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2-row Springer Fibres and Khovanov
Diagram Algebras for Type D

Michael Ehrig and Catharina Stroppel

Abstract. We study in detail two row Springer ûbres of even orthogonal type from an algebraic as
well as a topological point of view. We show that the irreducible components and their pairwise
intersections are iterated P1-bundles. Using results of Kumar and Procesi we compute the cohomol-
ogy ring with its action of the Weyl group. _e main tool is a type D diagram calculus labelling the
irreducible components in a convenient way that relates to a diagrammatical algebra describing the
category of perverse sheaves on isotropic Grassmannians based on work of Braden. _e diagram
calculus generalizes Khovanov’s arc algebra to the type D setting and should be seen as setting the
framework for generalizing well-known connections of these algebras in type A to other types.

1 Introduction

_is paper is part of a series of four quite diòerent papers [10–12] dealing with type D
generalizations of Khovanov’s arc algebra. We develop in detail the geometric back-
ground of this algebra using the geometry of topological and algebraic Springer ûbres
and explain connections to categoryO for the orthogonal Lie algebra and to categories
of ûnite dimensional representations of the associatedW-algebras.

_e type D Khovanov algebra is deûned in [10] using Braden’s description of the
category of perverse sheaves on isotropicGrassmannians; hence it gives an elementary
description of parabolic category O of type (Dk , Ak−1) with all its nice properties,
such as Koszulness, quasi-hereditary, cellularity, etc. Based on [8], we introduce in
[11] suitable idempotent truncations of the type D Khovanov algebra and show in
[12] that these algebras are indeed graded analogues of Brauer algebras Brd(δ) for
arbitrary integral parameter δ. _ese idempotent truncations can also be viewed as a
kind of limit, in which case this is very much in the spirit of a similar result obtained
in [7] for the walled Brauer algebra using a limit version of generalized Khovanov
algebras of type A. Although the �avour of results is very similar to the known type
A results, the techniques and diõculties are very diòerent, and include quite a few
surprising new phenomena. In particular, the underlying geometry of Springer ûbres
is much more subtle and has not been studied so far. Let us now describe the content
of this paper in more detail.

Let V = C2k be an even dimensional vector space with a non-degenerate symmet-
ric bilinear form β. Let G = O(2k,C) be the group of automorphisms preserving
β and let g = o(2k,C) be the corresponding orthogonal Lie algebra. By a result of
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Williamson [54], the G-conjugacy classes of nilpotent elements in g are classiûed by
their Jordan normal form, i.e., by partitions of 2k that are admissible, in the sense that
even parts appear with even multiplicity.

Let F be the �ag variety for G of full isotropic �ags with respect to β,

{F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ F2k = C2k
∣ dim(Fi) = i , F⊥i = F2k−i}.

Given a nilpotent element N ∈ g, consider the Springer ûbre FN of all �ags F● ∈ F
ûxed by N , i.e., satisfying N(Fi) ⊆ Fi−1 for all i > 0. _is is the ûbre of the famous
Springer resolution of the nilpotent cone N ⊂ g over N . _e Springer ûbres and
their corresponding irreducible components are in general poorly understood. Even
in type A the components are not smooth in general; the ûrst case where singular
components appear is the two columns case [14]. Recently, Fresse andMelnikov found
a parametrisation of all smooth irreducible components in typeA in terms of standard
tableaux [13]. _is includes the quite easy cases of two row partitions, where Fung
showed much earlier ([16]), that irreducible components are iterated P(C)1-bundles
and therefore smooth.

In this paper we are interested in generalizing the latter result to the orthogonal
case and, moreover, in constructing an easy topological model for these Springer û-
bres, analogous to the type A model of Khovanov [23]. Our result in Section 6 is the
following theorem.

_eorem 1.1 Let N ∈ g be a nilpotent element of Jordan type (λ1 , λ2), where
λ1 ≥ λ2. Every irreducible component Y of FN is an iterated ûbre bundle of base type
(P1(C), . . . ,P1(C)), where each P1(C) corresponds canonically to a cup in the cup di-
agram associated with the signed admissible standard tableau labelling Y. In particular,
FN is equidimensional of dimension λ2.

Originally, irreducible components in the orthogonal case were classiûed by Spal-
tenstein [45] and van Leeuwen [53] using (signed) domino tableaux. Our results rely
on a new parametrisation in terms of certain decorated cup diagrams on k vertices.
Fixing the points P = {(1, 0), (2, 0), . . . , (k, 0)} and the rectangle

R = {(x , y) ∣ 0 ≤ x ≤ k + 1,−2 ≤ y ≤ 0}

in the plane, an undecorated cup diagram is the isotopy class of a diagram consisting
of k non-intersecting lines in R, each of them connecting two distinct vertices in P
or one vertex in P with a point on the bottom face of R. A (decorated) cup diagram,
is a cup diagram with possibly “●”’s (called dots) on the lines such that every dot is
accessible from the le� side of the rectangle, meaning for each dot there exists a line
in the rectangle connecting the dot with the le� face of R not intersecting the diagram.
We allow at most one dot per line; here are some examples:

(1.1)

(i)
1 2 3 4

(ii)
1 42 3

(iii)
1 2 3 4
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_e set Ck of cup diagrams on k vertices describes combinatorially a cell partition of
FN where the set of the diagrams Bk with the maximal possible number of cups cor-
respond to the irreducible components when taking the closure. In Section 7 we show
that the FN for N of Jordan type (k, k) have a ûltration by subvarieties isomorphic
to the Springer ûbres of type (2k − j, j) corresponding to cup diagrams in Ck with
j cups. _ere is also a natural action of the Weyl group of type Dk on Ck in terms
of type D-Temperley-Lieb diagrams [28]. _is action preserves the parity of dots on
the diagrams. Moreover, Ck labels a basis of the top degree part of the cohomology
of the Springer ûbre; see _eorem 7.5 and Lemma 4.17. In fact this illustrates nicely
the Springer representation on the top degree part and on the whole cohomology, see
Remark 5.21. It is the nontrivial component group which relates the subsets Cevenk and
Codd

k of diagrams with ûxed parity; Z2 acts by adding or removing a dot on the line
attached to vertex 1. Note that some sort of decorated diagrams also appear in [38],
but the dots have a very diòerent meaning, and the diagrams are used to describe the
whole cohomology ring. We expect that an analogue of such a description also exists
for our setup, but we do not pursue this direction here.

_e cup diagrams should be seen as “foldings” or ûxed point sets of an involution
on the set of type A cup diagrams of doubled size; see [28]. _is folding on the level
of Springer ûbres corresponds to a folding on the level of Nakajima quiver varieties
recently studied in [20].

_e cup diagrams are the only ingredients needed to construct the topological
Springer ûbre S̃ following the main idea of [23]. For ûxed k we consider the k-fold
product of 2-spheres, (S2)k and assign to each a ∈ Bk the subspace Sa of all tuples
(x1 , x2 , . . . , xk) ∈ (S2)k with the condition x i = x j (resp. x i = −x j) if there is an
undotted (resp. dotted) cup connecting vertices i and j, and x i equals the north or
south pole if there is a vertical ray at i, depending if the ray is dotted or not; see (4.1).
_e topological Springer ûbre is then simply the union

S̃ = ⋃
a∈Bk

Sa ⊂ (S2
)
k .

We prove that the cohomology rings of the topological and algebraic Springer ûbres
agree and are described as follows.

