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One-parameter Groups of Operators and
Discrete Hilbert Transforms

Laura De Carli and Gohin Shaikh Samad

Abstract. We show that the discrete Hilbert transform and the discrete Kak-Hilbert transform are
infinitesimal generators of one-parameter groups of operators in 22

1 Introduction

We are concerned with the family of operators { T} } cg, initially defined in the space
so of complex-valued sequences with compact support as follows:

sinant) D Ay if t ¢ 7z,

neZ m—n+t

(-1 ifteZ.

(1.1 (T (@) m :{

When t is an integer, T;(a) = (-1)"7;(a), where 74(d)m = ajym is the translation;
when ¢ € (-1,1), these operators can be viewed as discrete versions of the Hilbert
transform in L?(R).

The Hilbert transform

Hf(x) :p.v% /:: %dt,

initially defined when f € C5°(R), is the archetypal singular integral operator. Dis-
crete analogs of the Hilbert transform have important applications in science and
technology. The following operator was introduced by D. Hilbert in 1909:

(12) (H@))m =~ T

g m—n
n#m

Qan

This transformation is not well suited for applications, for reasons that we will discuss
in Section 2; the operators
- 1 a,
Ti(d)=—) ——
1(a) n Z% m-n+3
(E. C. Titchmarsh, 1926) and the Kak-Hilbert transform (S. Kak, 1970, [7])

2 a
T Zn even k_ﬂn k Odd>

2 a
- Zn odd k—nn k even,

(13) K(a) (k) = {
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share some of the features of the continuous Hilbert transform and are very relevant
in sciences and engineering. We will discuss these operators in Sections 2 and 3.
Weighted discrete Hilbert transforms and their connections with problems in com-
plex analysis are discussed in [2].

When 1 < p < oo, we denote by ¢ the space of complex-valued p-summable se-
quences, i.e.,

¢ = {a: (a))jez: |dler = (Z|a,.|1’)5 < oo}.

jeZ
Then £ is the space of bounded sequences equipped with the norm

ldlle= = suplam].
meZ

Our main result is the following theorem.

Theorem 1.1 ‘The family {T;} o defined in (1.1) is a strongly continuous group of
isometries in €%; its infinitesimal generator is mH, where H is the operator defined in
(1.2).

To prove Theorem 1.1 we will prove that T o Ty = Ts.y; (Theorem 4.1); that Ty
is an isometry for every t € R (Theorem 4.5); that for every d € ¢2, the applica-
tion t — T;(d) is continuous in R (Theorem 4.3); and finally that, for every 4 € ¢,
lim;_¢ T'(dt)_'i = nH(a) (Theorem 4.6).

The proofs of these results are elementary and use only the identities in Section 2.3.
Theorem 4.5 seems to be known, but we could not find references in the literature.
Some of the results in Section 4 can also be proved in the framework of the theory of
Toeplitz operators.'

In Section 3 we describe the properties of the Kak-Hilbert transform and prove
the following theorem.

Theorem 1.2  Let K be the discrete Kak-Hilbert transform (1.3). Then
U, = costl +sintK = Im(e” (I + iK)), teR,

is a strongly continuous group of operators in €> generated by K.

In Sections 2.1 and 3 we discuss the ¥ — £f boundedness of the operators H, T,
and K for 1 < p < oo. It is noted in [8] that the operators T; and H (and in general,
every operator L: €7 — ¢ in the form of L(G), = X, dm-nCn> With (¢ )nez € €°)
can be associated with a Fourier multiplier operator acting on functions on the real
line. Indeed, we can associate with L the operator L: L? (R) — L? (R),

L) = X fla=men= [ FoIm(neray,

where m(y) is the periodic function on R whose Fourier coefficients are the c,’s, and
f(») = Jg f(x)e >™*dx is the Fourier transform of f(x). For example, it is not too

'We are indebted to I. Verbitsky for this remark.
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difficult to verify that the multiplier associated with the Kak-Hilbert transform (1.3)
is the “square wave” function that coincides with m(x) = i sgn(x) in (=3, ).

