NOTES ON NUMERICAL ANALYSIS
I. POLYNOMIAL ITERATION

Hans Schwerdtfeger
(received February 9, 1959)

1. Let f(x) be a real analytic function of the real variable
x and « a simple root of the equation f(x) = 0. It is well known
that a function ¢@(x) can be associated with the equation in many
different ways such that
(i) « is a root of the equation p(x) = x, i.e. « is a fixed
point (invariant point) of the function ¢(x);

(i) lple)] < 1.
Then it is not difficult to prove that the iteration sequence

xg = Plxg) 5 x2= o) Hoees X = Plxpog),. ..
will have the root a as its limit if the initial term x4 is chosen
""not too far! from a« ; this means that Xq should be a reasonable
approximation to the root,

The speed of the convergence of the iteration sequence
will depend roughly on the magnitude of the derivative ¢'(x) for

x near to « ; it will be the greater the smaller |[¢'(x)] is. Thus
it is suggested that the condition (ii) should be replaced by

(iii) pilx) =0,
and also that convergence would be further improved by postulat-
ing

(iv) g"(x)=0, ..., ¢Mx)=0.

All these conditions can be satisfied.,
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A simple and for many numerical purposes‘ suitable choice
of ?(x) is Newton-Raphson's

f(x)
*T i ®

which satisfies the condition (iii). The convergence of the cor-
responding iteration is thoroughly discussed by Ostrowski [9]
It may be considered as the first in a series of formulae which
successively satisfy the conditions (iv) for increasing natural

k (cf. [1]).

An immediate improvement of Newton-Raphson's formula
is given by

(x) = x — &), £ hx) (cf. [1], p.268)
7 fix)  f'(x)

where h(x) is an arbitrary function, finite at x = «, which can
be adapted to the conditions (iv); thus the above mentioned series
of formulae can be obtained. This series has the remarkable
property that each formula is obtained from the preceding one
by simply adding one more term without alterations in the estab-
lished terms.

If now f(x) is a polynomial one might try to impose on ?(x)
the condition

(v) ?(x) is a polynomial.

C. Domb [3] and A.S. Householder [7], [8] have shown that
in addition to the conditions (i), (iii), (iv) also this condition
(v) can be satisfied. In the present note a polynomial px) will
be constructed by another method and this ?(x) will be studied
in some special cases.

2. It may be assumed that the given polynomial f(x) has
only simple roots. This is no restriction because every poly-
nomial with multiple roots can be turned into one having the same
roots simple by an elementary division process. Thus the great-
est common divisor (f(x), f'(x)) = 1. Therefore two polynomials
h(x) and hy(x) can be found such that

(1) hy (x)f(x) =h(x)f'(x) = 1
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so that f(x) is a divisor of 1 + h(x) f(x).

Now let
(2) plx) = x + f(x)h(x) .
This is a polynomial and ¢(a) =« . Moreover
(3) g'(x) = 1+ £'(x)h(x) + £(x)h'(x)

and it is evident that f(x) is a divisor of ¢'(x); hence ?'(a) = 0.
Thus ft(x) satisfies the conditions (i), (iii) and (v).

It may be pointed out that the polynomial h(x) is not uni-
quely defined; therefore it can be adapted to various additional
conditions as will be discussed later on. The most general solu-
tion of (1) is given by the polynomials

(4) H(x) = h(x) + p(x)f(x) , H,(x) = h,(x) + p(x)f'(x)
where p(x) is an arbitrary polynomial.

So it remains to determine one special solution h(x), h¢(x)
of (1). This can always be done by means of the euclidean al-
gorithm which, however, will often be cumbersome with regard
to numerical computation. The simplest method to be applied
in numerical cases will be the method of unknown coefficients.
It is readily seen that if f(x) has the degree m, then the poly-
nomials h(x), h,(x) of least possible degree have their degrees
not greater than m - 1 and m - 2 respectively.

The method may be carried through for a cubic polynomial

f(x) = agx> + a“,‘x2 +a,x+ay (ag #0).

It is closely related to Sylvester's elimination method for the
computation of the discriminant of f(x).