_eorem 1.2 Let N ∈ g be nilpotent of Jordan type (k, k). _enwe have isomorphisms
of graded rings

H(S̃) ≅ H(FN) ≅
2
⊕
r=1

C[x1 , . . . , xk] / ⟨x2
i , yI

1 ≤ i ≤ k,
I ⊂ {1, . . . , k}, ∣I∣ = k+є

2
⟩ ,

where є = 0 if k is even and є = 1 if k is odd and

yI =

⎧⎪⎪
⎨
⎪⎪⎩

xI − x{1,. . . ,k}∖I if k is even,
xI if k is odd,

using the abbreviation xI = ∏i∈I x i for I ⊂ {1, . . . , k}.

_e two summands appear due to the natural decomposition of both the topolog-
ical and the algebraic Springer ûbres into “even” and “odd” components. _e proof
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of the second isomorphism is based on the Kumar–Procesi description of equivariant
cohomology of Springer ûbres [24]. _is result requires N to be of standard Levi type
and also requires the surjectivity of the canonical map H(F) → H(FN), which fails
in general. Using the ûltration mentioned above, we verify this assumption in our
special case (Proposition 7.4). _e proof of the ûrst isomorphism follows very closely
the arguments in [23], although most of the small ingredients have to be reproved in
a slightly diòerent way. As for type A, and pointed out by Khovanov, the irreducible
components of the topological Springer ûbre are always trivial ûbre bundles, whereas
algebraically they are not. _e non-triviality is nicely encoded in the degree of nest-
edness in the cup diagram and should be compared with the theory of embedded
cobordisms and TQFT developed in [51].

Conjecture 1.3 _e topological and algebraic Springer ûbres are homeomorphic in
case N is of Jordan type (k, k).

In the general two row case, such a homeomorphism cannot exist, since, for in-
stance, the dimensions of pairwise intersections of components diòer; see Section 6.5.
For these cases a diòerent construction of a topological Springer ûbre is required.

_e case of Jordan type (k, k) is, however, particularly nice. We show that the
pairwise intersections Y1 ∩ Y2 of irreducible components in FN are again iterated
P1(C)-bundles of dimension equal the number of possible orientations a(Y1)

∗λa(Y2)

of the circle diagram obtained by putting the cup diagram a(Y1) assigned to Y1 upside
down on top of a(Y2). Generalizing Khovanov’s original construction [22] (see also
[6]), we consider the vector spaceKk of all such oriented circle diagrams and establish
the following theorem.

_eorem 1.4 Let N ∈ g be nilpotent of Jordan type (k, k). _ere is an isomorphism
of vector spaces

(1.2) Kk ≅ ⊕
(Y1 ,Y2)∈Irr(FN)×Irr(FN)

H(Y1 ∩ Y2).

_is vector space can be equipped with an algebra structure using a geometric
convolution product construction following the arguments in [51].

We ûnally explain partly conjectural connections withW-algebras and categoryO.
Let e ∈ g be nilpotent and consider the associated ûniteW-algebraW(e) ∶= U(g, e)
as originally introduced by Premet [36]; see [26] for an overview. In general, it is a
hard problem to describe and understand the categories Fin(e) of ûnite dimensional
W(e)-modules or its subcategoryFin0(e) of polynomial representations with gener-
alized trivial central character; see [25, 27]. However, the original deûnition ofW(e)
and its realisation as deformation quantization of Slodowy slices, indicates a strong
relationship between the representation of W(e) and the geometry of the Springer
ûbre. Our setup is related to the case where the nilpotent has Jordan type 2k . _is is
an extremal case of a rectangular Jordan shape, where a complete purely combinato-
rial classiûcation of ûnite dimensional W(e)-modules is available; see [1, 5]. In the
last section we give an easy bijection between Brown’s parameter set of simple objects
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and our setBk of decorated cup diagrams labelling the irreducible components ofFN ,
where N is of Jordan type (k, k). Based on this, we conjecture the following.

Conjecture 1.5 Let k ≥ 4 even and e ,N ∈ g nilpotent of Jordan type 2k and (k, k) re-
spectively. Let P be a minimal projective generator of Fin0(e). Under the identiûcation
(1.2) there exists an isomorphism of vector spaces

Kk = ⊕
(Y1 ,Y2)∈Irr(FN)×Irr(FN)

H(Y1 ∩ Y2) ≅ EndW(e)(P),

even of algebras with the diagrammatical multiplication in Kk .

_e conjecture implies in particular that with the appropriate grading shi�s,

⊕
(Y1 ,Y2)∈Irr(FN)×Irr(FN)

H(Y1 ∩ Y2)⟨d(Y1 ,Y2)⟩

induces a positive grading on EndW(e)(P) which is the shadow of a Koszul grading.
More precisely, by [10] the conjecture directly implies the following corollary.

Corollary 1.6 Let p, p′ ⊂ g be the two maximal parabolic subalgebras of type Ak−1.
Let Op

0(Dk) ⊕ O
p′

0 (Dk) be the direct sum of the principal blocks of the corresponding
parabolic category O for g. Let Pinj = Pp

inj ⊕ Pp′

inj be a minimal projective-injective gen-
erator. _en there is an isomorphism of algebras

Endg(Pinj) ≅ EndW(e)(P).

In particular, Fin0(e) is a quotient category ofOp
0(Dk)⊕O

p′

0 (Dk). _e latter is in fact
a quasi-hereditary cover in the sense of Rouquier [37].

Note that this corollary is analogous to the results in [3] for arbitrary nilpotent
elements e ∈ gln , which realizes the corresponding Fin0(e) as a quotient category of
O

p
0(gln), where p has type transposed to the Jordan type of e. Such a general result

is clearly false in general outside of type A. It already fails for Jordan types (λ1 , λ2)

with λ1 /= λ2 or λ1 = λ2 odd. It is expected that the above holds more generally for
all nilpotent e with an even good grading in the sense of [2] and trivial component
group, but of course one cannot hope for such an explicit and elementary description
of the endomorphism ring as in the case described above.

The paper is organized as follows: In Section 2we introduce the algebraic Springer
ûbre and ûx notation. Section 3 sets up the diagram combinatorics, which are crucial
for the whole paper. Section 4 deûnes the topological Springer ûbre with its cell par-
tition and computes the cohomology rings of the components and their intersections
and ûnally connects it with the diagram algebra Kk and its centre. Section 5 estab-
lishes several combinatorial bijections between signed admissible standard tableaux,
standard tableaux, and cup diagrams and relates it to the combinatorics of representa-
tions of the Weyl group W(Dk). _is is necessary to connect our cup diagram com-
binatorics to the original work of Spaltenstein and van Leeuwen and Hotta-Springer.
For this paper, the bijections are merely a tool, but we feel they are interesting on their
own. Section 6 gives the description of the irreducible components for the algebraic
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Springer ûbre with an explicit algorithm for constructing the component attached to
a cup diagram. Section 7 contains the proof of the main result, _eorem 1.2. In Sec-
tion 8 we ûnally describe the connection and applications and prove_eorem 1.4.

2 Algebraic Springer fibre

General Assumptions

We ûx the ground ûeld C and denote
√
−1 ∈ C by i.

Fix an even natural number n = 2k and consider a complex n-dimensional vector
spaceW with ûxed basisw i , where i ∈ {±1, . . . ,±k}. EquipW with a symmetric non-
degenerate bilinear form β by setting β(w i ,w j) = δ i ,− j . LetG = O(W , β) = O(2k,C)

be the corresponding orthogonal group with Lie algebra g = o(2k,C).

Deûnition 2.1 A full isotropic �ag F● in W is a sequence of subspaces in W , {0} ⊂
F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fk , such that dim Fi = i and β vanishes on Fi × Fi for all 0 ≤ i ≤ k (i.e.,
Fi is isotropic). Let F be the set of all such �ags.

