INTERNATIONAL ASTRONOMICAL UNION

SYMPOSIUM No. 182

HERBIG–HARO FLOWS AND THE BIRTH OF LOW MASS STARS

Edited by BO REIPURTH AND CLAUDE BERTOUT

INTERNATIONAL ASTRONOMICAL UNION

KLUWER ACADEMIC PUBLISHERS

HERBIG-HARO FLOWS AND THE BIRTH OF LOW MASS STARS

INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE

HERBIG-HARO FLOWS AND THE BIRTH OF LOW MASS STARS

PROCEEDINGS OF THE 182ND SYMPOSIUM OF THE INTERNATIONAL ASTRONOMICAL UNION, HELD IN CHAMONIX, FRANCE, 20–26 JANUARY 1997

EDITED BY

BO REIPURTH

Observatoire de Grenoble, France

and

CLAUDE BERTOUT Institut d'Astrophysique de Paris, France

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

Library of Congress Cataloging-in-Publication Data

ISBN 0-7923-4660-2 (HB)

Published on behalf of the International Astronomical Union by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

> Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved ©1997 International Astronomical Union

No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher.

Printed in the Netherlands

HH 212

This molecular hydrogen image (v=1–0 S(1) line at 2.122 μ m) shows the highly symmetric jet HH212 in Orion, which emanates from a deeply embedded young source, IRAS 05413–0104, and drives an associated molecular outflow. The symmetric and periodic nature of the inner knots and outer bow shocks point to fluctuations at the source as their origin. The image covers 0.15×0.61 parsec at a distance of 450 pc, and has been rotated to place the jet vertically; its true position angle is 24 degrees E of N. Further details can be found in the paper by Zinnecker *et al.* in the poster proceedings of this meeting.

Data taken by Mark McCaughrean using MAGIC on the Calar Alto 3.5-m; 0.7 arcsec seeing; 14 minutes integration time; 1.1×4.6 arcmin field; continuum not subtracted.

TABLE OF CONTENTS

I. HERBIG-HARO OBJECTS, H₂ FLOWS AND RADIO JETS

50 Years of Herbig-Haro Research

B. Reipurth & S. Heathcote	
1. The Discovery of HH Objects	. 3
2. The Early Years	. 5
3. Shock Physics, Kinematics and Multi-Wavelength Data	. 6
4. The HH 111 Jet	. 9
5. The HH 47 Jet	14
HST Observations of the L1551 IRS5 Jet	
C.V.M. Fridlund, M. Huldtgren & R. Liseau	
1. Introduction & Background	19

2.	HST Observations	$\overline{22}$
3.	Results	23
4.	Conclusions	27

Giant Herbig-Haro Flows

J. Bally & D. Devine	
1. Introduction	29
2. Observed Properties	33
3. Consequences of Parsec-Scale Herbig-Haro Flows	35

Herbig-Haro Objects in the Orion Nebula Region

C.R. O'Dell

1. Introduction	39
2. Structure of the Orion Nebula Region	41
3. The Two HH Object Systems in this Region	41
3.1 The North System	42
3.2 The South System	44
4. Discussion	45

Spectroscopic Properties of Herbig-Haro Flows

K.-H. Böhm & A.P. Goodson

1. Introduction	. 47
2. Some Unsolved Problems of Herbig-Haro Spectra	. 49
3. The Reliability of Quantitative Spectrophotometry in HH Objects and the C	Jas-
Phase Abundances of Metals	56
4. Attempts to Explain UV and the 2μ m IR Spectra of H ₂	57
5. The Explanation of Line Profiles and Position-Velocity Diagrams	58
6. Future Studies of HH Spectra	6 0

Spectroscopic Signatures of Microjets

J. 500	J.	Solf
--------	----	------

1. Introduction	63
2. Observations and Data Reduction Techniques	64
3. Results and Discussion	65
3.1 Spectroscopic Signatures of Microjets	65
3.2 The Case of DG Tau	67
3.2.1 General Remarks	. 67
3.2.2 Time Variability	. 69
3.2.3 The High-Velocity Gas Component (HVC)	69
3.2.4 The Low-Velocity Gas Component (LVC)	71
3.2.5 The Near-Rest-Velocity Gas Component (NRVC)	72

The Ionization State along the Beam of Herbig-Haro Jets

F. Bacciotti

1. Introduction	73
2. The Diagnostic Procedure	74
3. First Inspection of the HH 34 and HH 111 Jets	75
4. Analyses from Long-Slit Spectra	76
5. Conclusions	80

