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Hulls of Ring Extensions

Gary F. Birkenmeier, Jae Keol Park, and S. Tariq Rizvi

Abstract. We investigate the behavior of the quasi-Baer and the right FI-extending right ring hulls

under various ring extensions including group ring extensions, full and triangular matrix ring exten-

sions, and infinite matrix ring extensions. As a consequence, we show that for semiprime rings R and

S, if R and S are Morita equivalent, then so are the quasi-Baer right ring hulls bQqB(R) and bQqB(S)

of R and S, respectively. As an application, we prove that if unital C∗-algebras A and B are Morita

equivalent as rings, then the bounded central closure of A and that of B are strongly Morita equivalent

as C∗-algebras. Our results show that the quasi-Baer property is always preserved by infinite matrix

rings, unlike the Baer property. Moreover, we give an affirmative answer to an open question of Goel

and Jain for the commutative group ring A[G] of a torsion-free Abelian group G over a commutative

semiprime quasi-continuous ring A. Examples that illustrate and delimit the results of this paper are

provided.

In [16] and [18], the ring hull concept with respect to a class of rings was in-

troduced and developed. Let HK(R) denote a ring hull of R with respect to a class

K of rings and X(R) denote a ring extension of R. Then it is natural to ask: How

does HK(X(R)) compare with X(HK(R))? In this paper, we consider this question

for ring hulls mainly with respect to the class of quasi-Baer rings, the class of right

FI-extending rings, and various ring extensions including monoid rings, full and tri-

angular matrix rings, and infinite matrix rings.

Throughout this paper, all rings are associative with identity unless indicated oth-

erwise, and R denotes such a ring. Subrings and overrings preserve the identity of the

base ring. All modules are unitary and we use MR to denote a right R-module. If NR

is a submodule of MR, then NR is essential (resp., dense also called rational) in MR if

for any 0 6= x ∈ M, there exists r ∈ R such that 0 6= xr ∈ N (resp., for any x, y ∈ M

with x 6= 0, there exists r ∈ R such that yr ∈ N and xr 6= 0). For a module MR, we

let NR ≤ess MR denote that NR is an essential submodule of MR. As in [16], we say

that an overring T of R is a right ring of quotients (resp., right essential overring) of R

if RR is dense in TR (resp., RR is essential in TR). The maximal right ring of quotients

of R is denoted by Q(R), and the injective hull of RR is denoted by E(RR).

Recall the definitions of some classes that generalize the class of right self-injective

rings or (von Neumann) regular right self-injective rings. A ring R is called right

(FI-)extending if every (ideal) right ideal of R is essential in a right ideal generated

by an idempotent (see [12, 14, 15, 21, 23]); it is right (quasi-)continuous if R is right

extending and (if AR and BR are direct summands of RR with A∩B = 0, then AR⊕BR

is a direct summand of RR) if XR
∼= YR and XR is a direct summand of RR, then YR is

a direct summand of RR (see [25,30]); and it is (quasi-)Baer if the right annihilator of
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every (ideal) nonempty subset of R is generated by an idempotent as a right ideal (see

[7–10,20,22,28,32]). From [12, Theorem 4.7], the right FI-extending and quasi-Baer

conditions are equivalent for a semiprime ring. These classes have their roots in the

study of right self-injective rings and in Functional Analysis, especially in the study

of von Neumann algebras.

We use B, qB, FI, E, and qCon to denote the class of Baer rings, the class of

quasi-Baer rings, the class of right FI-extending rings, the class of right extending

rings, and the class of right quasi-continuous rings, respectively.

For a ring R, we let I(R), B(R), Matn(R), Tn(R), and Qm(R) denote the set of all

idempotents of R, the set of all central idempotents of R, the n-by-n matrix ring

over R, the n-by-n upper triangular matrix ring over R, and the Martindale right ring

of quotients of R, respectively. For a nonempty subset X of a ring R, rR(X), ℓR(X),

and 〈X〉R denote the right annihilator of X in R, the left annihilator of X in R, and

the subring of R generated by X, respectively. Ideals without the adjective “right” or

“left” are two-sided ideals. For a ring R, I E R denotes that I is an ideal of R. We let

RB(Q(R)) denote the subring of Q(R) generated by R and B(Q(R)), which is called

the idempotent closure of R [5].

Henceforth we assume that all right essential overrings of a ring R are contained as

right R-modules in a fixed injective hull E(RR) of RR, and all right rings of quotients

of R are subrings of a fixed maximal right ring of quotients Q(R) of R.

In our next definition, we exploit the notion of a right essential overring that is

minimal with respect to belonging to a class K of rings.

Definition 1 ([16, Definition 2.1]) Let K denote a class of rings. For a ring R, let

S be a right essential overring of R and T an overring of R. Consider the following

conditions.

(i) S ∈ K.

(ii) If T ∈ K and T is a subring of S, then T = S.

(iii) If S and T are subrings of a ring V and T ∈ K, then S is a subring of T.

(iv) If T ∈ K and T is a right essential overring of R, then S is a subring of T.

If S satisfies (i) and (ii), then we say that S is a K right ring hull of R, denoted by

Q̃K(R). If S satisfies (i) and (iii), then we say that S is the K absolute to V right ring

hull of R, denoted by QV
K(R); for the K absolute to Q(R) right ring hull, we use the

notation Q̂K(R). If S satisfies (i) and (iv), then we say that S is the K absolute right ring

hull of R, denoted by QK(R). Observe that if Q(R) = E(RR), then Q̂K(R) = QK(R).