Note that Fk is maximal isotropic and dim(Fi) = i for all i. Setting Fn−i = (Fi)
⊥

deûnes a full �ag in Cn in the usual sense. We denote by B the standard Borel of G
ûxing the �ag F● where Fi = ⟨w j ∣ 1 ≤ j ≤ i⟩. _e set F inherits the structure of a
projective algebraic variety by identifying it with G/B.

Remark 2.2 In contrast to types A, B, C, this �ag variety of type D is not con-
nected, but decomposes into two components isomorphic to F′ = G′/B′, where G′ =
SO(2n,C) and B′ = G′ ∩ B. _e component containing F● is determined by Fk .
Given F●, there is a unique �ag F′● (called the companion �ag) that satisûes F′i = Fi for
0 ≤ i < k and F′k /= Fk . _e two �ags lie in diòerent components.

A partition λ of n = 2k is a weakly decreasing sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λr of pos-
itive integers summing up to n. Such partitions label the nilpotent orbits in gl(n,C)

under the conjugation action of GL(n,C), where the parts λ i of λ correspond to the
sizes of the Jordan blocks.

Deûnition 2.3 A partition λ of n = 2k is called admissible if even parts occur with
even multiplicity.

_e classiûcation of nilpotent orbits for gl(n,C) restricts to g: the G-conjugation
classes of nilpotent elements in g are in bijection to admissible partitions of n ([18,54].
We now ûx a nilpotent element N ∈ g.

Deûnition 2.4 _e Springer ûbre associated with (G ,N) is the algebraic variety
FN ∶= F1+N of (1 + N)-ûxed points in F, i.e., of all �ags F● ∈ F such that NFi ⊂ Fi−1.
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_e Springer ûbre again decomposes into two connected components isomorphic
to F′N ∶= F′1+N and is, in contrast to F, in general not smooth. By a result of Spal-
tenstein [44] it is equidimensional (see also [45, II.1.12]), i.e., all irreducible compo-
nents have the same dimension. Let Irr(FN) denote the set of irreducible compo-
nents.

Let u ∈ G be the unipotent element corresponding to N via the exponential map.
_e centraliser C ∶= CG(u) acts on F, F′ and the set Irr(FN). In general, C is not
connected, and we have the component group A(u) = CG(u)/CG(u)○.

In the sequel, we are interested in nilpotent orbits corresponding to 2-row parti-
tions. Hence N has Jordan type (k, k) or (n − l , l) with l odd.

_is situation is special from two perspectives. We will show in _eorem 6.5 that
all components are smooth (in analogy to 2-block nilpotents of type A, [16, 51], and
in huge contrast to the general case [14]), and secondly the component group is easy
to calculate, [46, 2.26], as A(u) = (Z2)

c , where c = 0 for the partition (k, k) with k
even, c = 1 if k is odd, and c = 2 otherwise.

3 Diagram Combinatorics

We start by introducing a diagram combinatorics which will later be used to describe
the geometry of the topological Springer ûbres. It generalizes the well-known ap-
proaches from [23], [39], [51] to the more involved type D setting and is motivated by
its connections to the type D highest weight Lie theory [11] and [28].

Deûnition 3.1 We ûx a rectangle R in the lower half plane R ×R≤0 with the set of
points P = {1, . . . , k} on the top face.
An undecorated cup diagram is a diagram consisting of non-intersecting lines, each

of them either connecting two distinct vertices in P or one vertex in P with a point
on the bottom face of R. _e lines of the ûrst type are called cups, the others rays. We
consider two such diagrams as the same if they diòer only by a planar isotopy of R
ûxing P pointwise and the bottom boundary line of the rectangle setwise. A decorated
cup diagram, or short cup diagram, is a diagramwith possibly “●”’s (called dots) on the
lines such that every dot is accessible from the le� side of the rectangle, meaning for
each dot there exists a line in the rectangle connecting the dot with the le� face of R
not intersecting the diagram. We allow at most one dot per line.

Example 3.2 _efollowing ûrst twodiagrams are examples of cupdiagrams, where-
as the third is not, as the rightmost dot cannot be connected with the le� face of R.

(i)
1 2 3 4 5

(ii)
1 2 3 4 5

(iii)
1 2 3 4 5

Remark 3.3 Let k be even. _en it is a well-known fact; see e.g., [47], that the
number of undecorated cup diagrams on k vertices equals 1

k+1(
k

k/2) (the k-th Catalan
number), which can be identiûed with the dimension of the irreducible Sk-module
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indexed by the partition (k/2, k/2); see e.g., [49, Lemma 4.3.3]. On the other hand,
the number of (decorated) cup diagrams on k vertices equals (see Lemma 5.20) twice
the dimension of the irreducible representation of the Weyl group Sk ⋉ (Z/2Z)k−1

of type Dk indexed by the pair of partitions ((k/2), (k/2)). So, there are ( k
k/2) such

diagrams.

Notation 3.4 For a cup diagram c and i , j ∈ {1, . . . , k}, we write
(i) i— j if c contains a cup connecting i and j,
(ii) i—● j if c contains a dotted cup connecting i and j,
(iii) i—∣ if c contains a ray that ends at i,
(iv) i—●∣ if c contains a dotted ray that ends at i.

Example 3.5 In the cup diagram (i) from Example 3.2 we have 1—4, 2—3, and 5—∣,
while in the cup diagram (ii) we have: 1—● 4, 2—3, and 5—●∣.

We deûne the followings sets of (undotted/dotted/all) cups respectively rays ap-
pearing in a cup diagram c:

cups○(c) = {(i < j) ∣ i— j}, rays○(c) = {i ∣ i—∣},
cups●(c) = {(i < j) ∣ i—● j}, rays●(c) = {i ∣ i—●∣},
cups(c) = cups○(c) ∪ cups●(c), rays(c) = rays○(c) ∪ rays●(c).

Re�ecting cup diagrams along the horizontal middle line of R gives us cap dia-
grams; e.g., the cap diagrams arising from Example 3.2 are

(i)
1 2 3 4 5

(ii)
1 2 3 4 5

Deûnition 3.6 As above, we assume to have ûxed the rectangle R and the set of
points P = {1, . . . , k}. A cap diagram is a diagram that is obtained from a cup diagram
by re�ecting it in the horizontal middle axis of R. If c is a cup diagram, we denote by
c∗ the corresponding cap diagram. We use the Notation 3.4 again for cap diagrams
instead of cup diagrams.

To talk about oriented cup/cap diagrams we need the notion of a weight.

Deûnition 3.7 A (combinatorial) weight of length k is a sequence λ = (λ1 , . . . , λk)

with λ i ∈ {∧,∨}.
A cup (resp. cap) diagram c together with a weight λ is called an oriented cup (resp.

cap) diagram if the following holds:
(i) if i— j, then λ i /= λ j ,
(ii) if i—● j, then λ i = λ j ,
(iii) if i—∣, then λ i = ∨,
(iv) if i—●∣, then λ i = ∧.
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We denote the resulting diagram λc (resp. cλ).

For instance, out of the following three only the ûrst two diagrams are oriented.
Note also that λc is oriented if and only if c∗λ is oriented.

(3.1)

λ

c

∨ ∧ ∨ ∧ ∨ λ

c

∨ ∧ ∨ ∨ ∨ λ

c

∧ ∨ ∨ ∧ ∨

Gluing a cap diagram on top of a cup diagram yields a circle diagram.

Deûnition 3.8 A circle diagram (bc) consists of a cap diagram b and a cup diagram
c where we identify the lower border of the rectangle of b with the upper border of
the rectangle of c (identifying the marked points from le� to right). An oriented circle
diagram bλc consists of a cap diagram b, a cup diagram c and a weight λ such that bλ
and λc are oriented diagrams:

λ

c

b

∨ ∨ ∧ ∧ ∨ bλc ∨ ∨
∧ ∧

∨

Acircle diagram thus consists of circles (=closed connected components) and lines.
Note that each line has at most one allowed orientation, whereas each circle has pre-
cisely two [10, Lemma 4].