Thermal Radio Jets

L.F. Rodríguez	
1. Introduction	83
2. Thermal Jets	34
2.1 How are Thermal Radio Jets Identified?	34
2.2 Advantages and Disadvantages	36
2.3 Are Thermal Jets Always Present in Outflow Regions?	38
3. Quadrupolar Outflows 8	38
3.1 L723 8	39
3.2 HH 111 8	39

Molecular Hydrogen Emission in Embedded Flows

J. Eislöffel

1. Introduction	93
2. Morphology of H ₂ in Outflows	94
3. Excitation of H ₂ in Outflows	95
4. Kinematics of H ₂ in Outflows	97

 Comparison of H₂ and CO Outflows Entrainment Mechanisms Conclusions 	. 99 100 101
Turbulent Mixing Layers in Herbig-Haro and Embedded Jets	\mathbf{H}_2
A. Noriega-Crespo	
 Introduction The HH 110 Jet The IRAS 05487+0255 Jet The Cepheus E Outflow Summary 	103 105 106 107 110
Far-IR Spectrophotometry of HH Flows with the ISO Log Wavelength Spectrometer	ng-
R. Liseau, T. Giannini, B. Nisini, P. Saraceno, L. Spinoglio, B. Larsson, D. Lorenzetti, & E. Tommasi	
1. Introduction	112
1.1 Primary Objectives of the LWS-HH Programme	112 113
3. Results and Discussion	114
3.1 Extended [CII] 158 μ m Emission and Molecular Cloud PDR	114
 3.1 Extended [CII] 158 μm Emission and Molecular Cloud PDR 3.2 [OI] 63 μm Line Luminosity and Stellar Mass Loss Rate	114 115 119
 3.1 Extended [CII] 158 μm Emission and Molecular Cloud PDR 3.2 [OI] 63 μm Line Luminosity and Stellar Mass Loss Rate 3.3 [OI] 63 μm Line and Stellar Bolometric Luminosity 4. Conclusions 	114 115 119 119

II. THE PHYSICS AND CHEMISTRY OF MOLECULAR OUTFLOWS

Observational Properties of Molecular Outflows

R. Padman, S.J. Bence & J.S. Richer	
1. Introduction	123
2. Properties of Individual Outflows	124
2.1 L1551-IRS5 as an Archetype?	124
2.2 RNO 43: A Jet-Like Outflow	126
3. Properties of the Ensemble	127
3.1 Statistics	127
3.2 Implications of Jet-Driven Models	129
3.3 Implications of Large Scale Outflows	130
4. Outflow Evolution: Where did L 43 come from?	135
5. Conclusion	136
5.1 Outstanding Problems	136
5.2 Further Work	137

The Molecular Outflow and CO Bullets in HH 111

J. Cernicharo, R. Neri & B. Reipurth	
1. Introduction	141
2. The HH 111 System	143
3. The Low Velocity Outflow	145
4. The High Velocity Gas Along the Herbig-Haro Jet	. 147
5. The High Velocity Gas at the End of the Herbig-Haro Jet	147
6. The High Velocity Gas Further Away: the CO Bullets	150
7. Molecular Outflows and Herbig-Haro Jets	150

Shock Chemistry in Bipolar Molecular Outflows

R. Bachiller & M. Pérez Gutiérrez	
1. Introduction	153
2. Outflows from Class 0 Protostars	154
3. L 1157-mm as an Example of Class 0 Source	155
4. The CO Bipolar Outflow in L 1157	155
5. A Chemical Survey of the L 1157 Outflow	157
6. Spatial Distribution of Different Molecular Species in L 1157	159
7. Chemical Processes	161