Now let
h(X) = boxz- + b,X + b2. , h1 (x) = cox + c'

For the five unknown coefficients by, by, by, ¢4, c;one obtains

from (1) a system of five linear equations the first of which is
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Co = 3bo N

making use of this relation in the other equations one obtains
the following four equations in the four unknowns b, b,, b,, ¢; ;

abo - 3agby + apgcy =0
2a;bg - 2a4bq- 3apby + a3¢4 =0
3a3bp - azbi- 2a4by; + azcy =0
- azby tazcq =1
Their determinant equals
-4 =27al a?—~18a,a,2a5a; + 4a’ a, —ata. + 4a,a,;

where 4 is the discriminant of f(x); and 4 # 0 because f(x) has
only simple roots. The unknown coefficients are given by

Ab, = 2a,(3aa, — a?)

Ab, = Taga,a, —9ada; —2 a?}

. a 2
A'by, = 4agal — 3apa,a; —a,t a,

"

A‘C'

15apa,a, — 4a? —27ad a, .

These expressions may be useful for some numerical
computations, but they d& noff seem to lend themselves for the
construction ui a practical general formula. They become much
simpler in the case that ag = 1, a; = 0 ; then

?(X) = -Z’-(éaix S—9a,x* + 10a2x3 - 3a,a,x*— 36bax + 4a; a,)
4 =-27a} — 4a}]
which substantially coincides with Domb's formula (36) in [3].

For a numerical example we refer to this paper.

3. A faster convergence in the iteration will be obtained
if one or more of the conditions (iv) is imposed on the polynomial
¢(x). Indeed putting
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(5)  @(x) = x + H(x)f(x) = x + h(x) £(x) + p(x)(x)*

one can choose p(x) so that not only $'(a) = 0, but also ¢"(x) = 0.
By differentiating (5)

8'(x) = 1+ hx)f'(x) + £(x) (h'(x) + 2p(x)'(x) + p'(x)E(x))

£(x) (hy () + B'(x) + 2001 x) + p)E(R))

In order to have $'(x) divisible by f(x)2 it is only necessary to
choose p(x) so that

(€) hy(x) + h'(x) + 2p(x)f'(x) = q(x)f(x)

with a polynomial q(x). With regard to (1) this condition will be
satisfied if

p(x) = 3 h(x) (B'(x) + By(x)) , alx) = b, (x) (B'x) + B, (x))
and by (4)

H(x) = h(x) + 3 hix) (h'(x) + b, (x)) £(x)

n(x) (1+ (1 + n(f'(x) + %h'(x)f(x))

1 h(x) (3 + % (h(x)f(x)))

Herewith (5) represents the second in a series of formulae for
polynomial iteration.

This could further be improved by choosing instead of p(x)
and q(x) another solution of (6) involving an arbitrary polynomial
to be adapted to the condition $"(«) = 0, etc. It has, however,
often been pointed out that the gain in an increased speed of the
convergence of the iteration will be set off by the greater amount
of computational work required in the application of the higher
degree formulae. They will therefore not be derived. Cf.[3],[],
(e1.

4. The formulae (2) and (5) will now be applied to the
equation
flx)=x®-a , a>0

It is readily seen that in this case the polynomials
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- =, -1
h(x) = = —— hi(x) = - =
will be those of lowest degree to solve equation (1); thus for the

iteration, according to (2).

7 — m+ 1 - 1 mitt

(7) @(x) ——X - X

This formula has been given by Hartree [5] and by Domb [3].
To give an idea of its numerical quality let m = 3

3
(7) gx) =3 (4 —F)

For a = 750 we find, beginning with x4y =9

Xy = %(9) =9.084, x, = ¢(9.084) = 9.0856065
which is too large in the sixth decimal because (9. 08—4)4 has
been computed as (82.519)2 instead of (82.519056)2 thus showing

the disturbing effect on the iteration of a relatively small devia-
tion. The next step, however, puts matters right:

X3 = %(9.0856065) = 9.0856030...
which is the accurate value of a = /750 in all the given figures.

Using (5) one obtains an improved formula for the iteration
approximating « = /3 , viz.

(8)  F(x) =r%r( (2m + 1?2(m +1) Zm: 1 xm+m2;1 xzm)

In particular

(X)=§<14—lx3+£_x6 ,
§3 9 a a*
and for a = 750 , x5 = 9 :
x, = éJ(Q) = 9.085568, x, = §3(X,) = 9.08560295...
Finally we consider a seemingly trivial example where
m = 1:
fix)=apx-1 , ag>0 ,
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where the function @(x) will define an iteration approximating the
number « = ag! . In this case the two polynomials h(x) = ~ag" ,
h,(x) = 0 formally satisfy (1); but then the constant function

?(x) =x — ag' (agx — 1) = ag' does not present a useful formula.