Deûnition 3.9 A circle in an oriented circle diagram is called anticlockwise if its
rightmost label is ∧ and clockwise if its rightmost label is ∨.

In the following we will usually omit drawing the rectangle R.
Fix k ∈ N. _en denote by Bk the set of all cup diagrams on k points with the

maximal possible number of cups. We want to further divide this set into those cup
diagrams with an even (resp. odd) number of dots, Bk = Bevenk ∐Bodd

k .

Example 3.10 For k = 3 the set B3 contains the following six diagrams

{ , , , , , }

with Beven3 and Bodd
3 the ûrst three, respectively, last three diagrams.
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4 Topological Springer Fibre

In this section we construct the topological Springer ûbre and establish basic proper-
ties and a cell decomposition.

4.1 The Definition of the Topological Springer Fibre

In the following denote by S the 2-sphere S2 ⊂ R3 and by X = Sk its k-th power. By
H(Y) we denote the cohomology of a topological space Y with complex coeõcients,
in particular, H(S) ≅ C[x]/⟨x2⟩ with deg(x) = 2. _e isomorphism sends x to the
top class and 1 to the class of a point that we ûx and call p. We denote by x ↦ −x the
antipodal map (i.e., the involution on S that maps every point to its antipodal point).
Corresponding to a ∈ Bk , we deûne a subspace Sa ⊂ X as follows:

(4.1) (z1 , . . . , zk) ∈ Sa ∶⇔

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z i = z j if i— j,
z i = −z j if i—● j,
z i = p if i—∣,
z i = −p if i—●∣ .

Obviously, Sa is homeomorphic to S⌊ k
2 ⌋ = Scups(a). Hence, we have

H(Sa) ≅ (C[x]/⟨x2
⟩)

⊗⌊ k
2 ⌋ .

We will later use an explicit homeomorphism. For a ∈ Bk , 1 ≤ i ≤ k set

σ(i) = (−1) #{(k < l) ∈ cups●(a) ∣ i ≤ k} + #{k ∈ rays●(a) ∣ i ≤ k} ;

i.e., σ encodes the parity of the number of dotted cups and rays to the right of the
position i, including cups with le� endpoint at i.

Lemma 4.1 Let {(ir < jr)} = cups(a) with i1 < i2 < ⋅ ⋅ ⋅ < i⌊ k
2 ⌋. _e map

Ψa ∶ Sa Ð→ Scups(a)
= S⌊ k

2 ⌋

(z1 , . . . , zk) z→ (y1 , . . . , y⌊ k
2 ⌋),

(4.2)

where yr = σ(r)z ir , 1 ≤ r ≤ ⌊ k
2 ⌋ deûnes a homeomorphism.

Proof _e inverse map (Ψa)−1 is given by zt = σ(ir)yr if t = ir , zt = σ(ir)yr if
(ir < jr = t) ∈ cups○(a), zt = −σ(ir)yr if (ir < jr = t) ∈ cups●(a) and zt = −p or
zt = p otherwise, depending on if the ray is dotted or not.

Example 4.2 Consider the following cup diagram

a =

(1) (2) (3)(4)

and number the cups according to their le� endpoints from le� to right (as indicated
by the bracketed numbers). _en

(Ψa)−1
(x1 , x2 , x3 , x4) = (−x1 ,−x1 ,−x2 , x2 , x3 ,−x4 ,−x4 ,−x3 ,−p).
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_e following lemma follows directly from the deûnitions.

Lemma 4.3 _e subset Sa ∩ Sb /= ∅ if and only if the corresponding circle diagram
(a∗b) can be oriented. Furthermore, if (a∗b) can be oriented, then Sa ∩ Sb ≅ Sr , where
r is the number of closed circles in (a∗b). For the cohomology this implies

H(Sa ∩ Sb) ≅
⎧⎪⎪
⎨
⎪⎪⎩

(C[x]/⟨x2⟩)
⊗r if Sa ∩ Sb /= ∅ and r as above,

0 otherwise.

Each orientation of (a∗b) then corresponds exactly to one standard basis vector
b1 ⊗ ⋅ ⋅ ⋅ ⊗ b l , b l ∈ {1, x} in cohomology, by setting b i = 1 if the corresponding circle
is oriented anticlockwise and b i = x if it is oriented clockwise.

Remark 4.4 Note the diòerence to [23, Section 3], where the subsets Sa ∩ Sb are
never empty.

Let S̃ = ⋃a∈Bk Sa ⊂ X. If a ∈ Bevenk and b ∈ Bodd
k , then Sa ∩ Sb = ∅ by Lemma 4.3;

thus, we can decompose S̃ into the disjoint subsets

(4.3) S̃even = ⋃
a∈Beven

k

Sa and S̃odd
= ⋃
a∈Bodd

k

Sa .

We call S̃ the topological Springer ûbre, as it is the topological substitute for the
Springer ûbre FN (see Remark 1.3) and (4.3) corresponds to the decomposition of FN

into the two copies of F′N . Our goal is to show that the cohomology H(S̃) of S̃ is
isomorphic to the cohomology of the Springer ûbre. We do this by identifying H(S̃)
with the centre of a diagrammatically deûned algebra introduced in [10, 28] of which
we know that it has the desired centre.

4.2 The Cohomology Rings H(Sa)

We ûrst realize all the involved cohomology rings as quotients of

H(X) = C[x]/⟨x2
⟩
⊗k

= C[x1 , . . . , xk]/⟨x2
i ∣ 1 ≤ i ≤ k⟩,

where x i denotes the top class of the i-th copy of S.

Notation 4.5 For a, b ∈ Bk and 1 ≤ i , j ≤ k, we write i ∼a;b j if there exists a
sequence i = i1 , i2 , . . . , ir = j such that for all l the points i l and i l+1 are connected by
a cup in cups(a)∪cups(b) (i.e., (i l , i l+1) ∈ cups(a)∪cups(b) or (i l+1 , i l) ∈ cups(a)∪
cups(b)). We call such a sequence a path connecting i and j. _is is obviously an
equivalence relation on the set {1, . . . , k}. For a chosen path from i to j, we denote
by α(i , j) the number of undotted cups used in the path. _e parity of α(i , j) is
independent of the chosen path and so (−1)α(i , j) is well deûned. For i , j ∈ {1, . . . , k},
we deûne

є(i , j) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if i ≁a;b j,
(−1)α(i , j) if i ∼a;b j.
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We denote the set of equivalence classes by Conn(a, b) (they are in canonical bi-
jection with the connected components of the corresponding circle diagram) and by
i the equivalence class corresponding to the point i. We denote by Conn○(a, b) those
classes that correspond to closed circles in the diagram. We will later use the map

mxa;b ∶ {1, . . . , k} Ð→ {1, . . . , k}
i z→ max{ j ∣ j ∼a;b i},

which maps each element to the maximal element in its equivalence class.

Lemma 4.6 (i) Let a ∈ Bk . _e canonical map induces a surjection

πa ∶ H(X) ↠ H(Sa)

with kernel

Ja =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x i + x j if (i , j) ∈ cups○(a),
x i − x j if (i , j) ∈ cups●(a),
x i if i ∈ rays(a).

(ii) Let a, b ∈ Bk ; then the canonical map induces a surjection

πa;b ∶ H(X) ↠ H(Sa ∩ Sb),

which in the case where Sa ∩ Sb /= ∅ (i.e., (a∗b) can be oriented) has kernel

Ja;b =
⎧⎪⎪
⎨
⎪⎪⎩

x i − є(i , mxa;b(i))xmxa;b(i) if i ∈ Conn○(a, b),
x i if i ∉ Conn○(a, b).