It is proved in [8] that the ## — ¢? operator norm of L is the same as the L? (R) —
LP(R) operator norm of L. In short,

(14) HZlller = 1T llzo -

Since the L*(R) — L?(R) norm of a multiplier operator is the L*(R) norm of the
multiplier (see e.g., [12]) it follows from (1.4) that |||L|||¢2 = sup, . [m(x)|. The eval-
uation of the L?(R) — L?(R) norm of multiplier operators is often a very difficult
problem, but the equivalence (1.4) can be used to produce an upper bound for the
¢ — ¢P norm of L. Indeed, we will prove in Section 3 (Theorems 3.2 and 3.1) that
[1FCl[ze < [IlF[Iler < [[IK]llee = [l T ]| ce. We conjecture that these norms are equal for

all values of p € (1, 00).
2 Preliminaries

2.1 The Hilbert Transform

The Hilbert transform

Hf(x) =p.v.% [: %dt,

initially defined when f e Cg°(R), is an important singular integral operator. We
refer the reader to the excellent [5] for an introduction to the Hilbert transform and
singular integrals.

The Hilbert transform satisfies the identity H o H( f) = — f, which implies that H
is an isometry in L*(R).

When f is real-valued, f + iJ{f extends to an holomorphic function in the upper
complex half-plane. This fundamental property of the Hilbert transform has been
used by S. Pichoridis [9] to evaluate the best constant in the inequality of M. Riesz:

2.1 1H ey < mpllfleerys  f € Co (R).

Here, 1 < p < oo and n, = max{tan(7/2p), cot(7/2p)}. See also [4] for a short proof
of Pichoridis’ result.

Discrete versions of the Hilbert transform have a variety of applications in signal
representation and processing. See, e.g., [10] and the references cited there.

To the best of our knowledge, the £* — ¢2 norm of the operator H defined in (1.2)
was estimated for the first time by D. Hilbert, who in 1909 proved the inequality

b : :
(2.2) mZZ % :1_’; < C(,Z:z'a"'Z) (n%jzwmﬁ)
ndm

with a constant ¢ > 77.” Three years later, Shur [11] proved that ¢ = 7 is the best possible
constant in the inequality (2.2), or equivalently that 1 is the £2 — £* operator norm of
H. See [3] for an elegant elementary proof of Shur’s inequality.

2The original proof first appeared in Weyl’s doctoral dissertation in 1908 [13].
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Thus, H is not an isometry in €2, Indeed, the proof in [3] shows that the equality
|H(a)|l¢2 = ||d]|¢2 only holds when a = 0. Also, it is not true in general that HoH(d) =
—d.

The operator T/, is a good analog of the continuous Hilbert transform. By Theo-
rem 1.1, Ty, is an isometry in € and satisfies TioTy (@) = -71(a).

The Kak-Hilbert transform defined in (1.3) can be viewed as a “reduced” discrete
Hilbert transform (1.2). If we let y,: £* — £* be such that y.(d), = a, when n is even
and y.(d), = 0 when n is odd, and we let x,(d) = @ — x.(a), we can easily verify that

K(a)=2(xo0Ho xe(d) + xe o Ho xo(d)).

S. Kak proved in [7] that K o K(a) = —d, from which follows that K is an isometry in
¢%. For 1< p < oo, and in [8, Theorem 4.3], the £? — £? operator norm of H is at least
n,, where 1, is the constant in (2.1). Equality is proved for special values of p.

It is also proved in [8] that the operators T; are bounded in £ for 1 < p < oo and
I1Telllee = |Il cos(mt)T + sin(mt)H||| e, where If = f. The evaluation of the £ — ¢
operator norms of H and T is a tantalizing long-standing open problem.

2.2 Groups and Semigroups of Operators

Let X be a Banach space with norm | - | and let £(X) be the collection of linear and
bounded operators on X. A one parameter group of operators is a mapping U:R —
L(X) such that (a) U(0) is the identity operator in £(X) and (b) U(s) o U(¢) =
U(s +t) whenever s, t € R. In particular, U(-s) = U"(s).

A semigroup is a mapping U:[0,00) — L£(X) that satisfies (a) and (b) whenever
s, t > 0. We say that a group (or semigroup) U is strongly continuous if

lim [U(1)(x) = U(to)(x)] = 0

for every x € X. When U is a semigroup, we also require thatlim;_o, |U(#)(x)-x| =
0. We say that U is contractive if |U(t)(x)| < |x|| for every x € X and every t € R (or
for every t > 0 if U is a semigroup).