But
hix) = —=x , h,(x)=-—1

with regard to (2) yields
(9) (P'(x) = 2x — agx?
(cf. Hartree [5] , (18), Householder [6], p.14).
Choosing p(x) = x we obtain by (4)
H(x) = agx? — 2x
and thus by (5)
(10) $, (x) = ag* x? — 3agx? + 3x .

These formulae (9) and (10) are certainly not of great
practical importance; but they will give instructive examples
in the following discussion.

5. The domain of convergence of the iteration. For all
applications of the iteration formulae it is important to know
where the initial value x5 of the iteration sequence can be chosen
to guarantee convergence of the sequence. This question is easy
to decide by a look at a sketch of the graph of the function gixj=y
in a cartesian coordinate system. General theorems in this re-
gard can be formulated (cf. [2], [4], [10] ) ; they are, however,
not expedient in the present cases.

We begin with the iterative approximation of « = ag'

(9) in the form

; with

g,(x) = —aolx — a)* + a
and
gl0)=0, gla)=a, g(2a)=0

glo)y=2 , gix)=0 , @/@x)=-2
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it is easy to sketch the graph of y = ¢,(x) (fig 1, p.105). It cuts
the straight line y = x at two points, corresponding to the two
fixed points of the function g¢/(x), viz. x = 0 and x = «. The
construction carried out under the graph makes it clear that
every sequence Xn = @ (x,,-4) (n=1,2,... ) beginning with an
Xo Wwithin the open interval 0< x5 < 2a¢ will have « as its limit.
Therefore o is said to be an attractive fixed point of ¢,(x).
Indeed we note that for 0 €< xj < « the sequence x, is monotonic
increasing. It is bounded above by « and therefore it has a
limit. But this limit must be a fixed point of q),(x) ; since « is
a fixed point and there is no other fixed point between 0 and «,
it follows that lim x, = & . If &< x5 < 2 then 0 < @,(x5) =

x, & o ; therefore by using x; instead of % it follows that also
in this case x is increasing and has % as limit. We shall not
repeat this argument in later examples when it will be used in
slightly varied form.

If xog £ 0 or xy > 2o then xp—» — o as n=>cw . The point
x = 0 being never approached by a sequence x, is said to be a
repulsive fixed point of ¢,(x).

Similarly (10) may be written in the form
$,(x) = ad (x — x) + o,

Fig. 2, p.105, shows a sketch of the graph of this function. It
cuts the line y = x in three points, corresponding to the three
fixed points x = 0, x = ®, x = 2 of ¢,(x). Of these only x = «
proves to be attractive and construction and argument employed
in the discussion above shows again that for x, within the open
interval (0, 2a) the sequence x, = P,(xn._4) is convergent and
has «x as limit. It is increasing and approaching o from the
left side if 0 < xo € &« , decreasing if a <xg5< 2a. The points
0 and 2« are repulsive fixed points and for all x5 < 0 and > 2«
the sequence x5 tends to —a and +® respectively asn—> .

It should be noticed that the convergence interval will be
the smaller the larger a, is. This reflects on the restricted
usefulness of the formulae (9) and (10).

6. Convergence of the root iteration defined by (7). In
these cases the situation turns out to be more complicated; es-
sentially different conditions will be found for even and for odd
values of m. As prototype of the case of an even m we consider
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the function

3

%(x):-%-x——zl—a-x ,a> 0,0 = Va>o0.

The graph cuts the x —-axis at three points, viz.
x=0 and x=4 By=% V3« (cf. fig. 3) .

It has its relative maximum and minimum atx = & and x = —o
respectively and its point. of inflection at x = 0 where its gra-
dient equals q))_’(O) = 3/2. It cuts the line y = x in three points
corresponding to the three fixed points x = —a , x =0, x =&

of which & and —x are seen to be attractive. These data deter-
mine the shape of the graph as shown in fig. 3, p107.

It is clear that for 0 < xo <« & V3 = {3, the iteration
sequence X, = @,{xn-4) has « as its limit; it approaches « al-
ways from the left side. There is, however, an infinity of other
entirely disjoint open convergence intervals consisting of points
xo for which x, ~» % . In order to describe them let

wiy) = 97 y) (for [y| > P = V3 )

be the inverse function of ¢,(x) which for the given ranges of
the variable y is uniquely defined. Put

Bi =W (—=Bo) » B= V(=B s Ls=¥ (=B}, ..