Proof In part (i), the map is induced from the embedding of Sa into X. In the case
of an undotted cup, this is the induced map of embedding a sphere diagonally into
a product of two spheres, hence gives the ûrst type of relations in the ideal. If there
is a dotted cup, then the embedding is twisted by the antipodal map on one side,
which produces a sign change andwe obtain the second line of generators for the ideal.
_e last line is the induced map of embedding a point into a sphere. _e generators
of H(Sa) are obviously in the image of the map. By comparing the dimensions the
statement follows.
For part (ii) it is again clear that the kernel ker(πa;b) contains both Ja and Jb , and

thus we have a well-deûned map

H(X)/(Ja + Jb) Ð→ H(Sa ∩ Sb),

which contains the generators of H(Sa ∩ Sb) in the image. By part (i), Ja + Jb has
the asserted generators. Comparing the dimensions using Lemma 4.3 implies the
claim.

For a, b ∈ Bk , the canonical maps

ψa;a ,b ∶H(Sa) Ð→ H(Sa ∩ Sb) and ψb;a ,b ∶H(Sb) Ð→ H(Sa ∩ Sb),

induced by the inclusions of the corresponding spaces, satisfy πa;b = ψa;a ,bπa
and πb;a = ψb;a ,bπb , and they are compatible with the (H(Sa))-module structure
(resp. (H(Sb))-module structure) given by the cup product.
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4.3 Connection with the Type D Khovanov Arc Algebra

We shortly recall the main features of the type D Khovanov arc algebra.

Deûnition 4.7 For k still ûxed, let Kk be the vector space with basis the set

Bk ∶= {b∗λc ∣ b, c ∈ Bk such that bλ and λc are oriented}

of oriented circle diagrams for k points, where the involved cup and cap diagrams
have the maximal possible number of cups. _e degree, deg(bλc), of a basis vector
bλc is deûned to be the number of clockwise oriented cups and caps in the sense of
[28] (i.e., oriented cups and caps labelled ∧∨ or ∨∨ in this order from le� to right; e.g.,
the ûrst two diagrams in (3.1) have 1 respectively 2 clockwise cups).

We haveKk = ⊕(a ,b)∈Bk×Bk a(Kk)b , where a(Kk)b is spanned by all basis vectors
aλb ∈ Bk with a, b ûxed. By [10], Kk can be equipped with a multiplication turning
it into a non-negatively graded associative algebra, Kk , where the grading is given
by the degree function deg. _e degree zero part is semisimple and spanned by the
idempotents b1b ∶= bλb for b ∈ Bk , where λ is the unique weight such that bλb is
oriented of degree zero.

Deûnition 4.8 More generally, if a, b ∈ Bk such that aλb ∈ Bk for some λ, we
denote by a1b the unique basis vector of a(Kk)b of minimal degree, d(a, b) (for an
explicit formula see Lemma 4.21).

By [10] and Lemma 4.6, we have for a, b ∈ Bk canonical isomorphisms of graded
vector spaces

(4.4) a(Kk)a ≅ H(Sa), a(Kk)b ≅ H(Sa ∩ Sb)⟨d(a, b)⟩

sending a basis vector aλb to b1 ⊗ ⋅ ⋅ ⋅ ⊗ b l , b l ∈ {1, x}, where b i = 1 if the circle at
vertex i is anticlockwise and b i = x if it is clockwise. Here ⟨d⟩ denotes the grading shi�
upwards by d. By the multiplication rules of the algebra Kk , a product (aλb)(cµd)
of two basis vectors inKk can only be nonzero if b∗ = c, moreover, there are induced
linear maps

γa;a ,b ∶ a(Kk)a Ð→ a(Kk)b and γb;a ,b ∶ b(Kk)b Ð→ a(Kk)b ,

deûned as d ↦ d a1b and d ↦ a1b d, and turns them into le� a(Kk)a-module
(resp. right b(Kk)b-module) homomorphisms. With the vertical isomorphisms (4.4)
we obtain the following proposition.

Proposition 4.9 _e following diagram commutes:

(4.5) H(Sa)
ψa;a ,b //

≅
��

H(Sa ∩ Sb)

≅
��

H(Sb)
ψb;a ,boo

≅
��

a(Kk)a
γa;a ,b // a(Kk)b b(Kk)b .

γb;a ,boo
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Proof Using the isomorphisms from Lemma 4.6, it is enough to show that

H(X)/Ja //

≅
��

H(X)/Ja;b

≅
��

a(Kk)a // a(Kk)b

commutes for any a /= b. By deûnition of the maps, 1 ∈ H(X)/Ja is sent to
a1b ∈ a(Kk)b in both ways. Using ûrst the vertical map, x i is sent to the basis vector
which diòers from a1b by making the circle (if it exists) pass through vertex i clock-
wise and multiplying by (−1)α(i ,mxa;b(i)), and it is sent to zero otherwise; see [10].
On the other hand, the horizontal map sends x i to x i , which, by Lemma 4.6, equals
(−1)α(i ,mxa;b(i))xmxa;b(i), which is then sent to the same basis vector as above, since i
and mxa;b(i) lie on the same component. Since the x i generate H(X)/Ja as ring, the
claim follows.

_e modules P(a) ∶= ⊕b∈Bk b(Kk)a for a ∈ Bk form the indecomposable le� Kk-
modules with endomorphism rings a(Kk)a . _e centre Z(Kk) is therefore the sub-
algebra of D ∶= ⊕a∈Bk a(Kk)a = ∏a∈Bk a(Kk)a given by all elements (za)a∈Bk such
that za f = f zb for all f ∈ HomKk(P(a), P(b)) = a(Kk)b , b ∈ Bk . Since a(Kk)b is a
cyclic a(Kk)a-module generated by a1b , and a(Kk)a is commutative [10], it follows
that Z(Kk) = Eq(γ), where

(4.6) Eq(γ) =
⎧⎪⎪
⎨
⎪⎪⎩

(za)a∈Bk ∈ D
γa;a ,b(a1aza1a) = γb;a ,b(b1bzb1b),

for a, b ∈ Bk , a /= b

⎫⎪⎪
⎬
⎪⎪⎭

,

i.e., the equalizer of γ = ∑a/=b γa;a ,b + γb;a ,b ∶∏a a(Kk)a →∏a/=b a(Kk)b . From (4.5)
we obtain therefore an algebra isomorphism Z(Kk) ≅ Eq(ψ), where Eq(ψ) is de-
ûned analogously to (4.6). Since the inclusion of Sa ∩ Sb into S̃ is the same regard-
less of whether it is viewed as a subset of Sa or of Sb , the canonical map τ′∶H(S̃) →
∏a H(Sa) factors through Eq(ψ) and yields a homomorphism of algebras

τ∶H(S̃) Ð→ Eq(ψ).
Our goal in Section 4.5 will be to prove the following theorem.

_eorem 4.10 _e map τ is an isomorphism.

To show_eorem 4.10, we follow [23] closely. However, we have to reprovemost of
the involved steps, since there are a few diõculties when transferring the arguments
to type D. We start by introducing a partial order on Bk and a cell decomposition of
S̃ and show that it behaves nicely with respect to the partial order.

4.4 Partial Order on Diagrams

Deûne a partial order on Bk as chains of arrows as follows. For a, b ∈ Bk we write
a → b if a and b only diòer locally by one of the moves in Figure 1 (_e diagrams
might have many more cups even separating the involved cups; we only depict the
ones that change in the move from a, depicted in the ûrst column, to b, depicted in
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a b

(I)
i j k l i lj k

a b

(II)
i lj k i j k l

(III)
i j k l i lj k

(IV)
i lj k i j k l

(I′)
i j k i j k

(II′)
i j k i j k

(III′)
i j k i j k

(IV′)
i j k i j k

Figure 1

the second column. _e move always exists whenever both sides of the diagram give
an allowed cup diagram. For instance, there cannot be a dotted cup between the two
cups of a in case (I), since then b would have a nested dotted cup.