Models of Bipolar Molecular Outflows S. Cabrit. A.C. Raga & F. Gueth

1. Introduction 163 2. Molecular Shells driven by Wide-Angle Winds 164 2.1 Radially Expanding Momentum-Driven Shells 165 2.2 Steady Wind-Blown Cavities 167 2.3 Numerical Simulations 167 3. Steady-State Filled Flows 168 3.1 Turbulent Mixing-Layers 168 3.2 Global Infall-Outflow Pattern 169 4. Jet-Driven Bow Shocks 170 4.1 General Properties of Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177	S. Caorit, A.C. Raga & F. Guetn	
2. Molecular Shells driven by Wide-Angle Winds 164 2.1 Radially Expanding Momentum-Driven Shells 165 2.2 Steady Wind-Blown Cavities 167 2.3 Numerical Simulations 167 3. Steady-State Filled Flows 168 3.1 Turbulent Mixing-Layers 168 3.2 Global Infall-Outflow Pattern 169 4. Jet-Driven Bow Shocks 170 4.1 General Properties of Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177	1. Introduction	. 163
2.1 Radially Expanding Momentum-Driven Shells1652.2 Steady Wind-Blown Cavities1672.3 Numerical Simulations1673. Steady-State Filled Flows1683.1 Turbulent Mixing-Layers1683.2 Global Infall-Outflow Pattern1694. Jet-Driven Bow Shocks1704.1 General Properties of Bow Shocks1704.2 Sideways Motions in Bow Shocks1724.3 Width and Collimation of Jet-Driven Bow Shocks1734.4 Effect of Jet Time Variability1744.4.1 Velocity Variability1754.4.2 Directional Variability1775. Conclusions177	2. Molecular Shells driven by Wide-Angle Winds	. 164
2.2 Steady Wind-Blown Cavities1672.3 Numerical Simulations1673. Steady-State Filled Flows1683.1 Turbulent Mixing-Layers1683.2 Global Infall-Outflow Pattern1694. Jet-Driven Bow Shocks1704.1 General Properties of Bow Shocks1704.2 Sideways Motions in Bow Shocks1724.3 Width and Collimation of Jet-Driven Bow Shocks1734.4 Effect of Jet Time Variability1744.4.1 Velocity Variability1754.4.2 Directional Variability1775. Conclusions177	2.1 Radially Expanding Momentum-Driven Shells	. 165
2.3 Numerical Simulations1673. Steady-State Filled Flows1683.1 Turbulent Mixing-Layers1683.2 Global Infall-Outflow Pattern1694. Jet-Driven Bow Shocks1704.1 General Properties of Bow Shocks1704.2 Sideways Motions in Bow Shocks1724.3 Width and Collimation of Jet-Driven Bow Shocks1734.4 Effect of Jet Time Variability1744.4.1 Velocity Variability1754.4.2 Directional Variability1775. Conclusions177	2.2 Steady Wind-Blown Cavities	167
3. Steady-State Filled Flows 168 3.1 Turbulent Mixing-Layers 168 3.2 Global Infall-Outflow Pattern 169 4. Jet-Driven Bow Shocks 170 4.1 General Properties of Bow Shocks 170 4.2 Sideways Motions in Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	2.3 Numerical Simulations	. 167
3.1 Turbulent Mixing-Layers 168 3.2 Global Infall-Outflow Pattern 169 4. Jet-Driven Bow Shocks 170 4.1 General Properties of Bow Shocks 170 4.2 Sideways Motions in Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	3. Steady-State Filled Flows	. 168
3.2 Global Infall-Outflow Pattern 169 4. Jet-Driven Bow Shocks 170 4.1 General Properties of Bow Shocks 170 4.2 Sideways Motions in Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	3.1 Turbulent Mixing-Layers	168
4. Jet-Driven Bow Shocks 170 4.1 General Properties of Bow Shocks 170 4.2 Sideways Motions in Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	3.2 Global Infall-Outflow Pattern	. 169
4.1 General Properties of Bow Shocks 170 4.2 Sideways Motions in Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	4. Jet-Driven Bow Shocks	170
4.2 Sideways Motions in Bow Shocks 172 4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	4.1 General Properties of Bow Shocks	170
4.3 Width and Collimation of Jet-Driven Bow Shocks 173 4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	4.2 Sideways Motions in Bow Shocks	172
4.4 Effect of Jet Time Variability 174 4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	4.3 Width and Collimation of Jet-Driven Bow Shocks	. 173
4.4.1 Velocity Variability 175 4.4.2 Directional Variability 177 5. Conclusions 177	4.4 Effect of Jet Time Variability	. 174
4.4.2 Directional Variability	4.4.1 Velocity Variability	. 175
5. Conclusions 177	4.4.2 Directional Variability	. 177
	5. Conclusions	177

The Physics of Molecular Shocks in YSO Outflows

D.J. Hollenbach

1. Introduction	181
2. Molecular Shock Physics	183
2.1 Shock Structure: J Shocks and C Shocks	184
2.2 The Wardle Instability of C Shocks	190
3. Applications	191
3.1 Aspects of the Two-Shock Picture	191
3.2 Jets and Wide Angle Winds	192
3.3 H ₂ O Masers Associated with YSOs	195