Then the sequence x, will tend to « if x5 is a point of any one of
the following open intervals

L (0. Bo)s (— B = o) (Br.f2) (=far —f2)s (Psfy)s - -

Indeed, if —B; < x5 < —f30 , then x; = @, (x,) is a point
of the interval (0, #,), so that the sequence x, tends to o and
0 < xpn<x ifn » 2. Similarly if x, lies in ( 34, B2), then
—f1 < %1 < —f34 so that x, lies in (0, B,), etc.

Further it 1s readily seen tnat if x lies in one o1 tne com-
plementary open intervals

I_ : (_ﬁ()’ 0)’ (po’P1)’ (—plr ”‘ﬁ1)x (/32: p_a): .

the sequence X, tends to — o from the rignt side. These intervals
separate the intervals of convergence to + &. Because of the in-
creasing slope of the graph, the length of the intervals (., Bn.i),

(= Pnsy, — PBn) tends rapidly to zero as n increases; neverthe-
less the two sets I, and I__ cover the whole x—axis.
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The separating points 0, s, — Bo, B1, —Bs ..., Br=1,
— [x-y are the real roots (zeros) of the k times iterated func-
tion q:f(x) where

Pl = o), PAX) = QAP ) 5eees PR = @U@ ).

Indeed
QHE Bo) = 2(0) = 0, QiE ) = @aoF Bo) = 0. -

Also note that if x, coincides with any one of the 3;, then

x, —> 0. Thus although 0 is a repulsive fixed point of ¢, (x)
in the sense of the definition, there are nevertheless iteration
sequences (with almost all terms equal to zero) having 0 as limit.

Now it is not difficult to show that for the function ¢, (x)
of (7) with any even m = 2r > 0 the general appearance of the
graph is the same as in the case m = 2. In fact ¢ (x) ,has
exactly three real zeros: x=0and x =4 g8, = +(2r + 1)-/2"“ ,
where « = a'2r . The graph cuts the line y = x in three points
corresponding to the three real fixed points x = 0, x = £ ¢ of
@,,(x), and it has a point of inflexion at 0. Further the points
Bn= (P;.:’ (— B~-,) separate the different convergence intervals
in the same way as in the case of m = 2. Thus the result of the
preceding discussion can be summarized as follows. The limit
function

?’”(x) = ,111_1’%, 1:(3)

variable x :
x if xely
gx)={ 0 if x =X8, (n=0,1,2,...)
-~ if x € I_

For all practical computations it seems obvious that x
should be selected within the interval (0, & ) .

Regarding an odd value of m consider first the value
3. The function %(x) as given by (7') has its real zeros
atx=0and x= Y4« > 0if x represents the real third root
of a. The graph passes through 0 with the slope 4/3 and cuts
the line y = x in two points, corresponding to the two real fixed
points 0 and « of @,(x); there is no point of inflexion. The maxi-
mum is reached for x = a. After these indications a sketch of

m

il
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the curve can easily be drawn; it shows that the only convergence
interval of the iteration is the open interval (0, 3/4«).

Similarlyitis seen.that the iteration with ¢, _(x) has the
interval (0, B), B = (Zr)lz"'oc , o = al?™1 | as its domain of
convergence.

7. By the same method the convergence of the iteration
with the function &_(x) of (8) can be investigated. This function
has only the one real zero x = 0. For the further discussion we
distinguish again between even and odd values of m.

If m = 2r the graph cuts the line y = x in five points

m
(3m+ 1)
—_— ] «
m+ 1

corresponding to the five real fixed points of ém(x), of which
+& and —o¢ are attractive and the others repulsive because

¢! (to) = 0, &(te,) > 1, $,(0) > 1. The function has no
extremum; it has {wo stationary points of inflexion at x = £ &
and one other point of inflexion at x = 0. To guarantee converg—
ence of the sequence x, = $,, (x,.—,) to the limit o« > 0 one has
to choose x, in the interval (0, &, ) ; for x5 in (- o, , 0) the
sequence tends to — . For all other xg > & and x5 £ —a it
tends to +® and —® respectively.

— -— — m - —
x=0,x=ta =t Va,x=t« =+

If m = 2r + 1 the graph cuts the line y = x in the three
points x = 0, x =&, x = &, of which only & represents an
attractive fixed point. For convergence of x, to « one has to
choose x, in the interval (0, x,).
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