We extend this to a partial order on Bk by setting a ≺ b if there exists a ûnite chain
of arrows a → c1 → ⋅ ⋅ ⋅ → cr → b. Since the local moves listed above always preserve
the parity of the number of dots, an element from Bevenk is never ≺-comparable with
an element from Bodd

k . On the other hand, it is easy to see that the arrows induce
connected graphs on Bevenk and Bodd

k . From now on, we will work with the two sets
separately (each of them could be seen as the analog of [23]), and ûx a reûnement of
these two partial orders to a total order, denoted by <.

Remark 4.11 _e graphs on Bevenk (resp. Bodd
k ) appear a�er doubling the arrows

as the Ext-quiver of the category of perverse sheaves on isotropic Grassmannians,
constructible with respect to the Schubert stratiûcation and describe the microlocal
geometry there; see [4, 10].

Deûnition 4.12 Given a cup diagram a cup is called outer if it is not nested in any
other cup and does not contain any dotted cup to the right. We call it inner if it is not
outer. _e degree of nesting of a cup is deûned inductively: it is zero if it is outer and
d if it is outer a�er removing all cups with degree of nesting strictly smaller than d.
(Note that the local moves a → b never decrease the degree of nesting.)

Example 4.13 Every cup diagram has at least one outer cup, i.e., a cup with degree
of nesting equal to zero. For instance, the outer cups for (1.1) are the cup (3, 4) in (i),
the cup (1, 4) in (ii), and both cups (1, 2) and (3, 4) in (iii). In addition we have here
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Figure 2

cups with degree of nesting equal to 1, namely the cup (1, 2) in (i) and the cup (2, 3)
in (ii).

Example 4.14 _e partial ordering on Beven3 , with outer cups in (dashed) red, is
displayed in Figure 2. For Bodd

3 just add or remove (whatever is possible) a dot on the
cup passing through the le�most point.

4.5 The Cell Decomposition

We will construct a cell decomposition of the topological Springer ûbre by deûning
a paving of each Sa , a ∈ Bk , by even dimensional real spaces that we then show to
behave well under intersections. To deûne a cell decomposition of Sa for a ∈ Bk , we
ûrst attach to each cup diagram a ∈ Bk a directed graph Γa as follows. _e set of
vertices

V(Γa) = cups(a)

is the set of cups in a; while the set of edges E(Γa) is deûned as follows. For two
vertices (i1 , j1), (i2 , j2) ∈ V(Γa), we put an arrow (i1 , j1) → (i2 , j2) if there exists a
cup diagram b ∈ Bk with b → a such that a is obtained from b by a local move of type
(I)–(IV) at the positions i1 , i2 , j1 , j2 and furthermore we demand that the degree of
nesting of (i2 , j2) is greater than the one of (i1 , j1).

Example 4.15 Figure 3 gives an example of a cup diagram a with associated
graph Γa .

By construction Γa is a forest, i.e., a union of trees. _e roots R(Γa) of Γa are
precisely the outer cups. Any cup is either a root or it is the target of a unique arrow,
hence #R(Γa) + #E(Γa) = ⌊k/2⌋, and we have a natural bijection between R ∪ E and
cups(a).

Now assign to each subset J ⊂ R(Γa) ∪E(Γa) the subspace C′J of Scups(a) given by
all elements (xc)c∈cups(a) satisfying the following:
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a
1 2 3 4 5 6 7 8 9 10 11 12 13

Γa
degree of
nesting

3

2

1

0

(3, 4)

(2, 5) (6, 7)

(1, 8) (10, 11)

(9, 12)

Figure 3

(C1) If c ∈ R(Γa) ∩ J, then xc = p,
(C2) if c ∈ R(Γa) but c /∈ J, then xc /= p;
(C3) if (c → d) ∈ E(Γa) ∩ J, then xc = xd ;
(C4) if (c → d) /∈ E(Γa) ∩ J, then xc /= xd .

Example 4.16 Consider the following cup diagram a with its graph Γa :

1 2 3 4 (1, 2)

(3, 4) .

We have one root α and one edge e. _e possible subsets J are thus ∅, {α}, {e}, and
{α, e}. _e corresponding cells in S × S ≅ Sa are then

J C′J ⊂ S × S C j = (Ψa)−1(C′J)
∅ {(x , y) ∣ x /= y, y /= p} {(x ,−x ,−y, y) ∣ y /= p, x /= y} ,

{α} {(x , p) ∣ y /= p} {(x ,−x ,−p, p) ∣ x /= p} ,
{e} {(x , x) ∣ x /= p} {(x ,−x ,−x , x) ∣ x /= p} ,

{α, e} {(p, p)} {(p,−p,−p, p)} .

Lemma 4.17 With the notation above there is a decomposition

Scups(a)
= ⊔

J⊂R(Γa)∪E(Γa)
C′J

into disjoint aõne cells C′J homeomorphic to R2(n−∣J∣).

Proof _e above decomposition is by construction disjoint. To see that it is exhaus-
tive, we construct to each point P ∈ Scups(a) a set J such that P ∈ C′J . First note that
conditions (C1) and (C2) precisely deûne J∩R(Γa). Nowwemove upwards along the
edges that uniquely determines J ∩ E(Γ) via conditions (C3) and (C4) by comparing
the values at the two ends of each edge. _e construction gives spaces homeomorphic
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to R2(n−∣J∣) and it veriûes that
C′J = ⋃

J⊂I
C′I .

_e lemma follows.

Pushing forward along (4.2) gives a cell decomposition

Sa = ⊔
J⊂R(Γa)∪E(Γa)

CJ ,

with CJ = (Ψa)−1(C′J).

4.6 Compatibility with Intersections

Deûnition 4.18 For a, b ∈ Bk , we deûne the distance d(a, b) between a and b as
the minimal length of a non-directed chain of arrows connecting a and b. If no such
chain exists, we put d(a, b) = ∞.

Remark 4.19 Since all local moves preserve parity, we obviously have d(a, b) = ∞
if a and b have diòerent parity. Otherwise d(a, b) is always ûnite, since the graphs
for Bevenk and Bodd

k are ûnite and connected.

Lemma 4.20 Let a, b ∈ Bk with d(a, b) < ∞. _en there exists c such that d(a, b) =
d(a, c) + d(c, b) and a ≻ c ≺ b.

Proof Let (a = a0 , a1 , . . . , ar = b) be a minimal non-directed chain from a to b. If
a0 ≻ a1 ≻ ⋅ ⋅ ⋅ ≻ a i ≺ a i+1 ≺ ⋅ ⋅ ⋅ ≺ ar for some i, then we set c = a i , and there is nothing
to do. Otherwise, there exists some subsequence a i−1 → a i ← a i+1, and the idea
of the proof is to successively eliminate all such subsequences without changing the
length of the chain. From the set of all such subsequences, choose one (not necessarily
uniquely deûned) such that its middle term a i is maximal in the order.
Due to the minimality of the chain we have a i−1 /= a i+1, and there exists by [4,

Lemma 1.8.3] with the identiûcation from [10] a diamond

a i

a i−1

a′

a i+1

with the property that either a′ > a i−1 or a′ > a i+1 (indicated by the double arrows).
We now substitute a i with a′ in our chain of arrows. If this procedure creates a sub-
sequence such that a i−2 → a i−1 ← a′ or a′ → a i+1 ← a i+2, then both a i−1 and a i+1
are lower in the order and we proceed by induction. In the end this will produce a
sequence of the form a ← a′1 ← ⋅ ⋅ ⋅ ← a′i → ⋅ ⋅ ⋅ → a′r−1 → b, which is still minimal,
and a′i satisûes the conditions for the element c. (Note that a′i can be equal to a or
b.)
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As in type A, the distance function has a nice diagrammatical interpretation also
showing the consistency of our notation d(a, b).