The concept of a K absolute right ring hull was already implicit in [30] from their

definition of a type III continuous (module) hull.

Theorem 2 ([18, Theorems 3.3 and 3.15]) Let R be a semiprime ring. Then we have

the following.

(i) Q̂qB(R) = Q̂FI(R) = RB(Q(R)).

(ii) If T is a right essential overring of R such that RB(Q(R)) is a subring of T, then T

is right FI-extending and quasi-Baer.

The following example shows that the semiprimeness of R in Theorem 2 is not

superfluous.
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Example 3 ([29, p. 372, Example 13.26(4)]) There exists a quasi-Baer right and

left nonsingular Artinian ring R such that B(Q(R)) 6⊆ R = QqB(R). Let A be a

semisimple Artinian ring, and let

R =




A A A

0 A 0

0 0 A


 .

Then R ∈ qB by [15, Theorem 3.2]. Now |B(R)| = |B(A)|, where | · | is the cardinal-

ity of a set. But, Q(R) ∼= Mat2(A) ⊕ Mat2(A). Hence, |B(Q(R))| = |B(A)|2 < ∞.

Thus, B(Q(R)) 6⊆ R.

A monoid G is called a u.p.-monoid (unique product monoid) if for any two

nonempty finite subsets A, B ⊆ G there exists an element x ∈ G that is uniquely

presented in the form ab, where a ∈ A and b ∈ B. This class includes the right or

left ordered monoids, submonoids of a free group, and torsion-free nilpotent groups.

Every u.p.-monoid is cancellative, and every u.p.-group is torsion-free.

Theorem 4 Let R[G] be a semiprime monoid ring of a monoid G over a ring R. Then

we have the following.

(i) Q̂qB(R)[G] ⊆ Q̂qB(R[G]).

(ii) If G is a u.p.-monoid, then Q̂qB(R[G]) = Q̂qB(R)[G].

Proof (i) Note that R is semiprime. If I E R with ℓR(I) = 0, then

I[G]R[G] E R[G]R[G] and ℓR[G](I[G]) = 0.

Thus Qm(R) ⊆ Qm(R[G]), so Qm(R)[G] ⊆ Qm(R[G]). Let c ∈ B(Qm(R)). Then

c ∈ Qm(R)[G] ⊆ Qm(R[G]) and cr = rc for any r ∈ R, hence cb = bc for any

b ∈ R[G]. So c ∈ B(Qm(R[G])). Thus,

B(Q(R)) = B(Qm(R)) ⊆ B(Qm(R[G])) = B(Q(R[G])).

By Theorem 2, RB(Q(R)) = Q̂qB(R). Hence, Q̂qB(R)[G] ⊆ Q̂qB(R[G]).

The proof of (ii) is a consequence of part (i) and [13, Theorem 1.2].

In [25] Goel and Jain posed the open question: If G is an infinite cyclic group

and A is a prime right quasi-continuous ring, is it true that A[G] ∈ qCon ? Since a

semiprime right quasi-continuous ring is quasi-Baer (see [16, Proposition 1.3]) and

A[G] is semiprime, Theorem 4 and [16, Proposition 1.3] show that A[G] ∈ FI.

Thus, from Theorem 4, when A is a commutative semiprime quasi-continuous ring

and G is torsion-free Abelian, then A[G] ∈ E, hence A[G] ∈ qCon. This provides

an affirmative answer to the question when A is a commutative semiprime quasi-

continuous ring.

Corollary 5 Let R be a semiprime ring. Then we have the following:

(i) Q̂qB(R[x, x−1]) = Q̂qB(R)[x, x−1].
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(ii) Q̂qB(R[X]) = Q̂qB(R)[X] and Q̂qB(R[[X]]) = Q̂qB(R)[[X]] for a nonempty set

X of not necessarily commuting indeterminates.

Proof (i) Note that R[x, x−1] ∼= R[C∞], which is semiprime, where C∞ is the infi-

nite cyclic group. Therefore Q̂qB(R[x, x−1]) = Q̂qB(R)[x, x−1] by Theorem 4.

(ii) Since R is semiprime, so is R[X]. Thus Q̂qB(R[X]) = Q̂qB(R)[X] follows from

Theorem 4. By using the fact that R ∈ qB if and only if R[[X]] ∈ qB in [11,

Theorem 1.8] and by modifying the proof of Theorem 4, we have Q̂qB(R[[X]]) =

Q̂qB(R)[[X]].

Example 6 (i) ([18, Example 3.7]) Let Z[G] be the group ring of the group G =

{1, g} over the ring Z of integers. Then Z[G] is semiprime and

Q̂qB(Z)[G] = Z[G] ( Q̂qB(Z[G]) = Z[G]B(Q[G]),

where Q is the field of rational numbers. Thus the “u.p.-monoid” condition is not

superfluous in Theorem 4(ii).

(ii) Let F be a field. Then F[x] is a semiprime u.p.-monoid ring and

F[x] = Q(F)[x] 6= Q(F[x]) = F(x),

where F(x) is the field of fractions of F[x]. Thus “Q” cannot replace “Q̂qB” in Theo-

rem 4(ii).

Theorem 7 Let K be a class of rings such that Λ ∈ K if and only if Matn(Λ) ∈ K

for any positive integer n, and let HK(−) denote any of the right ring hulls indicated in

Definition 1 for the class K. Then for a ring R, HK(R) exists if and only if HK(Matn(R))

exists for any n. In this case, HK(Matn(R)) = Matn(HK(R)).

