822 Microsc. Microanal. 19 (Suppl 2), 2013
doi:10.1017/S1431927613006107 © Microscopy Society of America 2013

pyMonteCarlo: A Common Programming Interface for Running Identical
Simulations using Different Monte Carlo Programs

Philippe T. Pinard', Hendrix Demers?, Raynald Gauvin® and Silvia Richter'

' Central Facility for Electron Microscopy, RWTH Aachen University, Aachen, Germany.
* Department of Mining and Materials Engineering, McGill University, Montréal, Québec, Canada.

Several Monte Carlo programs have been developed to help microscopists predict and understand the
results obtained from their measurements. Most of them are freely available on the web or with the
permissions from the authors. The physical models and assumptions used in the calculation of the
electron trajectories and x-ray generation differ from one code to another, as well as the possible
sample geometries and results that can be extracted. To combine the advantages of different codes or to
compare the effect of different physical models inevitably requires to manually create and run a new
simulation for each Monte Carlo program and then to individually analyze each result.

In an effort to simplify the process of running Monte Carlo simulations with more than one program, a
common programming interface was developed. It was written in Python using object-oriented
programming. The source code and documentation are freely available under the GNU General Public
License version 3 at http:/pymontecarlo.bitbucket.org. Bindings with the following Monte Carlo
programs are currently available: DTSA-II/NISTMonte Gemini [1], MONACO 3.0 [2], PENELOPE
2011 [3], Wincasino 2.48 [4] and WinXRay 1.4 [5]. The interface is, however, extendable to integrate
other Monte Carlo programs, including personal or protected codes.

The interface was designed to have common input and output objects that are independent of any
Monte Carlo code. Program-specific classes are responsible to create the file(s) required to run a
simulation using a program and to import the results back into the common results format of the
interface. The complete procedure is performed in six steps (Fig. 1). First, the simulation options
should be defined. These include the beam parameters (energy, diameter, direction and initial position),
the geometry (composition of all regions) and the physical models to be used if available. Simulation
options also contain a series of detectors and limits. A detector is an abstract concept which defines the
type of results expected from the simulation: x-ray intensity, x-ray spectrum, electron trajectories,
backscattering coefficient, etc. The limits specify when the simulation should be stopped: after a certain
time or number of electrons. A code excerpt of how to setup a simulation options is given in Fig. 2. The
second step is the converter which ensures that the simulation options are valid for a specific Monte
Carlo code. The exporter then saves them in the file format of this Monte Carlo code. After running the
simulation, the importer has the reverse responsibility, to convert the result file(s) from this Monte
Carlo code into the common results format used by the interface. The importer also conciliates the
results to express them in the same units.

The simulation options and results are respectively stored using the extensible markup language (XML)
and hierarchical data format (HDFS5). Both are open file formats that can be read and modified in other
programming languages, if needed. A command line interface to run several simulations using multiple
processors is available and a graphical interface, similar to the one used in pyPENELOPE [6], is under
development. pyMonteCarlo was successfully used to simulate all 826 experimental measurements of
the Pouchou and Pichoir k-ratio database [7] with the aforementioned Monte Carlo programs.

https://doi.org/10.1017/51431927613006107 Published online by Cambridge University Press


https://doi.org/10.1017/S1431927613006107

Microsc. Microanal. 19 (Suppl 2), 2013 823

References:

[1] N. W. M. Ritchie, Surf. Interface Anal 37 (2005), pp. 1006-1011.

[2] N. Ammann et al, Microbeam Analysis Conference Proceedings (1990), pp. 150-154.

[3] F. Salvat et al, “PENELOPE-2011: A code system for Monte Carlo simulation of electron and
photon transport”, OECD/NEA Data Bank, Issy-les-Moulineaux, France (2011).

[4] D. Drouin ef al, Scanning 29 (2007), pp. 92-101.

[5] R. Gauvin ef al, Microscopy & Microanalysis 12 (2006), pp. 49-64.

[6] P. T. Pinard et al, Microscopy and Microanalysis 16 (Suppl. 2) (2010), pp. 280-281.

[7] J. L. Pouchou and F. Pichoir in “Electron Probe Quantitation”, ed. K. F. J. Heinrich and D. E.
Newbury, Plenum Press, New York (1991), pp. 31-75.

Options
v Y v
Converter MC1 Converter MC2
v 2
Exporter MC1 Exporter MC2
& v raa
Run MC1 Run MC2
v 2
Importer MC1 Importer MC2
I
v
Results

Figure 1: Schematic diagram of the interface showing how different Monte Carlo (MC) programs are
integrated.

from pymontecarlo.input import *

ops = Options('simulation 1'")
ops.beam.energy eV = 5e3

ops.geometry = MultilLayers(Material('Brass', {30: 0.37, 29: '?'}))
ops.geometry.add layer(pure(28), 500e-9) # 500 nm thick

elevation=(radians(35), radians(45)) # Take-off angle: 40 deg
azimuth=(0.0, radians(360)) # Annular detector
ops.detectors['intensity'] = PhotonIntensityDetector(elevation, azimuth)
ops.detectors['spectrum'] =\
PhotonSpectrumDetector(elevation, azimuth, (0.0, ops.beam.energy eV), 1000)

ops.limits.add(ShowersLimit(10000))
ops.models.add (ELASTIC_CROSS_SECTION.rutherford)

ops.save('simulation 1.xml")
Figure 2: Code excerpt showing how to setup the simulation options.

https://doi.org/10.1017/51431927613006107 Published online by Cambridge University Press


https://doi.org/10.1017/S1431927613006107

