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1. Let f(x) be a real analytic function of the real variable 
x and <x a simple root of the equation f(x) = 0. It is well known 
that a function ^(x) can be associated with the equation in many-
different ways such that 

(i) ot i s a root of the equation ^(x) = x, i .e . cc is a fixed 
point (invariant point) of the function #(x); 

(ii) \<p'(ot)\ < 1 . 

Then it is not difficult to prove that the iteration sequence 

x1 = f (xQ) , xx = p(xf) , . . . , x^= f&n-i ), . . . 
will have the root a as its limit if the initial term x0 is chosen 
"not too far11 from oc. ; this means that xQ should be a reasonable 
approximation to the root, 

The speed of the convergence of the iteration sequence 
will depend roughly on the magnitude of the derivative ç?*(x) for 
x near to ot; ; it will be the greater the smaller jy!(x)J is . Thus 
it is suggested that the condition (ii) should be replaced by 

(i i i) f »(*) = 0 , 

and also that convergence would be further improved by postulat­
ing 

(iv) y» (*) = 0 , . . . , <p(k\cc) = 0 . 

All these conditions can be satisfied. 
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A simple and for many numer ica l purposes suitable choice 
of a>(x) is Newton-Raphson !s 

f(x) 
x — f'(x) 

which satisfies the condition (iii). The convergence of the co r ­
responding i terat ion is thoroughly d iscussed by Ostrowski [$>J. 
It may be considered as the f i rs t in a s e r i e s of formulae which 
successively satisfy the conditions (iv) for increasing na tura l 
k (c f . [ l j ) . 

An immediate improvement of Newton-Raphson^ formula 
is given by 

<p(x) = x -
f(x> + f(x>2 h(x) (cf. ftj , p . 268) 
f'(x) f»(x) 

where h(x) is an a rb i t r a ry function, finite at x = oc, which can 
be adapted to the conditions (iv); thus the above mentioned s e r i e s 
of formulae can be obtained. This s e r i e s has the remarkab le 
proper ty that each formula is obtained from the preceding one 
by simply adding one more t e r m without a l tera t ions in the e s t ab ­
lished t e r m s . 

If now f (x) i s a polynomial one might t ry to impose on <p{x) 
the condition 

(v) a>(x) is a polynomial. 

C. Domb [3j and A. S. Householder [7] , [8] have shown that 
in addition to the conditions (i), (iii), (iv) also this condition 
(v) can be satisfied. In the present note a polynomial #(x) will 
be constructed by another method and this #(x) will be studied 
in some special c a s e s . 

2. It may be assumed that the given polynomial f{x) has 
only simple roo ts . This is no res t r i c t ion because every poly­
nomial with multiple roots can be turned into one having the same 
roots simple by an e lementary division p r o c e s s . Thus the g rea t ­
est common divisor (f(x), f!(x)) = 1. Therefore two polynomials 
h(x) and h1 (x) can be found such that 

(1) hf(x)f(x)—h(x)£"(x) = 1 

98 

https://doi.org/10.4153/CMB-1959-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1959-015-4


so that f(x) i s a divisor of 1 + h(x) f !{x). 

Now let 

(2) <p(x) = x + f(x)h(x) . 

This is a polynomial and <p{oc) = « . Moreover 

(3) ^'(x) = 1 + f !(x)h(x) + f(x)h'(x) 

and it is evident that f(x) is a divisor of <fx{x)\ hence û>f(a) = 0. 
Thus <p(x) satisfies the conditions (i), (iii) and (v). 

It may be pointed out that the polynomial h(x) i s not uni­
quely defined; therefore it can be adapted to various additional 
conditions as will be discussed la ter on. The most general solu­
tion of (1) is given by the polynomials 

(4) H(x) = h(x) + p(x)f(x) , H^x) = h,(x) + p(x)fHx) 

where p(x) is an a rb i t r a ry polynomial. 

So it r emains to determine one special solution h(x), h<(x) 
of (1). This can always be done by means of the euclidean a l ­
gorithm which, however, will often be cumbersome with regard 
to numer ica l computation. The s implest method to be applied 
in numer ica l cases will be the method of unknown coefficients. 
It is readi ly seen that if f(x) has the degree m , then the poly­
nomials h(x), h1(x) of leas t possible degree have their degrees 
not g rea te r than m - 1 and m - 2 respect ively. 