The infinitesimal generator A of a strongly continuous group (or semigroup) U(¢)
can be introduced as the operator defined by

U(h)(x) - x
h b
where D(A) is the set of all x € X for which the above limit exists. Using the strong
continuity of U(t), it is possible to prove that D(A) is dense in X. It can also be proved
that the equation below is valid for every x € D(A),
oo A(n) n
(2.4) U()(x) = e = § AT

n=0 n!

d .
(2.3) A(x) = EU|t:0 = hlill()l+ x € D(A),

>

where A() denotes the iterated compositions of A.

The Hille-Yosida theorem gives necessary and sufficient conditions for an opera-
tor A whose domain is dense in X to be the infinitesimal generators of a contractive
semigroup.

https://doi.org/10.4153/CMB-2016-028-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-028-7

One-parameter Groups of Operators and Discrete Hilbert Transforms 501

Theorem 2.1 Let A be alinear operator defined on a linear subspace D(A) of a Banach
space X. Then A is the infinitesimal generator of a contractive semigroup if and only if

(i) A- M isinvertible for every A € (0, o),
(i) [J(A-AD)'(x)| < @for every x € D(A) and A > 0.

The Hille-Yosida theorem is fundamental in the applications to partial differential
equations. Indeed, if A is the infinitesimal generator of a semigroup (or group) U(t)
in a Banach space X, the vector function u(t) = U(t)(uo) solves the abstract initial
value problem

{u'(t) =Au(t) t>0(teR),

u(0) = ug

for any given initial value uy € D(A).
We refer the reader to the classical textbooks [6,14] for more applications and re-
sults.

2.3 Partial Fraction Decomposition

The partial fraction expression of the cotangent function was proved by Euler in his
Introductio in Analysis Infinitorum (1784) for every non-integer x, and is regarded as
one of the most interesting formulas involving elementary functions:

1 & 1 1
2.5 mcot(nmx) = — + + .
(23) () X nz::lirn X—-n

An elegant proof of this identity can be found in [1, p. 149]. Using (2.5), we can easily
prove the following identity, which is valid for every non-integers u, v € R, withu # v,

>, 1 _ n(cot(nv) — cot(mu))

(2.6) >

m=—00

(m-u)(m-v) u-v

We will also use the following well known identities. When d is not an integer,

1
nze% (n+d)?

= n* csc?(dn),

and when d is an integer,

1 2

,Z% (n+d)2  3°
n#—d

3 The Kak-Hilbert Transform

As recalled in Section 2.1, the Kak-Hilbert transform (1.3) shares a remarkable num-
ber of properties with the continuous Hilbert transform. Recalling the definitions of
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Xe and y, from Section 2.1, we can easily verify that
(3.) K(xo(d))om = %Z% o = ;Z(m_j;_l,ﬁé
=74 T1(1182()) m»
where we have left 0, ((a;) jez) = (a2j) jez and T4 (b)) jez) = (bj+k) jez. Similarly, we
prove that
(3.2) K(xe(d))2mer = T;((Sz(a))m‘

Note also that K(y.(d)), = 0 when h is even and K(x,(d)), = 0 when h is odd.
Therefore, for every p > 0

(3'3) Z |K(ﬁ)m|P = Z |K(X€(é))2m|p + Z |K(Xo(é))2m+l|P-

meZ meZ meZ

We prove the following theorem.

Theorem 3.1 Foreveryl< p < oo
(3.4 1Kl = WITy e

Proof Let t, be the £/ — ¢? operator norm of T%. By (3.1), (3.2), and (3.3)
IK(@)[5 = > [K(xe(@))aml? + > [K(xo(@))2mnl”
meZ

meZ
= Z:Z|T;(52(5))m|1’+ E:Z|T—1T;(Tl(52(5)))m\1)

<tp([02()15, + [ma(02(a))15) = tplall,
from which it follows that ||| K[| < t,.