The Physical and Chemical Effects of C-Shocks in Molecular Outflows

G. Pineau des Forêts, D.R. Flower & J.-P. Chièze

1. Introduction	200
2. Non-Thermal Sputtering of Grains by Shocks in the Interstellar Medium .	200
2.1 Computed Sputtering Yields	201
2.2 C-Type Shocks in Dark Molecular Clouds	202
2.3 Numerical Simulations	204
3. The Temporal Evolution From J- to C-Type Shocks	207
4. Concluding Remarks	211

Herbig-Haro Objects as Searchlights for Dense Cloud Chemistry

S.D. Taylor

 Introduction Observations of Quiescent Emission Possible Explanations Alternative Model Discussion Relate 	213 214 215 217
5.1 Clumps in Molecular Outflows 5.2 Mantle Accretion Efficiency 5.3 Hot Core Analogy	220 221 221

III. THEORETICAL MODELS

Protostellar X-Rays, Jets, and Bipolar Outflows

T.II. Shu & II. Shung		
1. Introduction		. 225
2. Generalized X-Wind Model	1	. 226
3. Evidence from Protostellar X-Rays		. 229
4. Outline of Mathematical Formulation		. 230
5. Fixing the Free Functions		. 232
6. The Cold Limit		. 233
7. Asymptotic Collimation into Jets		. 233
8. Bipolar Molecular Outflows	••••••	. 236
9. Stability of Parsec Long Jets		. 236
10. Crushing the Magnetosphere?		. 237

Energetics, Collimation and Propagation of Galactic Protostellar Outflows

M. Camenzind

1. Introduction	241
2. Jet Formation	244
2.1 Jets as Collimated Disk Winds	244
2.2 Jets as Induced Stellar Winds	247

3. Rotation and Jet Energy	250
3.1 What drives the Acceleration?	250
3.2 The Light Cylinder of Rapidly Rotating Objects	252
3.3 Plasma Motion along Magnetic Flux-Tubes and Plasma Diagnostics .	252
4. Collimation of MHD Jets: Cylindrical Pinch Solutions	253
5. Propagation of MHD Jets: Knots as Internal Pinch Modes	255
6. Conclusions	257

Numerical Simulations of Jets from Accretion Disks

R.E. Pudritz & R. Ouyed

1. Introduction	259
2. Current Picture of Disk Winds	261
2.1 Numerical Simulations	263
3. Description of Our Model	263
4. Stationary Outflows	265
5. Episodic Outflow	268
6. Transition from Episodic to Stationary Flow	271
7. Conclusions	272

Asymptotic Structure of Rotating MHD Winds and Its Relation to Wind Boundary Conditions

J. Heyvaerts & C.A. Norman
1. Introduction
2. General Properties of Magnetized Rotating Winds
2.1 Representation of the Magnetic Field
2.2 Surface Functions
2.3 Alfvén Density and Radius 278
2.4 Transfield Equation
2.5 Criticality Equations
2.6 Alfvén Regularity Equation
3. The Asymptotic Transfield Equation
3.1 Asymptotic Hamilton-Jacobi Equation
3.2 Asymptotic Parabolic Solution
3.3 A Necessary Condition for Cylindrical Asymptotics
4. A Simplified Model 285
4.1 Description of the Model
4.2 Semi-Numerical Results for Confined Jets
4.3 Analytical Solution for Very Fast Rotators
5. Winds, Breezes and Asymptotics

Hydrodynamic Collimation of YSO Jets

A. Frank & G. Mellema

1. Introduction	291
2. Numerical Method	292
3. Results without Cooling	294
4. Results with Cooling	294
5. The Effect of Wind Variability	298
6. Connection to Observations	300
7. Conclusions	301

The Class 0 Outflow Hammered Out?