Lemma 4.21 Let a, b ∈ Bk with d(a, b) < ∞ and let m = ⌊ k
2 ⌋. If b

∗a can be oriented,
then the two deûnitions of d(a, b) (Deûnition 4.8 and 4.18) agree, and m − d(a, b)
equals the numbers of circles in b∗a.

Proof We ûrst claim that the minimal degree equals m − γ = ⌊ k
2 ⌋ − γ, where γ is

the number of circles in b∗a. We argue by induction on k. _e base cases k = 1 or
k = 2 are easy to check. If a = b, then a∗a has m circles each containing exactly one
cup and cap. Hence, orienting each of them anti-clockwise gives the minimal degree
0 and the claim follows. If a /= b, then the diagram a∗b contains at least one kink. If
we can ûnd an undecorated kink, we remove it by the following straightening rules:

∧ ∧
∨

∧
∨ ∨
∧

∨
∧ ∧
∨

∧
∨ ∨
∧

∨

_is decreases m and the degree function d(a, b) by one, but keeps the number
of circles, and we are done by induction. If there is no such undecorated kink, then
there is at least one decorated kink. _e kink can be followed on both sides by rays
which means it is part of a subdiagram from the following list (recalling that dotted
cups can’t be to the right of rays):

∧ ∧
∨ ∨ ∨ ∨

∧
∨ ∨ ∨

∧
∨

∧ ∧
∨ ∨

_en we apply the “dot removal trick”, which means we remove the two dots and
adjust the orientation in the unique possible way. Observe that the degree of the dia-
gram is not changed. _e result contains an undecorated kink, and we can argue by
induction as above.

In all other cases, the kink is part of a subdiagram from the following list (recalling
the assumption that there is no undecorated kink and also the rules for placing the
dots):

∨ ∨
∧ ∧ ∧ ∧

∨ ∨ ∨ ∨
∧ ∧ ∧ ∧

∨ ∨

Apply the dot removal trick again, so as to remove the two dots, and adjust the
orientation such that the two outer labels, thus the type (clockwise or anticlockwise)

https://doi.org/10.4153/CJM-2015-051-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-051-4


1304 M. Ehrig and C. Stroppel

as well as the degree of the diagram, is preserved. Again, the result contains an un-
decorated kink, and we can argue by induction as above. _is proves the claim.

Starting from a∗a we apply the minimal path to a to obtain b. In each step the
number of circles decreases at most by one, hence the distance d(a, b) is at least m
minus the number of circles. To show equality consider a∗b. If a = b, then there is
nothing to do, so assume a /= b. If there is a circle containing two outer cups, then we
can apply a move b → b′ or b ← b′, which splits the circle into two. Otherwise, we
ûnd two cups on the same circle paired by an edge such that one of the cups is outer.
Again we can apply some move to split the original circle. Repeating the procedure
we ûnally give a path d(a, b) of the required length starting at a∗b and changing b
successively.. It ends in a∗a, since in each step one new circle was created (resulting
in m circles) without changing the cap diagram a∗.

Lemma 4.22 Let c be such that d(a, b) = d(a, c) + d(c, b); then
Sa ∩ Sb = Sa ∩ Sc ∩ Sb .

Proof If Sa ∩ Sb = ∅, there is nothing to show, so we assume Sa ∩ Sb /= ∅. In the
case where a = b, we have c = a = b and the claim is again trivial. Now we argue by
some twofold induction, namely on d(a, b) starting with d(a, b) = 1 and on d(a, c)
starting with d(a, c) = 1.

In the case d(a, b) = 1 where, there is again nothing to show, since either c = a or
c = b, so we assume now d(a, c) = 1 (and a /= b arbitrary). Since Sa ∩ Sb /= ∅, the
circle diagram a∗b can be oriented and contains ⌊ k

2 ⌋−d(a, b) circles by Lemma 4.21.
Since c lies on a minimal length path between b and a there is a sequence of moves
from a∗b to a∗c and then to a∗a that creates a new circle in each step. In particular,
every orientation of a∗b gives rise to an orientation of a∗c and then obviously also of
a∗a, and therefore Sa ∩ Sb ⊂ (Sa ∩ Sc) ∩ Sb .

It remains to show the statement for d(a, b) = r, d(a, c) = s > 1 with c /= b. We
assume that it holds for all a′, b′, c′ such that d(a′ , b′) = d(a′ , c′) + d(c′ , b′) < r and
all x such that d(a, b) = d(a, x) + d(x , b) and d(a, x) < s.
Choose x /= a, c on a minimal path connecting a and c thus satisfying d(x , b) =

d(x , c) + d(c, b) < r. _en by assumption,

Sx ∩ Sb = Sx ∩ Sc ∩ Sb .
Since d(a, x) < s and d(a, b) = d(a, x) + d(x , b), we also have

Sa ∩ Sb = Sa ∩ Sb ∩ Sx .
Altogether this gives

Sa ∩ Sb = Sa ∩ (Sb ∩ Sx) = Sa ∩ Sb ∩ Sx ∩ Sc = Sa ∩ Sb ∩ Sc ,
and the lemma follows.

Let S<a = ⋃b<a Sb and S≤a = ⋃b≤a Sb .

Lemma 4.23 For any a ∈ Bk , we have
(4.7) S<a ∩ Sa = ⋃

b→a
(Sb ∩ Sa).
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Proof _e right-hand side, say R, of (4.7) is by deûnition contained in the le�-hand
side L. For the other inclusion, L ⊂ R, we have to show that Sb ∩ Sa ∈ R for b < a,
b /= a. Using Lemma 4.20 (and its proof) we can chose c such that d(a, c)+ d(c, b) =
d(a, b) and c → a, and thus (Sa ∩ Sb) ⊂ (Sa ∩ Sb ∩ Sc) by Lemma 4.22. Hence
(Sa ∩ Sb) ⊂ (Sa ∩ Sc), and the claim follows.

_e cell decompositions behave well under pairwise intersections.

Proposition 4.24 Let a, b ∈ Bk and b → a. _en the following hold:
(i) If b → a is of type (I)–(IV), then, by deûnition of Γa , the local move determines a

unique edge e ∈ E(Γa), and we have

Sa ∩ Sb = ⋃
J⊂R(Γa)∪E(Γa),e∈J

CJ .

(ii) If b → a is of type (I′)–(IV′), there exists a unique cup α ∈ cups(a) such that
α ∉ cups(b). Furthermore, α ∈ R(Γa) and

Sa ∩ Sb = ⋃
J⊂R(Γa)∪E(Γa),α∈J

CJ .

Proof _is follows directly from the moves in Figure 1: in (i), the cups involved in
the move determine a new edge in Γa ; in case (ii), the move creates a new cup that is
outer, hence contained in R(Γa). Now any point in Sa ∩ Sb is contained in one of the
cells on the right by construction and (C1)–(C4). Conversely, points from other cells
are not contained in the intersection.

We call the unique cup in R(Γa) obtained from some ûxed b → a via the con-
struction from Proposition 4.24(ii) special. Let R(Γa)sp be the set of special cups
in a.

Remark 4.25 For a ∈ Bk with k odd, the moves I′)-IV′) in Figure 1 imply that all
outer cups are special if the ray involved in a is dotted, whereas only outer cups to the
right of the ray are special if the ray is undotted.