Proof We prove the case when HK(R) = QK(R). The other cases are proved in a

similar manner. Assume that QK(R) exists. By hypothesis, Matn(QK(R)) ∈ K. Let T

be a right essential overring of Matn(R). Then T has a set of n-by-n matrix units. So

T = Matn(A) for some ring A. A routine argument shows that A is a right essential

overring of R. Thus if T ∈ K, then A ∈ K. Hence QK(R) is a subring of A, so

Matn(QK(R)) is a subring of T. Therefore, Matn(QK(R)) = QK(Matn(R)). Thus if

QK(R) exists, then QK(Matn(R)) exists.

Next assume that QK(Matn(R)) exists. Then by the same argument as above, there

is a right essential overring S of R with QK(Matn(R)) = Matn(S). By hypothesis,

S ∈ K. If W is a right essential overring of R and W ∈ K, then QK(Matn(R)) is a

subring of Matn(W ). Hence S is a subring of W . Therefore, S = QK(R).

Lemma 8 Let δ ⊆ B(Q(R)) and ∆ = {1nc | c ∈ δ}, where 1n is the identity matrix

of Matn(R). Then we have the following:

(i) Matn(〈R ∪ δ〉Q(R)) = 〈Matn(R) ∪ ∆〉Q(Matn(R)).

(ii) Q(Tn(R)) = Q(Matn(R)) = Matn(Q(R)).

(iii) Tn(〈R ∪ δ〉Q(R)) = 〈Tn(R) ∪ ∆〉Q(Matn(R)).

Proof (i) This part follows from straightforward calculations.
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(ii) Let T = Tn(R). Then TT is dense in Matn(R)T . So Q(Tn(R)) = Q(Matn(R)).

From [33, 2.3], Q(Matn(R)) = Matn(Q(R)). Thus,

Q(Tn(R)) = Q(Matn(R)) = Matn(Q(R)).

(iii) The proof follows from part (ii) and a routine calculation.

Recall from [17, Definition 2.1] that a class of rings is said to be the idempotent

closure class, denoted IC, if IC is the D-E class with

DIC(R) = {I E R | I ∩ ℓR(I) = 0 and ℓR(I) ∩ ℓR(ℓR(I)) = 0}

(see [16] for more details on D-E classes). In other words, R ∈ IC if and only if

for each I ∈ DIC(R) there exists e ∈ I(R) such that IR ≤ess eRR. It was shown in

[17, Remark 2.2(i)] that R is semiprime if and only if DIC(R) is the set of all ideals

of R. The set DIC(R) was studied by Johnson and denoted by F
′

(R) in [27]. In

[17, Theorem 2.7] it was proved that:

(i) R ∈ IC if and only if R = RB(Q(R));

(ii) Q̂IC(R) = RB(Q(R)); and

(iii) if R ∈ IC and S is a right ring of quotients of R, then S ∈ IC.

Corollary 9 Let R be a ring and n a positive integer. Then we have the following:

(i) Q̂IC(Matn(R)) = Matn(Q̂IC(R)) = Matn(RB(Q(R)).

(ii) Q̂IC(Tn(R)) = Tn(Q̂IC(R)) = Tn(RB(Q(R))).

(iii) If R is semiprime, then Q̂K(Matn(R)) = Matn(Q̂K(R)), where K = qB or FI.

Proof Theorem 2, Theorem 7, Lemma 8, [17, Theorem 2.7], [18, Theorems 3.3 and

3.15], and [32, Proposition 2] yield the result.

The following example shows that Corollary 9(iii) does not hold when K = qCon.

Example 10 Let K be a field and n a positive integer such that n > 1. In [18,

Example 3.12], Matn(K[x]) = Matn(K)[x] is not right quasi-continuous, so

QqCon(Matn(K)[x]) 6= Matn(K)[x] = QqCon(Matn(K))[x].

Hence QqCon(Matn(K)[x]) 6= QqCon(Matn(K))[x]. Also

QqCon(Matn(K[x])) 6= Matn(K[x]) = Matn(QqCon(K[x])).

So QqCon(Matn(K[x])) 6= Matn(QqCon(K[x])).

Theorem 11 Let R be a semiprime ring. If R and a ring S are Morita equivalent, then

Q̂qB(R) and Q̂qB(S) are Morita equivalent.

Proof First we show the following.

Claim Q̂qB(eAe) = eQ̂qB(A)e for any semiprime ring A and any 0 6= e ∈ I(A).
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Proof of Claim. Let f ∈ B(Qm(A)). Then there is I E A with IA ≤ess AA and f I ⊆ A.

Let 0 6= ete ∈ eAe. Then, 0 6= eteI because ℓA(I) = 0. Since A is semiprime,

(eteI)2 6= 0. Hence, 0 6= eteIe ⊆ eIe, so eIeeAe ≤
ess eAeeAe. Since

f I ⊆ A, e f Ie = e f eIe = e f e · eIe ⊆ eAe

with eIe E eAe and eIeeAe ≤ess eAeeAe. Hence, e f e ∈ Qm(eAe) and (e f e)2
= e f e.

Also for eae ∈ eAe, note that e f e · eae = eae · e f e, thus e f e ∈ B(Qm(eAe)), so

eB(Qm(A))e ⊆ B(Qm(eAe)). By Theorem 2,

eQ̂qB(A)e = e(AB(Qm(A)))e = eAe · eB(Qm(A))e ⊆ eAe · B(Qm(eAe)) = Q̂qB(eAe)

because B(Q(A)) = B(Qm(A)) and eB(Qm(A))e ⊆ B(Qm(eAe)). Since Q̂qB(A) ∈ qB,

eQ̂qB(A)e ∈ qB by [9, Proposition 16]. Also, since

eAe ⊆ eQ̂qB(A)e ⊆ Q̂qB(eAe) ⊆ Q(eAe), Q̂qB(eAe) ⊆ eQ̂qB(A)e

from Theorem 2. Thus Q̂qB(eAe) = eQ̂qB(A)e, proving the claim.

