we observe that
K = 2H − K̃, and so

9K9ℓp ≥ ∣ 2 9 H 9ℓp −9 K̃9ℓp ∣ = 9H 9ℓp .

Remark Recall that the Lp(R)− Lp(R) operator norm of theHilbert transform is
the constant np deûned in (2.1) and that 9H9ℓp ≥ np ; by _eorems 3.2 and 3.1,

np ≤ 9K̃9ℓp = 9H9ℓp ≤ 9K9ℓp = 9T 1
2
9ℓp .

It is conjectured in [8] that 9T 1
2
9ℓp = np . If this conjecture is proved, then the oper-

ator norms of H, K, and K̃ also equal np .

Proof of_eorem 1.2 _e semigroup generated by K is the operator Ut = e tK =

∑
∞
n=0

tn
n!K

(n) , where K(n) is the n-times composition of K with itself. Recalling that
K ○ K = −I, we obtain

∞

∑
n=0

tn

n!
K(n) = I + Kt −

It2

2
−

Kt3

3!
+ ⋅ ⋅ ⋅ = I cos t + K sin t,

as required.

Remark Ut is not an isometry in ℓ2. Indeed,

∥Ut(a⃗)∥2
ℓ2 = ∥a⃗ cos t + K(a⃗) sin t∥2

ℓ2

= ∣ cos t∣2∥a⃗∥2
ℓ2 + ∣ sin t∣2∥K(a⃗)∥2

ℓ2 + 2 sin t cos t Re⟨ a⃗, K(a⃗)⟩

= ∥a⃗∥2
ℓ2 + sin(2t) Re⟨ a⃗, K(a⃗)⟩ ,

and wemay have Re⟨a⃗, K(a⃗)⟩ /= 0.

4 Proof of Theorem 1.1

_e proof of _eorem 1.1 follows from several theorems and lemmas. Some of the
results in this section (in particular _eorem 4.5) seem to be known, but we could
not ûnd proofs of these results in the literature.
First of all, we show that Tt is a semigroup.

_eorem 4.1 For every s, t ∈ R and for every a⃗ ∈ ℓ2,

(4.1) Td ○ Ts(a⃗) = Ts+d(a⃗).

In particular, T−1
s (a⃗) = T−s(a⃗).
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Proof It is enough to prove the theorem for sequences a⃗ ∈ s0, the space of complex-
valued sequences with compact support, because s0 is dense in ℓ2.

_e identity (4.1) is clearly truewhen s and d are both integers. When s is an integer
and d is not integer,

(TsTd(a⃗))k = (−1)s sin(πd)
π

∑
m∈Z

am

(k + s) −m + d

=
sin(π(d + s))

π
∑
m∈Z

am

k −m + (d + s)
= Td+s(a⃗).

Suppose that s, d, and s + d are not integers; let a⃗ ∈ s0. We can exchange the order
of summation andmake use of the identity (2.6) to show that

(TdTs(a⃗))k =
sin(πs) sin(πd)

π2 ∑
n∈Z
an ∑

m∈Z

1
(k −m + d)(m − n + s)

=
sin(πs) sin(πd)

π
∑
n∈Z
an
cot(π(d − k)) − cot(π(−n − s))

n − k + d + s

=
sin(πs) sin(πd)

π
(cot(πd) + cot(πs)) ∑

n∈Z

an

n − k + d + s

=
sin(π(s + d))

π
∑
n∈Z

an

n − k + d + s
= Ts+d(a⃗),

as required.
When s, d are not integers and s + d is an integer the proof is similar.

We prove that Tt is strongly continuous. We start with the following lemma.

Lemma 4.2 Let H be as in (1.2). For a given d ∈ (−1, 1) and for every a⃗ ∈ ℓ2, we let

Hd(a⃗)m =
1
π
∑
n∈Z
n/=m

an

n −m + d
.

We have, limd→0 ∥H(a⃗) −Hd(a⃗)∥ℓ2 = 0.

Proof Observe that Hd(a⃗)m −H(a⃗)m = − dπ ∑ n∈Z
n/=m

an
(m−n+d)(m−n) is the convolution

of a⃗ and ν⃗ = ( 1
n(n+d))n∈Z,n/=0. Using the identity (2.5) we can easily prove that

∥ν⃗∥ℓ1 = ∑
n/=0

1
n(n + d)

=
1 − πd cot(πd)

d2 .

Furthermore, it is easy to verify that limd→0 d∥ν⃗∥ℓ1 = limd→0
1−πd cot(πd)

d = 0. By
Young inequality,

lim
d→0

∥Hd(a⃗) −H(a⃗)∥ℓ2 ≤
1
π

lim
d→0

d∥ν⃗∥ℓ1∥a⃗∥ℓ2 = 0,

as required.
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Remark _e proof of Lemma 4.2 shows that Hd is bounded in ℓ2. Indeed,

∥Hd(a⃗)∥ℓ2 ≤ ∥Hd(a⃗) −H(a⃗)∥ℓ2 + ∥H(a⃗)∥ℓ2

≤ (
1 − πd cot(πd)

πd
+ 1)∥a⃗∥ℓ2 .

We can now prove that Tt is strongly continuous.