The method may be ca r r i ed through for a cubic polynomial 

f(x) = a 0 x 3 + a^x2 + a^x + a3 (a0 4 0). 

It is closely re la ted to Sylvester1 s elimination method for the 
computation of the discr iminant of f(x). 

Now let 

h(x) = b 0 x* + bjX + b^ , h j (x) = cQx + cf 

F o r the five unknown coefficients bQ , b x , b z , cQ , c x one obtains 

f rom (1) a sys tem of five l inear equations the f i rs t of which is 
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c0 = 3bo ; 

making use of this relation in the other equations one obtains 
the following four equations in the four unknowns bQ, b l f b>2, c1 ; 

a^b0 - 3a0b1 + 3L0CI = 0 

2azb0 - 2a1b-|- 3ac,b;l + a-j c^ =0 

3a3bQ - azbi- 2a1b2 + a2c1 =0 

- a2b2 + a3C-i = 1 . 

Their determinant equals 

- 4 = 27a£ a3
x — lSa^aj a ra3 + 4a/ a3 — af

4 a^ + 4a* a2
3 

where â is the discriminant of f(x); and A 4 0 because f(x) has 
only simple roots. The unknown coefficients are given by 

A*o = 2 ao(3 ao a2.- a iX> 

Abf = 7a0af a2 — 9a<̂  a3 — 2 a* 

Abjt = 4a0a^ — 3a0al a3 — aj2- ax 

A-cf = L5a0af a2 — 4a/ — 27a<£ a3 . 

These expressions may be useful for some numerical 
computations, but they && nofseem to lend themselves for the 
construction u± a practical general formula. They become much 
simpler in the case that a0 = 1, af = 0 ; then 

^)(x) = -—-{b^x*— 9a3x* + 10a2
2x3 — 3a2a3x

2- — 36a3
xx + 4a£ aô ) 

Û - -27a3
2* - 4a* 

which substantially coincides with Domb's formula (36) in \z\ . 
For a numerical example we refer to this paper. 

3. A faster convergence in the iteration will be obtained 
if one or more of the conditions (iv) is imposed on the polynomial 
#(x). Indeed putting 
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(5) £ (x) = x + H(x)f{x) = x + h(x) f(x) + p(x)f(x)z 

one can choose p(x) so that not only §'{OL) - 0, but also $"(a.) = 0. 
By differentiating (5) 

£'(x) = 1 + h(x)f'(x) + f(x)(h'(x) + 2p(x)f'(x) + p'(x)f(x)) 

= f w ( h , W + h'(x) + 2p(x)f(x) + p'(x)f{x)) . 

In order to have <Jf(x) divisible by f(x) it is only neces sa ry to 
choose p(x) so that 

(6) h, (x) + h'(x) + 2p(x)f'(x) = q(x)f(x) 

with a polynomial q(x). With regard to (1) this condition will be 
satisfied if 

p(x) = i h(x) (h>(x) + h , (xj) , q(x) = h, <x) (h>(x) + h, (x)j 

and by (4) 

H(x) = h(x) + | h(x) (h'(x) + h1 (x)) f{x) 

= h(x) ( l + i ( l + h(x)f'(x)J + i h'(x)f(x)j 

= Ah(x)(3 + ^ _ (h(x)f(x))j 

Herewith (5) r ep resen t s the second in a s e r i e s of formulae for 
polynomial i terat ion. 

This could further be improved by choosing instead of p(x) 
and q(x) another solution of (6) involving an a rb i t r a ry polynomial 
to be adapted to the condition <&m(oc) = 0 , e tc . It has , however, 
often been pointed out that the gain in an increased speed of the 
convergence of the iteration will be set off by the g rea te r amount 
of computational work required in the application of the higher 
degree formulae. They will therefore not be derived. Cf.[i]}fr] 

m. 
4. The formulae (2) and (5) will now be applied to the 

equation 
f (x) = x m « a , a > 0 . 