Let us show that | K(@)| er > t,. Welet € = {d@ € €7 : y,(d) = 0} and observe that
for every d € &, we have that |d| g = [|62(d)]er. In view of K(y.(d)) = T1(82(d)),
we can write the following chain of inequalities: :

|K ()] o IT1(82(d)) ] er T3 (b)]er

|||K|||ev 2 8up ——-—— =Ssup = = sup = =t,,
aee e aee  [62(a)]er e || Bller P

as required. ]

We let

K(a)m = (2H-K)(a) =2( xe o Ho xe(d) + yo o Ho xo(d)).

Thus, K(y.(@)), = 0 when h is odd and K(x,(d@));, = 0 when h is even, and for every
p>0,

> 1K (@)ml? = 3 IK(xe(@))aml” + 3 IK(xo(@))2mnl”.
meZ meZ meZ

We can easily verify that

K( Xe(@)),, =H(6:(a)) . K( Xo(d)),, . = H(116:(a)) .
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We prove the following theorem.

Theorem 3.2  Foreveryl< p < oo,
(3.5) 1K [lee = [[[H][|ee»
(3.6) 1K l[er > [IIH [er -
Proof The proof of (3.5) is similar to that of (3.4). To prove (3.6), we observe that
K =2H - K, and so
WK ler > [2 Il H lllee = Il Klllee| = IIE []]es - u

Remark  Recall that the L?(R) — L?(R) operator norm of the Hilbert transform is
the constant n,, defined in (2.1) and that [||H|||¢» > #,; by Theorems 3.2 and 3.1,

np < [IK[ller = ll1Hller < I[Kl[er = [T [ller -
It is conjectured in [8] that [[| T1 [[|e» = n,. If this conjecture is proved, then the oper-
ator norms of H, K, and K also equal n,.
K

Proof of Theorem 1.2 The semigroup generated by K is the operator U; = e'* =
Yoo LK where K™ is the n-times composition of K with itself. Recalling that

n!

K o K = —I, we obtain
St () It K# )
Z—'K :I+Kt—7—3—+~-- =Jcost+ Ksint,

o n! !

as required. ]
Remark Uy, is not an isometry in ¢2. Indeed,
|U:(@) |7 = ||dcost + K(a)sin |3
=|cost|*||d||. + |sint[*|K(d) . +2sintcos t Re(d, K(a))
= | d|7. +sin(2t) Re(ﬁ, K(&)),

and we may have Re(d, K(d)) # 0.

4 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from several theorems and lemmas. Some of the
results in this section (in particular Theorem 4.5) seem to be known, but we could
not find proofs of these results in the literature.

First of all, we show that T} is a semigroup.

Theorem 4.1 Foreverys, t € R and for every a € €2,
(4.1) Td o Ts(ﬁ) = THd(&).
In particular, T, (d) = T_g(d).
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Proof It is enough to prove the theorem for sequences d € sy, the space of complex-
valued sequences with compact support, because s is dense in £2.

The identity (4.1) is clearly true when s and d are both integers. When s is an integer
and d is not integer,

L s sin(7d) am
(TsTa(d))i = (-1) . n%:Z (k+s)-m+d
_sin(n(d +5)) Am _ -
= - meZk—m‘F(d‘FS)_Tdﬂ(a).

Suppose that s, d, and s + d are not integers; let 4 € so. We can exchange the order
of summation and make use of the identity (2.6) to show that

(TuTi(@))y = Snms)sin(md) o~ s 1

m? neZ meZ (k—m+d)(m—n+s)

_ sin(7s) sin(nd) Sa cot(n(d — k)) - cot(n(-n—s))
- 4 o n-k+d+s
= —Sm(ﬂs):n(ﬂd) (cot(nd) + cot(ms)) nzeé T kids kajd e
sin(n(s+d)) an -

= = Ts >

T gn—k+d+s +a(d)
as required.
When s, d are not integers and s + d is an integer the proof is similar. ]

We prove that T; is strongly continuous. We start with the following lemma.

Lemma 4.2 Let H be as in (1.2). For a given d € (—1,1) and for every a € €2, we let

- 1 An
Hy(a)m=— _
4(@m ng%n—mﬂi
n#m

We have, limy_.o |H(d) — Hg(d)] e = 0.