_eorem 4.3 For every t0 ∈ R and every a⃗ ∈ ℓ2,

lim
t→t0

∥Tt(a⃗) − Tt0(a⃗)∥ℓ2 = 0.

Proof By_eorem4.1, (Tt−Tt0)(a⃗) = Tt0(Tt−t0−I)(a⃗),where I is the identity in ℓ2.
So, in order to prove the theorem,we need only to prove that limd→0 ∥Td(a⃗)−a⃗∥ℓ2 = 0
for every a⃗ ∈ ℓ2. Indeed, for every m ∈ Z,

Td(a⃗)m − am =
sin(πd)

π
∑
n∈Z

an

n −m + d
− am

= sin(πd)Hd(a⃗)m +
sin(πd)

πd
am − am ,

where Hd is as in Lemma 4.2. _us,

lim
d→0

∥Td(a⃗) − a⃗∥ℓ2 ≤ lim
d→0

(
sin(πd)

πd
− 1)∥a⃗∥ℓ2 + lim

d→0
sin(πd)∥Hd(a⃗)∥ℓ2 = 0.

We denote by T∗
t the adjoint operator of Tt . In order to prove that Tt is an isometry,

we need the following useful lemma.

Lemma 4.4 For every t ∈ R and every a⃗ ∈ ℓ2, T∗
t (a⃗) = T−t(a⃗).

Proof _e lemma is trivial when t ∈ Z; if t /∈ Z and a⃗, b⃗ ∈ ℓ2,

⟨Tt(a⃗), b⃗⟩ =
sin(πt)

π
∑
m∈Z

bm ∑
n∈Z

an

n −m + t

= −
sin(πt)

π
∑
n∈Z
an ∑

m∈Z

bm

m − n − t
= ⟨a⃗, T−t b⃗⟩,

as required.

_eorem 4.5 For every t ∈ R and every a ∈ ℓ2, ∥Tt(a⃗)∥ℓ2 = ∥a⃗∥ℓ2 .

Proof By Lemma 4.4 and_eorem 4.1,

∥Tt(a⃗)∥2
ℓ2 = ⟨Tt(a⃗), Tt(a⃗)⟩ = ⟨T−tTt(a⃗), a⃗⟩ = ∥a⃗∥2

ℓ2 .

We are le� to prove that πH is the inûnitesimal generator of Tt .

_eorem 4.6 For every a⃗ ∈ ℓ2,

lim
d→0

∥
Td(a⃗) − a⃗

d
− πH(a⃗)∥

ℓ2
= 0.
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Proof We can write
(Td(a⃗) − a⃗)m

d
=

sin(πd)
πd

∑
n∈Z

an

m − n + d
−
am

d

=
sin(πd)
d

Hd(a⃗)m +
am

d
(
sin(πd)

πd
− 1) .

_us,

∣
(Td(a⃗) − a⃗)m

d
− πH(a⃗)m ∣

≤ ∣
sin(πd)
d

Hd(a⃗)m − πH(a⃗)m ∣ + ∣
am

d
∣ ∣ 1 −

sin(πd)
πd

∣

≤ ∣
sin(πd)
d

∣ ∣Hd(a⃗)m −H(a⃗)m ∣ + ∣
sin(πd)
d

− π∣ ∣H(a⃗)m ∣ + ∣
am

d
∣ ∣ 1 −

sin(πd)
πd

∣ ,

and for every a⃗ ∈ ℓ2, we have

∥
Td(a⃗) − a⃗

d
− πH(a⃗)∥

ℓ2
≤ ∣

sin(πd)
d

∣ ∥Hd(a⃗) −H(a⃗)∥ ℓ2

+ ∣
sin(πd)
d

− π∣ ∥H(a⃗)∥ ℓ2 +
∥a⃗∥ℓ2
d

∣ 1 −
sin(πd)

πd
∣ .

Since

lim
d→0

sin(πd)
d

− π = lim
d→0

1
d
∣
sin(πd)

πd
− 1∣ = 0,

the inequalities above and Lemma 4.2 yield limd→0 ∥
Td(a⃗)−a⃗

d − πH(a⃗)∥ℓ2 = 0, as re-
quired.

4.1 Corollaries

_e following corollaries easily follow from _eorems 4.1 and 4.6 and (2.3) and (2.4).

Corollary 4.7 Let Tt be as in (1.1) and let H be as in (1.2). For every s ∈ R, we have
(i) TsH = HTs =

1
π
d
d t Tt ∣t=s ,

(ii) Ts = esπH = ∑
∞
k=0

(πs)k

k! H(k) .

Corollary 4.8 U(t, b⃗) = Tt(b⃗) is the solution to the initial value problem
⎧⎪⎪
⎨
⎪⎪⎩

d
d tU(t, a⃗) = πH(U(t, a⃗)) U ∈ C1(R, ℓ2),
U(0, a⃗) = b⃗.

Corollary 4.8may have applications to signal processing. _e following result is a
consequence of theHille–Yosida theorem.

Corollary 4.9 For every λ > 0, the operator πH − λI is invertible in ℓ2, and

∥(πH − λI)−1
(a⃗)∥ ℓ2 <

∥a⃗∥ℓ2
λ

.
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