It i s readi ly seen that in this case the polynomials 
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h(x) = " ^ T • hi(x) = - I 
m a a 

will be those of lowest degree to solve equation (1); thus for the 
i terat ion, according to (2). 

(7) fm(x) = 
m + 1 x - J _ x rn+ i 

m ma 
This formula has been given by Har t ree [s] and by Domb [3]. 

To give an idea of i ts numer ica l quality let m = 3 

(70 fcW = f <4-F> • 

For a = 750 we find, beginning with xQ = 9 : 

x , = <p3(9) = 9.084 , x^ = f3 (9.084) = 9.0856065 

which is too large in the sixth decimal because (9.084)4 
has 

been computed as (82.519)^ instead of (82. 5 19056)2 thus showing 
the disturbing effect on the i terat ion of a relat ively smal l devia­
tion. The next step, however, puts m a t t e r s right: 

x 3 = £(9.0856065) = 9 .0856030 . . . 

which is the accurate value of oc = \fl5Q in all the given f igures . 

Using (5) one obtains an improved formula for the i terat ion 
approximating a = ^^/ai , v iz . 

(8) § (x) = x / (2m + l)(m + 1) 2m 4- 1 YÏY11 m + 1 x Z m ] 
ï&\ 2 ~ I + 2a* / 

In par t icu lar 

$ (x) = * fl4 - I x 3 + h_ x6 
** 9 \ a a^ 

and for a = 750 , XQ = 9 : 

x f = §ô(9) = 9.085568, x x = <£3(x f) = 9.08560295.. 

Finally we consider a seemingly t r iv ia l example where 
m = 1: 

f(x) = aox - 1 , aQ > 0 , 
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where the function j?(x) will define an i teration approximating the 
number «x = a0"** . In this case the two polynomials h(x) = - a ^ f , 
hf (x) = 0 formally satisfy (1); but then the constant function 
o?(x) = x — aj"' (a0x — 1) = ao"1 does not present a useful formula. 

But 
h(x) = - x , h,(x) = - 1 

with r ega rd to (2) yields 

(9) ft(x) = 2x - aQx* 

(cf. Har t ree [s] , (18), Householder [é] , p . 14). 

Choosing p(x) = x we obtain by (4) 

H(x) = a 0 x 2 — 2x 

and thus by (5) 

(10) § f (x) = a0* x^ - 3a0x* + 3x . 

These formulae (9) and (10) a re certainly not of great 
prac t ica l importance; but they will give instructive examples 
in the following discussion. 

5. The domain of convergence of the i terat ion. Fo r all 
applications of the i terat ion formulae it is important to know 
where the initial value x 0 of the i terat ion sequence can be chosen 
to guarantee convergence of the sequence. This question is easy 
to decide by a look at a sketch of the graph of the function ç*(x) ~ y 
in a ca r tes ian coordinate sys tem. General theorems in this r e ­
gard can be formulated (cf. £Z] , [4], LlO] ) i they a r e , however, 
not expedient in the present c a se s . 

We begin with the i terat ive approximation of <x = a<J* ; with 
(9) in the form 

^ ( x ) = —a0(x — <x) + a. 
and 

#(0) = 0 , #(oc) = OL , f/(2cc) = 0 

?/(0) - 2 , f/(cc) = 0 , fjiZoL) = - 2 
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it is easy to sketch the graph of y = (pf (x) (fig 1, p . 105). It cuts 
the straight line y = x at two points, corresponding to the two 
fixed points of the function ^f(x), viz. x = 0 and x = oc . The 
construction ca r r i ed out under the graph makes it c lear that 
every sequence x ^ = <p% (xv,„1 ) (n = 1, 2, . . . ) beginning with an 
x 0 within the open interval 0 < x 0 CZOL will have oc as its l imi t . 
Therefore oc is said to be an at tract ive fixed point of #>f(x). 
Indeed we note that for 0 < xQ < ot the sequence x n is monotonie 
increasing. It is bounded above by oc and therefore it has a 
l imit . But this l imit mus t be a fixed point of ^(x) ; since oc is 
a fixed point and there is no other fixed point between 0 and oc, 
it follows that lim x ^ = ot . If oc'< x 0 <. 2oc then 0 < f ((x 0) = 
x t < <x ; therefore by using x 1 instead of xQ it follows that also 
in this case x is increasing and has ot as l imi t . We shall not 
repeat this argument in la ter examples when it will be used in 
slightly varied form. 