Now, since R and S are Morita equivalent, S is semiprime. Also there ex-

ists a positive integer n and e2
= e ∈ Matn(R) such that S = e Matn(R)e and

Matn(R)e Matn(R) = Matn(R) (see [29, p. 491]). Thus by the claim and Corollary

9(iii), we have that

Q̂qB(S) = Q̂qB(e Matn(R)e) = eQ̂qB(Matn(R))e = e Matn(Q̂qB(R))e.

Also

Matn(Q̂qB(R))e Matn(Q̂qB(R)) = Matn(RB(Q(R)))e Matn(RB(Q(R)))

= Matn(R)e Matn(R)B(Q(R))

= Matn(R)B(Q(R)) = Matn(RB(Q(R)))

= Matn(Q̂qB(R)).

Moreover, e ∈ Matn(Q̂qB(R)). Thus Q̂qB(R) is Morita equivalent to Q̂qB(S) by [29,

p. 491].

Theorem 11 does not hold for the case of Baer absolute to Q(R) right ring hulls.

Let R = F[x, y], where F is a field, and let S = Matn(R) with n > 1. Then Q̂B(R) =

R, however, Q̂B(S) does not even exist (see [18, Example 3.10]).

A C∗-algebra is called unital if it has an identity. Let A be a (not necessarily uni-

tal) C∗-algebra. Then the set Ice of all norm closed essential ideals of A forms a

filter directed downwards by inclusion. The ring Qb(A) denotes the algebraic di-

rect limit of {M(I)}I∈Ice
, where M(I) denotes the C∗-algebra multipliers of I; and

Qb(A) is called the bounded symmetric algebra of quotients of A [3, p. 57, Definition

2.23]. The norm closure Mloc(A) of Qb(A) (i.e., the C∗-algebra direct limit Mloc(A) of
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{M(I)}I∈Ice
) is called the local multiplier algebra of A [3, p. 65, Definition 2.3.1]. The

local multiplier algebra Mloc(A) was first used in [24, 31] to show the innerness of

certain ∗-automorphisms and derivations. For more details on Mloc(A) and Qb(A),

see [3, 24, 31].

Following [3, p. 73, Definition 3.2.1], for a C∗-algebra A, the C∗-subalgebra

A Cen(Qb(A)) (i.e., the norm closure of A Cen(Qb(A)) in Mloc(A)) of Mloc(A) is

called the bounded central closure of A, where Cen(−) is the center of a ring. If

A = A Cen(Qb(A)), then A is said to be boundedly centrally closed. Boundedly cen-

trally closed algebras have been used to obtain a complete description of all centraliz-

ing additive mappings on C∗-algebras [1] and for investigating the central Haagerup

tensor product of multiplier algebras [2].

Let A be a unital C∗-algebra. Then it is shown in [18, Lemma 4.9(i)] that QqB(A)

is a ∗-subalgebra of Qb(A), so QqB(A) is a ∗-subalgebra of Mloc(A). By [18, Lemma

4.12(i)], A is boundedly centrally closed if and only if A ∈ qB. Let QqB(A) be the

norm closure of QqB(A) in Mloc(A). From [18, Lemma 4.12(ii) and (iii)], QqB(A) =

A Cen(Qb(A)), and it is the smallest boundedly centrally closed intermediate C∗-al-

gebra between A and Mloc(A).

Corollary 12 Let A and B be unital C∗-algebras. Assume that A and B are Morita

equivalent. Then we have the following:

(i) QqB(A) and QqB(B) are Morita equivalent.

(ii) The bounded central closure of A is Morita equivalent to the bounded central clo-

sure of B as rings.

(iii) The bounded central closure of A is strongly Morita equivalent to the bounded

central closure of B as C∗-algebras.

Proof (i) This follows from Theorem 11, since C∗-algebras are semiprime and right

nonsingular.

(ii) Assume that A and B are Morita equivalent. Then, as in the proof of Theorem

11, there exist a positive integer n and e = e2 ∈ Mat(A) such that

QqB(B) = e Matn(QqB(A))e and Matn(QqB(A))e Matn(QqB(A)) = Matn(QqB(A)).

Therefore, QqB(B) = e Matn(QqB(A))e and

Matn(QqB(A))e Matn(QqB(A)) = Matn(QqB(A)),

where e Matn(QqB(A))e is the norm closure of e Matn(QqB(A))e in Matn(Mloc(A)),

etc. We see that

e Matn(QqB(A))e = eMatn(QqB(A))e,

so QqB(B) = eMatn(QqB(A))e. By [3, p. 40, Corollary 1.2.37(ii)], Matn(M(A)) =

M(Matn(A)). From the proof of [3, p. 79, Proposition 3.3.8], Matn(Mloc(A)) =

Mloc(Matn(A)) and Matn(Mloc(B)) = Mloc(Matn(B)).

Since QqB(B) is a ∗-subalgebra of Mloc(B), we can see that Matn(QqB(A)) =

Matn(QqB(A)). So QqB(B) = e Matn(QqB(A))e. On the other hand,

1 ∈ QqB(A) = Matn(QqB(A))e Matn(QqB(A)) ⊆ Matn(QqB(A))e Matn(QqB(A))

= Matn(QqB(A))eMatn(QqB(A)).
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Therefore,

Matn(QqB(A)) = Matn(QqB(A))eMatn(QqB(A)) = Matn(QqB(A))e Matn(QqB(A)).

