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NORLUND OPERATORS ON lp 

DAVID BORWEIN 

ABSTRACT. The Nôrlund matrix Na is the triangular matrix {an_k /An}, where an > 
0 and An := a^ + a\ + • • • + an > 0. It is proved that, subject to the existence of 
a := \imnan/An, Na G B(lp) for 1 < p < oo if and only if a < oo. It is also proved 
that it is possible to have Na G B(lp) for 1 < p < oo when sup nan/An = oo. 

1. Introduction. Let a := {an} be a sequence of non-negative numbers, and let 
An := «o + «l + • • • + #n > 0. The Nôrlund matrix Na := {a^} is defined by 

a . = { an^k/An forO <k<n, 
nk' 1 0 for k > n. 

The 7Va-transform y = {yn} of the sequence x = {xn} is given by 

Suppose throughout that 

1 n 

yn := (Affl*)„ : = — X ) *«-***• 
A " Jt=0 

1 < / ? < OO, - + - = 1, 
P 1 

and define 

Let 

where 

1 « /n + i y / p 

^ A„ Vrc+17 

M\ := supai(n), M2 := supa2(fc). 
n>0 fc>0 

||A â||p := sup \\Nax\\p, 
\\x\\P<\ 

MP 
IMI,:=(EW) • 

Vn=0 y 

so that 7Va G #(/p), the Banach algebra of bounded linear operators on lp, exactly when 
\\Na\\p is finite (in which case it is the norm ofNa). 

The following theorem concerning sufficient conditions for Na G B(lp) is due to Bor-
wein and Cass [1, Theorem 2]. 
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THEOREM A. If 

(1) ? = 0(1), 

then Na G B(lp) and \\Na\\p < M\/qMl
2
/p < oo. 

Cass and Kratz [3] showed that (1) is in fact necessary and sufficient for Na G B(lp) 
when 

(2) <*«:=/(*), 

where/(x) is a logarithmico-exponential function for all sufficiently large positive values 
of x. They showed that nan/An tends to a finite or infinite limit when (2) is satisfied, and 
proved: 

THEOREM B. Suppose that an is given by (2), and that nan/An —> a. 
(i) Then Na G B(lp) if and only if a < oo. 
(ii)Ifa < oo, then 

r ( a + \)T{\/q) lA/q^lP ^ 
}^oai(n) = r ( g + i / g ) - llNallp - M l M 2 < °°-

Condition (2) is redundant when a — 0. 

For a > — 1, the Cesàro matrix Ca is the Nôrlund matrix Â a with 

(n + a — 1> 
an := . 

n 
It follows from an inequality of Hardy's [4] that, for a > 0, Ca G #(/p) and 

rxa+prg/g) 
Ca 

n<x+l/q) 

This is thus the attained lower bound of the norms of all Nôrlund matrices satisfying the 
conditions of Theorem B(ii). 

The primary object of this paper is to show that the requirement that an be generated by 
a logarithmico-exponential function is redundant in Theorem B(i), and can be replaced 
by a far less restrictive monotonicity condition in Theorem B(ii). To this end we shall 
prove: 

THEOREM 1. Suppose that nan /An —* a. 
(i) Then Na G B(lp) if and only if a < oo. 
(ii)Ifa < oo, then 

\\Na\\P < M\lqM^p < oo, 

and if in addition, {ncan} is eventually monotonie for every constant c ^ 1 — a, then 

. A r ( a + i ) r ( i / < ? ) . . 
hm ai(ri) = ' < \\Na\\p. 
«-̂ «3 r(a+l/q) 
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Further, the monotonicity condition is redundant when a — 0. 

In § 4 we construct a sequence {an} such that {nan/An} is unbounded but Na G B(lp) 
for all finitep > 1, thus showing that (1) is not a necessary condition for Na G B(lp). 

ACKNOWLEDGEMENT. I am indebted to Xiaopeng Gao, a graduate student at the 
University of Western Ontario, for the removal of a redundant monotonicity condition 
from Theorem 1 and Lemma 1 (below). I had proved these results subject to {an/An} 
being eventually monotonie. Gao's incisive analysis of my original proofs showed how 
they could be adjusted to establish the present more satisfactory forms of the results. 

2. Preliminary results. 

LEMMA 1. Suppose that {an/An} is positive and null. Let 

\Ak-
h := h(n) := max 

k<n ak 

Then 
1 An> £ a* > (l - - W 

n-h<k<n 

Further, ifnan/An —> oo, then h{n) — o(n). 

PROOF. Suppose without loss that n — h> 1. Then 

log 

and so 

An _ M„ dx _ " M* 

An-h-\ ^An-h-x X k=n-JA*-* 

>(/z+l)min — > 1, 
k<n Ak 

An-h-l < 1 
An ~ e 

dx 
X 

1 A t K-h-\ 
J" £ ak = 1 - — — > 1 -

> t *-
k=n-h Ak 

1 
e' 

Thus 

Now suppose that nan/An —> oo. Then, for m > 1, 

(̂w) 1 A* k Ak 0 < lim sup < hm - max — + hm sup max 
n_+oo n n—+00 n k<m ak n-+OQ rn<k<n n kak 

Ak < max > 0 as m —» oo. 
k>m kak 

It follows that h(n)/n —• 0. 

LEMMA 2. Suppose that nan/An —» a wftere 0 < a < oo. 77î£rc 

oo i/c > 1 — a, 
lim ncan = . 

«—oo [ 0 l / C < 1 — Of. 
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PROOF. Let 
nan 

an : = — . 
fin 

Then, as n —» oo, 

logA„ - logA„_i = — log ( 1 - ) ~ - , 
V n y n 

and hence 

logA„ - logAo - £ log(l - y ) = (a + *(l)) log/i. 