If x 0 <C 0 or xQ > 2oc then xn—> - oo as n —*• oo . The point 
x = 0 being never approached by a sequence x n is said to be a 
repulsive fixed point of ^ f(x). 

Similarly (10) may be wri t ten in the form 

# f(x) = a0Mx - * ) * + <*. 

Fig . 2, p,10 5, shows a sketch of the graph of this function. It 
cuts the line y = x in three points, corresponding to the three 
fixed points x = 0, x = <x, x = 2 a of #,(x). Of these only x = cc 
proves to be at t ract ive and construction and argument employed 
in the discussion above shows again that for x 0 within the open 
interval (0, 2ot) the sequence x ^ = ?f (x^..,) is convergent and 
has oc as l imit . It is increasing and approaching oc from the 
left side if 0 < xQ < <* , decreasing if oc < x 0 «c 2 a . The points 
0 and 2a, a re repulsive fixed points and for all XQ < 0 and > 2oc 
the sequence x n tends to —<ao and +oo respect ively as n—* oo . 

It should be noticed that the convergence interval will be 
the smal le r the l a rge r a 0 i s . This reflects on the r e s t r i c t ed 
usefulness of the formulae (9) and (10). 

6. Convergence of the root i terat ion defined by (7). In 
these cases the situation turns out to be more complicated; e s ­
sentially different conditions will be found for even and for odd 
values of m . As prototype of the case of an even m we consider 
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Fig. 1. 

Fig. 2. 
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the function 
m (x) = J L x - - i - x 3 , a > 0 , < x = v / a > O e TZ 2 2a 

The graph cuts the x— axis at three points, viz. 

x = 0 and x = ± £0 =± v'Soc (cf. fig. 3) . 

It has its relative maximum and minimum at x = «. and x = — <X 
respectively and its point., of inflection at x = 0 where its gra­
dient equals ^'(0) = 3/2. It cuts the line y = x in three points 
corresponding to the three fixed points x = — < x , x = 0 , x = < # 
of which ot and —a are seen to be attractive. These data deter­
mine the shape of the graph as shown in fig. 3, p 107. 

It is clear that for 0 «< x0 <£ <x\/3 = $0 the iteration 
sequence xn = f^i^n-i) n a s ^ a s its limit; it approaches oc al­
ways from the left side. There is, however, an infinity of other 
entirely disjoint open convergence intervals consisting of points 
x0 for which xn —* °̂  . In order to describe them let 

y(y) = P:ff{y> (for jy[ > (b0 = <% SÏ ) 

be the inverse function of ^(x) which for the given ranges of 
the variable y is uniquely defined. Put 

Pi =Y(-/3o) > A = y ( - A i ) > P* = r(-Pz) . • • • * 

Then the sequence xn will tend to oc if x0 is a point of any one of 
the following open intervals 

h ^ «>. /30), ( — /*,, -/3Q), </3i,/3*), ( - £ 3 , - /32 ) , (fa, fa), . . . 

Indeed, if —y37 < x0 < —/3Q > then x1 = <p (̂x0) is a point 
of the interval (0, /3Q), so that the sequence xn tends to oC and 
0 < xn^oC if n > 2. Similarly if xQ lies in ( /3-j, jSz), then 
— /3-i < x>, < —/30 so that xz lies in (0, /30), etc. 

Further it is readily seen mat if xQ lies in one ol tne com­
plementary open intervals 

I - : ( -A, , 0), [pQ,pi ), (-y3a, -yS,), {/*z, fa), . . . 

tne sequence xn tends to — ccfrom the rignt sicie. These intervals 
separate the intervals of convergence to + oc. Because of the in­
creasing slope of the graph, the length of the intervals (/3^, (J^r), 
( — £*VM » — £«,) tends rapidly to zero as n increases; neverthe­
less the two sets Lj. and I_ cover the whole x—axis. 
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Fig. 3. 