Now since e ∈ Matn(A) ⊆ Matn(QqB(A)), it follows that QqB(A) and QqB(B) are

Morita equivalent. Thus A Cen(Qb(A)) and B Cen(Qb(B)) are Morita equivalent

since QqB(A) = A Cen(Qb(A)) and QqB(B) = A Cen(Qb(B)) from [18, Lemma

4.12(iii)].

(iii) The proof of this part follows from part (ii) and [4, Theorem, p. 253].

From Corollary 12 and [19, Corollary 13], we obtain the following result. We use

Mod-R to denote the category of right R-modules.

Corollary 13 Let A be a unital C∗-algebra. Assume that PA is a finitely generated

projective generator for Mod-A. Then we have the following.

(i) P ⊗A QqB(A) is a finitely generated projective generator for Mod-QqB(A).

(ii) P ⊗A A Cen(Qb(A)) is a finitely generated projective generator for

Mod-A Cen(Qb(A)).

Lemma 14 Let K be a class of rings satisfying the following conditions, where n is a

fixed positive integer:

(i) if Ω ∈ K, then Tn(Ω) ∈ K;

(ii) if the generalized triangular matrix ring ( A M
0 B ) ∈ K, where M is an (A, B)-

bimodule, then A, B ∈ K.

Assume that S is a right essential overring of a ring R. Then QS
K(R) (resp., Q̃K(R))

exists if and only if QTm(S)
K (Tm(R)) (resp., Q̃K(Tm(R)) exists for all m ≤ n. In this case,

QTm(S)
K (Tm(R)) = Tm(QS

K(R)) (resp., Q̃K(Tm(R)) = Tm(Q̃K(R))) for all m ≤ n.

Proof We prove the result for the version involving QS
K(R) and QTm(S)

K (Tm(R)). The

proof involving Q̃K(R) and Q̃K(Tm(R)) is similar.

Assume that QS
K(R) exists. The result is true for n = 1. Assume that the result is

true for m = k. We show that the result is true for m = k + 1. Let W ∈ K be an inter-

mediate ring between Tk+1(R) and Tk+1(S). Then W = (Wi j) is a (k + 1)-by-(k + 1)

generalized triangular matrix ring, where R ⊆ Wi j ⊆ S, each Wii is an intermedi-

ate ring between R and S, and Wi j is a (Wii ,W j j)-bimodule for i 6= j. Now W can

be blocked to matrix ( A M
0 B ), where A = W11, M = [W12, . . . ,W1k+1], and B is the

k-by-k generalized triangular matrix ring (Wi j) with 2 ≤ i, j ≤ k + 1. In this case,

B is an intermediate ring between Tk(R) and Tk(S). By condition (ii), QS
K(R) is a

subring of A and Tk(QS
K(R)) is a subring of B. Since 1 ∈ Wi j for 1 ≤ i, j ≤ n and

each W1 j is a left A-module, Tk+1(QS
K(R)) is a subring of W . Hence, by induction,

QTm(S)
K (Tm(R)) = Tm(QS

K(R)) for all m ≤ n.

Conversely, assume that QTn(S)
K (Tn(R)) exists. Then QTn(S)

K (Tn(R)) is a general-

ized triangular matrix ring that is intermediate between Tn(R) and Tn(S). Let V =

e11QTn(S)
K (Tn(R))e11, where e11 ∈ Tn(S) is the matrix with 1 in the (1, 1)-position and

zero elsewhere. Then V is an intermediate ring between R and S. By condition (ii),

V ∈ K. If U ∈ K is an intermediate ring between R and S, then Tn(U ) ∈ K and
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Tn(U ) is an intermediate ring between Tn(R) and Tn(S). Hence QTn(S)
K (Tn(R)) is a

subring of Tn(U ), so V is a subring of U . Therefore, V = QS
K(R).

We get the following result immediately from Lemma 14 and [15, 32].

Proposition 15 Let R be a ring and S a right essential overring of R. Then QS
qB

(R)

(resp., Q̃qB(R)) exists if and only if QTn(S)
qB

(Tn(R)) (resp., Q̃qB(Tn(R)) exists for all n. In

this case, QTn(S)
qB

(Tn(R)) = Tn(QS
qB

(R)) (resp., Q̃qB(Tn(R)) = Tn(Q̃qB(R))) for all n.

Proposition 16 Let S be a right ring of quotients of R. Then the following conditions

are equivalent.

(i) QS
FI

(R) exists.

(ii) QTn(S)
FI

(Tn(R)) exists for all positive integers n.

(iii) QTn(S)
FI

(Tn(R)) exists for a fixed positive integer n.

In this case, QTn(S)
FI

(Tn(R)) = Tn(QS
FI

(R)) for all positive integers n.

Proof (i)⇒(ii) Assume that QS
FI

(R) exists. We proceed by induction. The result

is true for n = 1. Suppose that the result is true for n = k. We show the result

for n = k + 1. Let W ∈ FI be an intermediate ring between Tk+1(R) and Tk+1(S).