Consequently A„ ~ na+o(1), and so #„ ^ ana~l+0<<l\ The desired conclusion follows. • 

LEMMA 3. Suppose thatO < a < oo, S < 1, and that rfan is eventually positive 
and increasing when the constant c > 1 — a, an d eventually decreasing when c < I—a. 
Then, as n —• oo, 

1 A**/\ k \~s r(a)ra-<5) 
1-6)' 

PROOF. Let 1 > C I > 1 — a > c 2 - Then there is a positive integer N such that 

< k \ ~c2 ak fk\ ~ c i (K-YC2<^<(K-YC'forn>k>N. 
\n/ an \n/ 

Since 

we obtain 

and hence 

lim nan = oo, 
n—->oo 

«-•oo n £TQ an\ n + U 

limsup/(n)< lim -T ( - ) fl 7 
n^oo n^oon k=N\n/ V « + 1 / 

= / 1 x ^ ( i - . r ^ = r ( 1 ~ c , ) r ( 1 " ' ) 

and 

liminf/(«) > Um - Ê (-) ' Ï1 - - M " 
«-ioo n-^oo ^ r ^ V « / V n+ 1/ 

1 »fk\-c2f. k \-s 

1 k=N 

= Jlx-C2(l-xy°dx ê ^ = r(i-c2)r(i-^) 
T(2-c2-6) ' 

Letting c\ -+ 1 — a from the right and C2 —> 1 — oc from the left, we get the desired 
conclusion. • 

The following lemma is a special case of a known result [2, Theorems 2]. 
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LEMMA 4. If{bn} is a sequence of positive numbers, and if 

/ii := sup 2^ —— ( 7- ) < °° flm* ^2 : = SUP Z^ ~T~ \T I < °°' 
n>0 fc=0 A « V ^n y fc>0 n=fc A " V "* y 

rteniVfl G B(/p) and \\Na\\p < fi\,qfil
2
,p. 

LEMMA 5. If{bn} is a bounded sequence of positive numbers such that £ bn = oo, 
and if as n —• oo, 

A an^kfbk\i/p • * -, i 
2^ —— I — ) —• cr (finite or infinite), 
k=o An V bn * 

then \\Na\\P > a. 

PROOF. Observe that if 

Dn'-= n ( i — r ) wnere ^ > SUPbk, 

and dn := Dn—Dn-\ for n > 1, then&n = bdn/Dn andDn —> oo. The desired conclusion 
is now a consequence of a known result [2, Theorem 4]. • 

3. Proof of Theorem 1. 

PART (i). In view of Theorem A, it suffices to show that Na $ B(lp) when a = oo. 
Suppose therefore that a — oo. 

If limsupan/An > 0, then £ \an/An\
p = oo, but this implies that Nae° $ lp, where 

e° = (1,0,0,...), so that #fl & B(lp). 
Suppose that lima„/An = 0. Since a — oo, we have, by Lemma 1 with b := l/p9 

that, as n —> oo, 

An fc=0 A n n-h<k<n 

'tt + 1 \ 5 1 ^ ^ 1\ /n + 1\6 

oo. >/n±lV± V afc > fi _ i V î L L i V 
- Vfc + i ; Ann_4i<n v J V / i + i ; 

It follows, by Lemma 5, that Na ^ #(/p). 

PART (ii). The case a = 0 is part of Theorem B, so suppose that 0 < a < oo. Since 
nan = 0(An), it follows from Theorem A that Na G B(lp) and ||A^||P < Af\/qMl

2
/p < oo. 

The monotonicity condition together with Lemma 2 ensures that an satisfies the mono-
tonicity conditions of Lemma 3. Hence, by Lemma 3 with 6 := 1 //?, 

ai(n) = —I(n) -* - — ' 
An T(a+\/q) 

and so, by Lemma 5, 

l|yVallp^ r (a + i/c) • 
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4. Construction. We construct a sequence {an} such that {nan/An} is unbounded 
but Na e B(lp) for all finite/? > 1. Let 

an := 
1 when n = m2, m = 0 , 1 , . . . , 

10 otherwise. 

Then, ïovn = m2, 
„2 

oo as m —» oo. 
An m+ 1 

Thus {ra^/A^} is unbounded. 
Now define 

t = 0 A„ V6n/ n=k An \bkJ 

where 

In order to prove that Na £ B(lp) it suffices, by Lemma 4, to demonstrate that S\(n) = 

0(l)andS2(*) = 0(l) . 
For 1 < m2 < n < (m + 1)2,<S := 1/(2/?), we have 

< (n + l)V+l-mV | 1 | (n+lf - » ( / n 2 _ ^ _ , 
m+1 m+ 1 m+ 1 £~j 

< (m + I)2*5"1 + (m + I)"1 + (m + l)2*"1™"* £ (m - * ) ^ 
*=i 
m - 1 

= (m + l ) 2 ^ 1 + (m + I)"1 + (m + l)2*"1™"* £ ^ 
k=i 

= 0{m^-1 +m~l +m2*~1 • ml~^) = 0(1). 

Further, for 1 < m2 < k + 1 < (m + l)2, /x := l/(2#), we have 

s2(A) = ( * + i y £ a"~* 
„=tA„(n+l> 
2* a«-t 

iM 

<(*+iyy ; * + (*+iy y — - — 
OO 1 

< 1 + (m + l)2" J2 -^ru = 1 + 0(m2^ • m-2") = O(l). •J+2/i 

Hence Na G #(/,). 
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