Proof Observethat Hy(d),, —H(d), = —% > nez m is the convolution
n#m

ofdand v = (m)nez,n?éo- Using the identity (2.5) we can easily prove that

- 1 1 - nud cot(nd
¥l = 3 L Lordeoitnd),
afo n(n+d) d?
Furthermore, it is easy to verify that lim;_¢ d|V|a = lims_ M = 0. By

Young inequality,
. - - 1 ——
lim [Hg(a) - H(d)[ e < — lim d[[v]a]a]e =0,
d—0 7T d—0

as required. ]
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Remark  The proof of Lemma 4.2 shows that Hy is bounded in £2. Indeed,
[Ha(a)| e < |Ha(a) - H(d)[ e + [H(a) e

1 - 7d cot(rd ~
< (P ) e

We can now prove that T; is strongly continuous.

Theorem 4.3 Forevery ty € R and every d € €%,
lim | 7,(@) - T, (a) e =0

Proof By Theorem4.l, (T;~T;,)(@) = Ti, (Ts—s,—I)(a), where I is the identity in £2.
So, in order to prove the theorem, we need only to prove thatlim;_,¢ | T;(d)—dl[,2 = 0
for every d € ¢2. Indeed, for every m € Z,

Ta (@) — am = sin(7d) Z

n Sn- m+d_am
:sin(nd)Hd(&)m-FMam—am,
nd

where Hy is as in Lemma 4.2. Thus,
sin(7d)
nd

We denote by T, the adjoint operator of T;. In order to prove that T} is an isometry,
we need the following useful lemma.

(ljiir(l) [Ts(a) —d|e < 5112})( - 1) |d]e + ‘liiiré sin(nd)|Ha(a)|lz=0. MW

Lemma 4.4 ForeveryteRandeveryde €% T} (a) = T_;(a).

Proof The lemma is trivial when ¢ € Z;if t ¢ Z and @, b € €2,

(Ty(a), b sm”ﬂt) Z b, Z

meZ nez M= m+t

_ _sin 7Tt) Sa, Y (G T,

neZ meZm n_t

as required. ]
Theorem 4.5 Foreveryte R andeveryac €2, |T;(a)l|e = |dlle-

Proof By Lemma 4.4 and Theorem 4.1,
IT(@) |7 = (Te(a), Ti(@)) = (T Te(d), a) = |l m

We are left to prove that 7H is the infinitesimal generator of T;.

Theorem 4.6  For every d € £2,
| Ta(a)—d
| "D

— Hﬁ
d—0 ﬂ(
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Proof We can write
(Ta(@) —d)m _ sin(nd) an  am
d  ond Sm-n+d d

sin(md . an, ¢ sin(md
- (dﬂ )Hd(a)m+7( T(IZ )—1).

Thus,

| (Ta(d) —d)m
d
sin(7d)
d

- ﬂH(Ei)m‘

< ‘ s1n(7rd)‘

B ‘ sin(nd)
- d

Hy(d)m - nH(a)| ‘ |1—

sm(nd

sin(7d
A

|1Ha(@)m — H(@)m| +| -l [H(@)nl + |

and for every d € €2, we have

H Ty(a)-a B
d

|| Ha(a) - H(a)] ,
. ‘ sin(nd)
d

< ‘ sin(nd)
2 d

_ﬂ‘ ||H(d)||€2+ HaHﬂ 1-

sin(7d) ‘
] .

nd

Since
lim sin(nd) sm(nd)

d—0 dﬁO d‘

—1‘:0,

the inequalities above and Lemma 4.2 yield lim,_,¢ || T"(Z)_a —nH(a)| g = 0, as re-
quired. ]

4.1 Corollaries
The following corollaries easily follow from Theorems 4.1 and 4.6 and (2.3) and (2.4).

Corollary 4.7  Let T, be as in (1.1) and let H be as in (1.2). For every s € R, we have
(i) TH=HT, = ndsz|ts
(i) T,= eSTH — ZOO (”5.) H(k)

Corollary 4.8 U(t,b) = T,(b) is the solution to the initial value problem

4U(t,d) = nH(U(t,d)) UeC\(R,¢?),
U(0,4d) = b.

Corollary 4.8 may have applications to signal processing. The following result is a
consequence of the Hille-Yosida theorem.

Corollary 4.9  For every A > 0, the operator tH — M is invertible in €%, and

e

| (rH-AD)7'(@)] . < .
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