Then W = (Wi j) is a (k + 1)-by-(k + 1) generalized triangular matrix ring, where

R ⊆ Wi j ⊆ S, each Wii is an intermediate ring between R and S, and Wi j is a

(Wii ,W j j)-bimodule for i 6= j. Also, W can be blocked to a matrix ( A M
0 B ), where

A = W11, M = [W12, . . . ,W1k+1], and B is the k-by-k generalized triangular matrix

ring (Wi j) with 2 ≤ i, j ≤ k + 1. We see that B is an intermediate ring between Tk(R)

and Tk(S). By [15, Corollary 1.6], B ∈ FI. Let I E A. Since 1 ∈ Wi j for all 1 ≤ i, j ≤
k + 1, it follows that W j j ⊆ W1 j for all 1 ≤ j ≤ n. So N = I[W12, . . . ,W1k+1] is an

(A, B)-bisubmodule of M. Again from [15, Corollary 1.6], there is f = f 2 ∈ A with

NB ≤ess f MB. Since 1 ∈ Wi j , I ⊆ f A. Let 0 6= f a ∈ f A. Then [a, 0, . . . , 0] ∈ M.

Hence there is b ∈ B satisfying 0 6= f ab ∈ N. Thus there exists x ∈ W2 j for some

j with 2 ≤ j ≤ k + 1, such that 0 6= f ax ∈ IW2 j . Since R ⊆ W2 j ⊆ S and S is a

right ring of quotients of R, IR is dense in IW2 j R
, so there is r ∈ R with 0 6= f axr

and xr ∈ I. Thus IR ≤ess f AR, hence IA ≤ess f AA. So A ∈ FI. Therefore QS
FI

(R)

is a subring of A. Since each W1 j is a left A-module and 1 ∈ W1 j , A ⊆ W1 j for all

1 ≤ j ≤ k + 1. Consequently, Tk+1(QS
FI

(R)) is a subring of W . Thus, by induction,

QTn(S)
FI

(Tn(R)) = Tn(QS
FI

(R)) for all n.

(ii)⇒(iii) It is obvious.

(iii)⇒(i) Assume that QTn(S)
FI

(Tn(R)) exists for some n. Then QTn(S)
FI

(Tn(R)) is an

intermediate ring between Tn(R) and Tn(S). Let V = ennQTn(S)
FI

(Tn(R))enn, where

enn ∈ Tn(S) is the matrix with 1 in the (n, n)-position and zero elsewhere. Then

V is an intermediate ring between R and S. Also by [15, Corollary 1.6], V ∈ FI. If

U ∈ FI is an intermediate ring between R and S, then Tn(U ) ∈ FI by [12, Corollary

2.5]. Hence QTn(S)
FI

(Tn(R)) is a subring of Tn(U ), so V is a subring of U . Therefore

V = QS
FI

(R).

Lemma 17 (see [6, Lemma 3.10]) Let R be a right FI-extending ring. Then B(T) ⊆ R

for any right essential overring T of R.
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From [12, Theorem 4.7], a semiprime ring is quasi-Baer if and only if it is right

FI-extending. However, Lemma 17 and Example 3 show that even a left and right

nonsingular Artinian quasi-Baer ring is not necessarily right FI-extending. Also, [16,

Example 3.16] exhibits a nonsemiprime nonsingular ring R with R = RB(Q(R)),

but R is not right FI-extending. However, in contrast to Theorem 2, our next result

provides a large class of nonsemiprime rings T for which

Q̂qB(T) = Q̂FI(T) = TB(Q(T)).

Theorem 18 Let R be a semiprime ring and n a positive integer. Then we have the

following.

(i) Q̂qB(Tn(R)) = Tn(Q̂qB(R)) = Tn(R)B(Q(Tn(R))).

(ii) Q̂FI(Tn(R)) = Tn(Q̂FI(R)) = Tn(R)B(Q(Tn(R))).

Proof (i) Let T = Tn(R) and let S be a right ring of quotients of T. By [32, Proposi-

tion 9] and Theorem 2, Tn(Q̂qB(R)) ∈ qB and Tn(Q̂qB(R)) = Tn(RB(Q(R))). Take

e ∈ B(Q(R)) and let J = R ∩ (1 − e)Q(R). Then rQ(R)( J) = eQ(R) as in the proof of

[18, Theorem 3.3].

Let K be the n-by-n matrix with J in the (1, 1)-position and 0 elsewhere. Thus

TKT is the n-by-n matrix with J throughout the top row and 0 elsewhere. Also,

Q(T)KQ(T) is the n-by-n matrix with Q(R) JQ(R) in all positions because Q(T) =

Matn(Q(R)) from Lemma 8. Note that

TKT ⊆ SKS ⊆ Q(T)KQ(T), rQ(R)( J) = eQ(R), and rQ(R)(Q(R) JQ(R)) = eQ(R).

Hence,

f Q(T) = rQ(T)(Q(T)KQ(T)) ⊆ rQ(T)(SKS) ⊆ rQ(T)(TKT) = f Q(T),

where f is the diagonal matrix with e on the diagonal. Assume that S ∈ qB. Then

there is c = c2 ∈ S with cS = rS(SKS) = S ∩ f Q(T). Hence, cQ(T) ⊆ f Q(T).

Suppose that there is a nonzero right ideal I of Q(T) with I ⊆ f Q(T) and I ∩
cQ(T) = 0. Then there is 0 6= x ∈ I ∩ S. Since x ∈ f Q(T), x ∈ rS(SKS) = cS, so 0 6=
x ∈ I∩ cQ(T), a contradiction. Therefore, cQ(T)Q(T) ≤

ess f Q(T)Q(T). Consequently,

cQ(T) = f Q(T) by the modular law. Since f is central in Q(T), it follows that c = f .