M.D. Smith, R. Völker, G. Suttner & H.W. Yorke	
1. Introduction	303
2. The Hammer Jet	304
3. Lobe Asymmetries	306
4. Tubular CO	308
5. Proper Motions	310
6. Conclusions	312

Numerical Simulations of Optical Knots in YSO Outflows

F. Rubini, S. Lorusso, C. Giovanardi & F. Leeuwin

1. Introduction	313
2. Non-Stationary Dynamics of Stellar Jets and Formation of Internal Shocks	315
3. Jet Parameters and Observational Constraints	316
4. The Model and the Numerical Code	317
4.1 Chemical Evolution and Related Energy Terms	317
4.2 Numerical Code	318
5. Numerical Results	318
6. Conclusions	320

Asymmetric Modes of the Kelvin-Helmholtz Instability in Protostellar Jets

J.M. Stone

1. Introduction	323
2. Problem Setup	324
3. Linear Analysis	326
4. Nonlinear Hydrodynamical Simulations	328
5. Summary	331

Kelvin-Helmholtz Instabilities and the Emission Knots in Herbig-Haro Jets

S.	Massaglia,	М.	Micono,	A .	Ferrari,	G.	Bodo	U	Ρ.	Rossi
----	------------	----	---------	------------	----------	----	------	---	----	-------

1.	Introduction			 	 335
2.	The Physical	Problem		 	 . 337
3.	Conclusions		•••••	 	 . 339

On the Energetics and Momentum Distribution of Bow Shocks and Colliding Winds

F.P. Wilkin, J. Cantó & A.C. Raga

1. Introduction	343
2. The Stellar Wind Bow Shock Model	345
3. Application to Jet Bow Shocks and Molecular Outflows?	348
4. Two Wind Collision in Binaries	351

TABLE OF CONTENTS

IV. DISKS, WINDS, AND MAGNETIC FIELDS

xiv

Hubble Space Telescope Imaging of the Disks and Jets Taurus Young Stellar Objects	of
K. Stapelfeldt, C.J. Burrows, J.E. Krist & the WFPC2 Science Team	
1. Introduction	355
2. Observations	356
3. Results for Point Sources with Adjacent Nebulosity	356
3.1 T Tauri	356
3.2 XZ Tauri	357
3.3 FS Tauri (Haro 6-5)	358
3.4 DG Tauri	358
3.5 GM Aurigae	358
3.6 SAO 76411A & HDE 283572	359
4. Results for Entirely Nebulous Objects	359
4.1 HL 1auri	359
$4.2 \text{ Iff } 30 \dots 10^{-1} \text{ ff}$	359
4.5 FS Tauri B (Haro 0-5D)	301
5 Discussion	362
6 Future Prospects	363
	000
Disks and Outflows as seen from the IRAM Interferometer	er
S. Guilloteau, A. Dutrey & F. Gueth	
1. Introduction	365
2. Outflows from Class 0 Objects	366
2.1 L 1448	366
2.2 L 1157	367
2.3 HH 211	369
2.4 Conclusions	371
3. Intalling Envelopes?	371
4. Disks around 1 lauri Stars	372
4.1 Dust Disks	312
4.2 Gas Disks Minematics \dots	376
4.4 Disk Masses from Dust	377
4.5 Disk Masses from Gas	378
5. Conclusions	379
NMA Imaging of Envelopes and Disks around Low Mass Pr tostars and T Tauri Stars	ro-
Y Kitamura M Saito B Kawabe & K Sunada	
1 Background	200
2 Our Survey	381
3 Results and Discussion	384
3.1 Disklike Envelopes around Typical Protostars R335 and L1551 IRS5	384
3.2 New Scenario for Evolution of Disklike Envelopes around Protostars .	3 85

3.	Compact Disks around Classical T Tauri Stars	388
4. Ou	r Future Studies	389

The Observational Evidence for Accretion

1.	Introduction	391
2.	FU Ori Accretion	393
3.	T Tauri Accretion	396
4.	Implications for Magnetospheres and Wind Ejection	398

The Radiative Impact of FU Orionis Outbursts on Protostellar Envelopes

K.R. Bell & K.M. Chick

1. Introduction	407
2. FU Orionis Outbursts	409
3. Method	412
4. Results	412
5. Discussion	414
6. Future Work	415

Properties of the Winds of T Tauri Stars

N. Calve

1. Introduction	417
2. Wind Indicators. Separating Magnetosphere and Wind	418
3. Origin of the Wind	421
3.1 The FU Ori Wind	422
3.2 The Region of Origin of TTS Winds	422
3.3 Forbidden Lines. Extended Region	425
4. Mass Loss Rates	427
4.1 Forbidden Lines	427
4.2 Permitted Lines	429
5. Summary and Conclusions	431