107 

https://doi.org/10.4153/CMB-1959-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1959-015-4


The separating points 0, /30 , — /3d , (St , — ^ , . . . , |Jfc_, , 
— ^*~t a re the rea l roots (zeros) of the k t imes i te ra ted func­
tion f*(x) where 

ç^(x) - <pz(x), Ç#x) = <fr(q\(x) ) , . . . , <£*(x) = (pz{ (pz
k~'(*) )• 

Indeed 

9/(i/3o) = 9*<°> = °> <pfefa) = ^(+/30) = 0, . . . . 
Also note that if xQ coincides with any one of the fi; , then 
x n —> 0. Thus although 0 is a repulsive fixed point of fzM 
in the sense of the definition, there a r e never the less i terat ion 
sequences (with a lmost al l t e r m s equal to zero) having 0 as l imit . 

Now it is not difficult to show that for the function ^ ( x ) 
of (7) with any even m = 2r > 0 the general appearance of the 
graph is the same as in the case m = 2. In fact %J^) has 
exactly three r ea l ze ros : x = 0 and x = ± .@0 - ±(2r + 1) Zr oc , 
where oc, . The graph cuts the line y = x in three points 
corresponding to the three r ea l fixed points x = 0, x = £ oc of 
<j?ir(x), and it has a point of inflexion at 0. Fu r the r the points 
fi^- <p " i (— A-n-i) separa te the different convergence in tervals 
in the same way as in the case of m = 2. Thus the resul t of the 
preceding discussion can be summar ized as follows. The l imit 
function 

as sumes only three different value s for all r ea l value s of the 
variable x : 

f oc if x 6 l f 

f j x ) = ] ° i* x = ± 0 n (n= 0 , 1 , 2 , . . . ) 

V^-*, if x 6 I— . 

F o r all prac t ica l computations it s eems obvious that xQ 

should be selected within the interval (0, cc ) . 

Regarding an odd value of m consider f i rs t the value 
m = 3. The function ç\(x) as given by (71) has i ts r ea l zeros 
at x = 0 and x = V?<* > 0 if oc r ep resen t s the r ea l third root 
of a. The graph passes through 0 with the slope 4 /3 and cuts 
the line y = x in two points, corresponding to the two rea l fixed 
points 0 and oc of f^(x); there is no point of inflexion. The max i ­
mum is reached for x = oc. After these indications a sketch of 
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the curve can easi ly be drawn; it shows that the only convergence 
interval of the i terat ion is the open interval (0, ifëoc). 

Similarly it is seen that the i teration with <jp^_/x) has the 
interval (0, ft ) , P = (2r),/2r~,<x , oc = ^lr'1 , as i ts domain of 
convergence. 

7. By the same method the convergence of the i terat ion 
with the function $m(x) of (8) can be investigated. This function 
has only the one r ea l zero x = 0. Fo r the further discussion we 
distinguish again between even and odd values of m . 

If m = 2r the graph cuts the line y = x in five points 

x = 0, x = ± c c = ± *ya , x = ± CL. = +( 3 m + 1 ) oc 
~~V m + 1 / 

corresponding to the five r e a l fixed points of ^j(x) , of which 
+ ot and — oc a re at t ract ive and the others repulsive because 

$4(±a,) = 0, <Ê (+<*f) > 1, §^{0) > 1. The function has no 
ext remum; it has two stat ionary points of inflexion at x = ± oc 
and one other point of inflexion at x = 0. To guarantee converg­
ence of the sequence x n = ^ ( x ^ - , ) to the l imit ct> 0 one has 
to choose xQ in the interval (0, OL1 ) ; for x 0 in (— ccf , 0) the 
sequence tends to — oc. F o r al l other x 0 > Co and x 0 < —oc it 
tends to +oo and — o° respect ively. 

If m = 2r + 1 the graph cuts the line y = x in the three 
points x = 0, x = oc , x = ocA of which only oc r ep resen t s an 
at t ract ive fixed point. F o r convergence of x n to oc one has to 
choose xQ in the interval (0, oct ) . 
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