Thus S contains all n-by-n constant diagonal matrices whose diagonal entries are

from B(Q(R)). Hence, by Theorem 2, Tn(Q̂qB(R)) ⊆ S. Therefore, using Lemma 8,

Q̂qB(T) = Tn(Q̂qB(R)) = Tn(R)B(Q(Tn(R))).

(ii) Since R is semiprime, Q̂FI(R) = RB(Q(R)) = QQ(R)
FI

(R) by Theorem 2. Hence

from Proposition 16,

QTn(Q(R))
FI

(Tn(R)) exists, and QTn(Q(R))
FI

(Tn(R)) = Tn(RB(Q(R))),

so Tn(RB(Q(R)) ∈ FI. Next let S be a right FI-extending intermediate ring between

Tn(R) and Q(Tn(R)). Then by Lemmas 8 and 17,

B(Q(Tn(R)) = B(Q(Matn(R))) = B(Matn(Q(R))) ⊆ S.
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So Tn(RB(Q(R))) ⊆ S. Therefore

Q̂FI(Tn(R)) = Tn(Q̂FI(R)) = Tn(R)B(Q(Tn(R)))

by Lemma 8.

For a ring R and a nonempty set Γ, CFMΓ(R), RFMΓ(R), and CRFMΓ(R) denote

the column finite, the row finite, and the column and row finite matrix rings over R

indexed by Γ, respectively.

In [20, Theorem 1], it was shown that CRFMΓ(R) is a Baer ring for all infinite

index sets Γ if and only if R is semisimple Artinian. Our next result shows that the

quasi-Baer property is always preserved by infinite matrix rings.

Theorem 19

(i) R ∈ qB if and only if CFMΓ(R) (resp., RFMΓ(R) and CRFMΓ(R)) ∈ qB.

(ii) If R ∈ FI, then CFMΓ(R) (resp., CRFMΓ(R)) ∈ FI.

(iii) If R is semiprime, then we have that

Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)),

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)), and

Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)).

Proof (i) Let S = CFMΓ(R) and let J be a right ideal of S. Then J =
∑

λ∈Λ
xλS for

some xλ ∈ S. Say xλ = (aλ
i j)(i, j)∈Γ×Γ for each λ ∈ Λ. Let Jk be the set of all entries

of the k-th row of J. Then Jk =
∑

λ∈Λ, j∈Γ
aλ

k jR. Since R ∈ qB, there is e = e2 ∈ R

with rR(
∑

k∈Γ
Jk) = eR. So (e1S)S ⊆ rS( J), where 1S is the identity matrix in S. Next

to see that rS( J) ⊆ (e1S)S, let (bi j)(i, j)∈Γ×Γ ∈ rS( J). Then for each k ∈ Γ and each

(i, j) ∈ Γ × Γ, so Jkbi j = 0. Thus bi j ∈ rR(
∑

k∈Γ
Jk) = eR. Note that bi j = ebi j

for each (i, j) ∈ Γ × Γ. Hence (bi j)(i, j)∈Γ×Γ ∈ (e1S)S. Therefore, rS( J) = (e1S)S, so

S ∈ qB. By a similar method, we see that RFMΓ(R) and CRFMΓ(R) are in qB.

Conversely, if CFMΓ(R) (resp., RFMΓ(R) and CRFMΓ(R)) ∈ qB, then R ∈ qB by

[22, Lemma 2].

(ii) Let M(R) denote either CFMΓ(R) or CRFMΓ(R). We use ei j to denote the ma-

trix with 1 in the (i, j)-position and 0 elsewhere. Assume that 0 6= I E M(R). Then

there are X E R and e = e2 ∈ R with XR ≤ess eRR, I ⊆ M(X), and ei jM(X)ehk ⊆ I for

all possible i, j, h, k, where M(X) is either CFMΓ(X) or CRFMΓ(X). Let f ∈ M(R)

with e in all diagonal positions and 0 elsewhere. Take 0 6= a ∈ f M(R). Then there

is j0 such that the j0-th column of a is nonzero. Let {er1, . . . , ern} be the finite

set of all nonzero entries in the j0-th column. Thus there exists s ∈ R such that

{er1s, . . . , erns} ⊆ X and erks 6= 0 for some k ∈ {1, . . . , n}. Let i0 denote the row of

a in which eri appears. Take c ∈ M(R) such that c has s in the ( j0, k0)-position and 0

elsewhere. Then ac = e1010
acek0k0

+ e2020
acek0k0

+ · · · + en0n0
acek0k0

. But ei0i0
acek0k0

∈ I

for i0 = 10, . . . , n0. So ac ∈ I. Hence, IM(R) ≤
ess f M(R)M(R). Therefore M(R) ∈ FI.

(iii) Since R is semiprime, so are CFMΓ(R), RFMΓ(R) and CRFMΓ(R). Let e ∈
B(Q(R)). Then e ∈ B(Qm(R)), so there is J E R with ℓR( J) = 0 and e J ⊆ R. Thus
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CFMΓ( J) E CFMΓ(R), ℓCFMΓ(R)(CFMΓ( J)) = 0, and(e1) CFMΓ( J) ⊆ CFMΓ(R),

where 1 is the identity matrix in CFMΓ(R). Hence e1 ∈ Qm(CFMΓ(R)), so e1 ∈
B(Qm(CFMΓ(R))). Thus

CFMΓ(Q̂qB(R)) = CFMΓ(RB(Q(R))) ⊆ Qm(CFMΓ(R)) ⊆ Q(CFMΓ(R)).

Now CFMΓ(Q̂qB(R)) ∈ qB by part (i). Hence, by Theorem 2,

Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)).