Magnetospherically Mediated Accretion in Classical T Tauri Stars

S. Edwards

1. Introduction	433
2. Observational Evidence for Magnetosperic Accretion	435
2.1 Support for Funnel Flows	435
2.2 Challenges to Funnel Flows	436
3. Permitted Metallic Lines as Funnel Flow Diagnostics?	437
4. Discussion and Future Prospects	440

Jets, Disk Winds, and Warm Disk Coronae in Classical T Tauri Stars

J. Kwan	
1. Introduction	443
2. Two Components of Mass Ejection: a Jet and a Disk Wind	444
3. A Warm Disk Corona	448
3.1 [OI] $\lambda\lambda 6300,5577$ Emission	448
3.2 Balmer Line Central Absorption	450
4. Discussion	452

Thermal Structure of Magnetic Funnel Flows

S.C. Martin

1.	Introduction	455
2.	Gas Dynamics	456
3.	Gas Thermodynamics	457
4.	Observational Implications	458
5.	Conclusions	461

Magnetic Fields of T Tauri Stars

1. Introduction	465
2. Methods to Measure Magnetic Fields	467
2.1 Changes of the Equivalent Width	467
2.2 The Line-Broadening Method	468
3. Selection Criteria of the Objects	468
4. Measurements of the Magnetic Field Strength	470
5. Conclusions	472
6. Outlook	473

Evidence for Magnetic Fields in the Outflow from T Tau S

T.P.	Ray,	T.W.B.	Muxlow,	D.J.Axon,	Α.	Brown,	D. Corcoran,	J.E.	Dyson	& R.
Mun	dt									
1. In	trodue	ction and	d Observa	tional Deta	ils			•••••		. 476

V. LOW- AND HIGH-MASS PROTOSTARS AND THEIR ENVIRONMENT

The Evolution of Flows and Protostars

P. André

1. Introduction	483
1.1 Tracking YSO Evolution	483
1.2 Defining Properties of Class 0 Protostars	485
2. Evidence for a Decline of Outflow/Inflow Power with Time	485
2.1 Interpretation of the Observed Outflow Evolution	487

3. Link to the Initial Conditions of Star Formation	488
4. Suggested Collapse Scenario	489
4.1 Accretion Luminosities of Class 0 and Class I Sources	491
4.2 Differences between Ophiuchus and Taurus	492
5. Conclusions	493

Circumstellar Molecular Envelopes

G.A. Fuller & E.F. Ladd

1. Introduction	495
2. Rare Species of CO as Probes	497
3. Mass of Circumstellar Material 4	498
4. The Temperature of the Circumstellar Material 4	499
5. The Velocity Dispersion of the Circumstellar Material	500
6. Variation of Column Density with T _{bol}	501
6.1 Outflow	501
6.2 Infall 5	503
6.3 Outflow and Infall? 5	504
7. The Structure of the Circumstellar Environment 5	505

Millimeter Interferometry of Class 0 Sources: Rotation and Infall Towards L1448N

S. Iereoey & D.L. Paage	3.	Terebey	ช	D.L.	Padgett	1
-------------------------	----	---------	---	------	---------	---

1. Introduction	1	 507
2. Observations	IS	 508
3. Results		 508
3.1 Overvie	ew of L1448 Cloud Core	 508
3.2 Embedd	ded Protostellar Sources	 509
3.3 Fragmen	ntation and Rotation	 510
3.4 The 200	00 AU Protobinary	 510
3.5 Infall		 511
4. Conclusions	• • • • • • • • • • • • • • • • • • • •	 512

Water Masers toward Low-Luminosity Young Stellar Objects

M.J. Claussen, K.B. Marvel, H.A. Wootten & B.A. Wilking

1. Introduction	515
2. Why Study Water Masers toward YSOs?	516
3. Single Antenna Water Maser Monitoring Survey	517
4. Assorted VLA Observations	518
5. VLBA Observations of Water Masers in IRAS05413-0104	520
6. Summary	522

Massive Star Formation: Observational Constraints

$E. \ Churchwell$

1. Introduction	525
2. Stellar Luminosity and Outflow Properties	525
3. The Frequency of Massive Star Outflows	526
4. Outflow Properties	527
5. Interferometric Observations	529

6. Origin of the Mass in Massive Outflows	530
6.1 Accumulated Stellar Winds	531
6.2 Entrained ISM in Stellar Bipolar Jets	531
6.3 Swept-Up ISM	532
6.4 Accretion Driven Outflows	533
7. Summary	535