Similarly,

RFMΓ(Q̂qB(R)) = RFMΓ(RB(Q(R))) ⊆ Qm(RFMΓ(R)) ⊆ Q(RFMΓ(R)),

and also

CRFMΓ(Q̂qB(R)) = CRFMΓ(RB(Q(R))) ⊆ Qm(CRFMΓ(R)) ⊆ Q(CRFMΓ(R)).

By a similar method as above,

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)) and Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)).

We note that the CFMΓ(R) case in Theorem 19(ii) was proved in [14, Corol-

lary 4.7] by other methods. In [20, p. 445] it is shown that for any ring R, CRFMΓ(R)

is never right extending when Γ is countably infinite. For a semiprime ring R, The-

orem 2, [12, Theorem 4.7], and Theorem 19(i) yield that CRFMΓ(Q̂qB(R)) exists

and is right FI-extending. Hence with each semiprime ring, we can associate a right

FI-extending ring which is not right extending. For a given nonempty set Γ, it was

shown in [26] that R ∈ qB if and only if the column finite Γ × Γ upper triangular

matrix ring over R is quasi-Baer.

We might expect from Corollary 9 and Theorem 19 that either

Q̂qB(CFMΓ(R)) = CFMΓ(Q̂qB(R)) or

Q̂qB(RFMΓ(R)) = RFMΓ(Q̂qB(R)) or

Q̂qB(CRFMΓ(R)) = CRFMΓ(Q̂qB(R)).

However, our next example shows that there are a commutative (von Neumann) reg-

ular ring R and a nonempty set Γ such that none of these equalities holds.

Example 20 There exist a commutative (von Neumann) regular ring R and a set

Γ such that Q̂qB(CFMΓ(R)) ( CFMΓ(Q̂qB(R)), Q̂qB(RFMΓ(R)) ( RFMΓ(Q̂qB(R)),

and Q̂qB(CRFMΓ(R)) ( CRFMΓ(Q̂qB(R)). Let F be a field. Take a set Λ such that

|Λ| = |F|ℵ0. Let Fi = F for all i ∈ Λ, and let

R =
{

(γi)i∈Λ ∈
∏
i∈Λ

Fi | γi is a constant for all but finitely many i
}

.
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Hence R is a subring of
∏

i∈Λ
Fi . Then Q(R) =

∏
i∈Λ

Fi and the ring R is a commu-

tative (von Neumann) regular ring (hence Q̂qB(R) = QqB(R)).

Take Γ = Q̂qB(R) = RB(Q(R)) as a set. Note that

Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)) ⊆ Q(CFMΓ(R))

by Theorem 2 and the proof of Theorem 19(iii). Since CFMΓ(R) is semiprime,

Q̂qB(CFMΓ(R)) = CFMΓ(R)B(Q(CFMΓ(R))),

so B(Q(CFMΓ(R))) ⊆ Q̂qB(CFMΓ(R)). Thus ,

B(Q(CFMΓ(R))) ⊆ B(Q̂qB(CFMΓ(R))).

Therefore

B(Q(CFMΓ(R))) = B(Q̂qB(CFMΓ(R))).

Assume to the contrary that CFMΓ(Q̂qB(R)) = Q̂qB(CFMΓ(R)). Then

B(Q(CFMΓ(R))) = B(Q̂qB(CFMΓ(R))) = B(CFMΓ(Q̂qB(R))).

We let µ ∈ CFMΓ(Q̂qB(R)) be a diagonal matrix whose entries are all distinct ele-

ments of Q̂qB(R). Then µ ∈ Q̂qB(CFMΓ(R)) by assumption.

From B(Q(CFMΓ(R))) = B(CFMΓ(Q̂qB(R))), it follows that

Q̂qB(CFMΓ(R)) = CFMΓ(R) · B(CFMΓ(Q̂qB(R))).

Let 1 be the identity matrix in CFMΓ(R). Then there exist θ1, . . . , θn ∈ CFMΓ(R)

and f1, . . . , fn ∈ Q̂qB(R) such that f11, . . . , fn1 ∈ B(CFMΓ(Q̂qB(R))) are mutually

orthogonal by [18, Lemma 4.9] (note that fi ∈ B(Q̂qB(R)) for all i and these are

mutually orthogonal) and

µ = θ1 f11 + · · · + θn fn1.

Thus for each entry of the diagonal of µ (or equivalently, each element of RB(Q(R))),

say a, there exist diagonal entries θi(a) of θi for i = 1, . . . , n such that a = θ1(a) f1 +

· · · + θn(a) fn. Thus RB(Q(R)) ⊆ R f1 + · · · + R fn ⊆ RB(Q(R)), so RB(Q(R)) =

R f1 + · · · + R fn. Therefore, |RB(Q(R))| = |R|. If |F| is finite or countably infinite,

then |R| = ℵ0, but |RB(Q(R))| ≥ |B(Q(R))| = 2ℵ0 because |Λ| = ℵ0 and Q(R) =∏
i∈Λ

Fi . Thus we have a contradiction. If |F| is uncountably infinite, then |R| = |Λ|.
But |RB(Q(R))| ≥ |B(Q(R))| = 2|Λ|. Hence, we again get a contradiction. Therefore,

Q̂qB(CFMΓ(R)) ( CFMΓ(Q̂qB(R)).

Similarly,

Q̂qB(RFMΓ(R)) ( RFMΓ(Q̂qB(R)) and Q̂qB(CRFMΓ(R)) ( CRFMΓ(Q̂qB(R)).
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