Low-Mass Versus High-Mass Star Formation

T.W. Hartquist & J.E. Dyson

1. Introduction	537
2. The Scale of Response	538
3. Triggering Clump or Core Collapse	540
4. Ways in Which Star Formation May Hinder Further Star Formation	542
5. Global Properties of Mass-Loaded Flows in Clumpy Star Forming Regie	ons 546
6. Conclusions	547

Orion Proplyds and The Eagle's Eggs

M.J. McCaughrean

1. Introduction	551
2. Circumstellar Disks in the Orion Nebula	552
2.1 Detection via IR Excess	552
2.2 Detection as Ionized Proplyds	553
2.3 Detection as Silhouettes	554
3. Star Formation in the M 16 Elephant Trunks	555
4. Summary and Prospects	559

Two-Wind Interaction Models of the Proplyds in the Orion Nebula

W.J. Henney & S.J. Arthur

1. Introduction	561
2. Confinement Mechanisms - Radiation vs. Ram Pressure	562
3. Analytic Two-Wind Models	564
4. Comparison with Observations	565
5. Hydrodynamical Simulations	566
6. Discussion and Speculation	568

Conference Summary

A.C. Raga

1. Introduction	571
2. Papers Presented at the Meeting	572
3. Observational Results	573
4. Theoretical Results	576
5. Final Speculations	577
List of Participants	589
List of Poster Papers	593

PREFACE

Herbig-Haro objects were discovered 50 years ago, and during this half century they have developed from being mysterious small nebulae to becoming an important phenomenon in star formation. Indeed, HH flows are now recognized not only as fascinating astrophysical laboratories involving shock physics and chemistry, hydrodynamics and radiation processes, but it has gradually been realized that HH flows hold essential clues to the birth and early evolution of low mass stars.

IAU Symposium No. 182 on Herbig-Haro Flows and the Birth of Low Mass Stars were held from January 20 to 24, 1997 in Chamonix in the french alps. A total of 178 researchers from 26 countries met to discuss our present level of understanding of Herbig-Haro flows and their relation to disk accretion events and T Tauri winds and other outflow phenomena like molecular outflows, embedded molecular hydrogen flows and radio jets. The present book contains the manuscripts from the oral contributions of the symposium. The poster papers were printed in a separate volume Low Mass Star Formation – from Infall to Outflow, edited by Fabien Malbet and Alain Castets, which was distributed at the beginning of the meeting. Together these two books document the vigorous state and the scientific appeal which research into Herbig-Haro flows and related issues in star formation enjoys today, observationally as well as theoretically.

To organize a major symposium like the present one requires the generous support of many people and organisations. We gratefully acknowledge the financial support of the International Astronomical Union, the Grenoble Observatory and its Astrophysics Laboratory (LAOG), the Institute for Millimetric Radioastronomy (IRAM), IBM, the Joseph Fourier University at Grenoble (UJF), the National Center for Scientific Research (CNRS), the French Ministry for Foreign Affairs (MAE), the regional (Région Rhône-Alpes) and local authorities (Conseil Général de Haute-Savoie and Mairie de Chamonix-Mont Blanc). The practical support provided by the Chamonix Tourist Office and the Grenoble Observatory was indispensable. Finally, the hard work of the Local and Scientific Organizing Committees contributed greatly to the success of the Symposium. To all, our warmest thanks.

Bo Reipurth and Claude Bertout

xix

Scientific Organizing Committee

Claude Bertout (Co-chair), Institut d'Astrophysique de Paris, France Karl-Heinz Böhm, University of Washington, Seattle, USA Nuria Calvet, Centro de Investigaciones de Astronomia, Mérida, Venezuela Max Camenzind, Landessternwarte Königstuhl, Heidelberg, Germany John Dyson, The University of Leeds, England Suzan Edwards, Smith College, Northampton, USA George Herbig, Institute for Astronomy, Honolulu, USA Alex Raga, Instituto de Astronomia, UNAM, México D.F., México Bo Reipurth (Co-chair), European Southern Observatory, Santiago, Chile Luis Felipe Rodríguez, Instituto de Astronomia, UNAM, México D.F., México

Local Organizing Committee

Alain Castets (Chair), Observatoire de Grenoble, France Fabien Malbet, Observatoire de Grenoble, France Françoise Bouillet, Observatoire de Grenoble, France