Corollary 4.26 Let a ∈ Bk .
(i) If k is even, then

S<a ∩ Sa = ⋃
J⊂R(Γa)∪E(Γa)

J∩E(Γa)/=∅

CJ .

(ii) If k is odd, then

S<a ∩ Sa = ⋃
J⊂R(Γa)∪E(Γa)

J∩(E(Γa)∪R(Γa)sp)/=∅

CJ .

Proof _is follows directly from the deûnition of S<a from Proposition 4.24 using
the deûnition of special cups from the moves in Figure 1.
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4.7 Proof of Theorem 4.10 and Combinatorial Dimension Formula

_e following cohomology vanishing is completely analogous to [23].

Proposition 4.27 Let a, b ∈ Bk .
(i) _e subset S<a ∩ Sa has cohomology in even degrees only. _e map H(Sa) →

H(S<a ∩ Sa), induced by the inclusion, is surjective.
(ii) _e homomorphism

H(S<a ∩ Sa) Ð→⊕
b<a

H(Sb ∩ Sa)

induced by the inclusion is injective.
(iii) _e subset S≤a has cohomology in even degrees only. _e Mayer-Vietoris sequence

for (S<a , Sa) breaks down into short exact sequences

0→ H2 l
(S≤a) →

H2l (S<a)
⊕

H2l (Sa)
→ H2 l

(S<a ∩ Sa) → 0,

for 0 ≤ l ≤ k.

Proof For the proof of part (i) we refer to [23, Proposition 4]; for part (ii), see [23,
Lemma 5], and for part (iii), see [23, Proposition 3]. In all cases the arguments apply
directly to our situation.

Now we are prepared to give the proof of _eorem 4.10.

Proof of_eorem 4.10 From Proposition 4.27 we deduce as in [23, Proposition 3]
that the following sequence is exact:

0Ð→ H(S≤a)
ϕ
Ð→⊕

b≤a
H(Sb)

ψ−
Ð→ ⊕

b<c≤a
H(Sb ∩ Sc),

where ϕ is induced by the inclusion Sb ⊂ S≤a , and ϕ− ∶= ∑b<c≤a(ϕb ,c − ϕc ,b), where
ϕb ,c ∶H(Sb) Ð→ H(Sb ∩ Sc), again induced by the corresponding inclusion. When a
is chosen maximal in Bevenk , we obtain that

0Ð→ H(S̃even) Ð→ ⊕
b∈Beven

k

H(Sb) Ð→ ⊕
b ,c∈Beven

k ,b<c
H(Sb ∩ Sc)

is exact, and analogously for S̃odd. _is is equivalent to _eorem 4.10.

_e dimension of H(S̃) can be computed now purely combinatorially.

Proposition 4.28 _e following hold

dimH(S̃) = 2dimH(S̃even) = 2dimH(S̃odd
) = 2k .

Proof We have the cell decomposition on Sa ∩ S<a by Corollary 4.24. To determine
the dimension of the cohomology, it is enough to count for each a ∈ Bk the cells
contained in Sa but not in any intersection Sa ∩ Sb with b < a by considering the
induced cell partition (see [23, Lemma 6]), and add all of these numbers up.
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We start with the case of even k. For ûxed a ∈ Bk , the number of cells that do not
lie in an intersection of the form Sa ∩ Sb for b < a is equal to 2outer(a) by Lemma 4.24,
where outer(a) denotes the number of outer cups of a. To count these we proceed
by induction. _e case k = 2 is obvious. For arbitrary even k, consider the cup C in
a that contains the last vertex. Say it connects vertex k with vertex k − (2 j − 1) (with
1 ≤ j ≤ m = k/2). If this cup is dotted, then it is the only outer cup of the diagram,
and the number of cells to be counted for such a is just twice the number of diagrams
with a cup of this form, which gives

2[(
2(m − j)
m − j

) ⋅
1
j
(
2( j − 1)
j − 1

)] ,

where the second factor is the Catalan number C j−1 counting the, necessarily undec-
orated, diagrams inside our ûxed cup C of width 2( j − 1), while the ûrst factor is the
number of diagrams to the le� of the ûxed cup; see Remark 3.3. We claim that the
sum over j = 0, . . . ,m of these terms gives (2m

m ). Indeed, using induction hypothesis
in (4.9), the equality

(
2(m − j)
m − j

) = (4 −
2

m − j
)(

2(m − 1 − j)
m − 1 − j

)

in (4.8), and the Segner recurrence∑m−2
j=0 C jCm−2− j = Cm−1 in (4.10) we obtain

m

∑
j=1

2[(2(m− j)
m− j ) ⋅ 1

j (
2( j−1)

j−1 )]

= 2
m (

2(m−1)
m−1 ) +

m−1

∑
j=1

2[(2(m− j)
m− j ) ⋅ 1

j (
2( j−1)

j−1 )]

= 2
m (

2(m−1)
m−1 ) + 4

m−1

∑
j=1

2[(2(m−1− j)
m−1− j ) ⋅ 1

j (
2( j−1)

j−1 )](4.8)

− 4
m−2

∑
j=0

[ 1
j+1(

2 j
j )

1
m−1− j (

2(m−2− j)
m−2− j )]

= 2
m (

2(m−1)
m−1 ) + 4(2(m−1)

m−1 ) − 4
m−2

∑
j=0

[ 1
j+1(

2 j
j )

1
m−1− j (

2(m−2− j)
m−2− j )](4.9)

= 2
m (

2(m−1)
m−1 ) + 4(2(m−1)

m−1 ) −
4
m

(
2(m−1)
m−1 )(4.10)

=
4m − 2

m
(
2(m−1)
m−1 ) = (

2m
m ).

If the cup C is undotted, then it is an outer cup; but the outer cups to the le� still
contribute to the number of cells, giving us

2[2k−2 j
⋅
1
j
(
2( j − 1)
j − 1

)] ,

where we have again the number of diagrams inside our ûxed cup C times the con-
tribution from the part to the le� of C, which is 2k−2 j by induction. Altogether, we
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get
m

∑
j=1

2[(2(m− j)
m− j ) ⋅ 1

j (
2( j−1)

j−1 )] +
m

∑
j=1

2[22m−2 j 1
j (

2( j−1)
j−1 )]

= (
2m
m ) + 2

m (
2(m−1)
m−1 ) + 4

m−1

∑
j=1

2[22(m−1)−2 j 1
j (

2( j−1)
j−1 )]

=
(Induction)

(
2m
m ) + 2

m (
2(m−1)
m−1 ) + 4[22(m−1)

− (
2(m−1)
m−1 )] = 22m

= 2k .

Now let k = 2m + 1 be odd. We distinguish the case where the ray has a dot from
the case where it does not. In the ûrst case the diagram only contributes a single cell,
since all outer cups are special, thus we only have to count the possible diagramswhen
the dotted ray is at position k − 2 j for a ûxed 0 ≤ j ≤ m giving us

(
2(m − j)
m − j

) ⋅
1

j + 1
(
2 j
j
),

with the ûrst factor being the number of possible decorated cup diagrams to the le� of
the ray, and the second factor the number of undecorated cup diagrams to the right.
If instead the ray is undotted, then only outer cups to the right of the ray are special,
and we have to count the cells arising from the outer cups to the le�, which gives us
22(m− j) ⋅ 1

j+1(
2 j
j ).

Hence it is enough to verify ∑m
j=0[(

2(m− j)
m− j ) + 22(m− j)] ⋅ 1

j+1(
2 j
j ) = 22m+1, which is

clear for m = 0. _e le�-hand side, however, equals

2
m+1(

2m
m ) +

m−1

∑
j=0

[(
2(m− j)
m− j ) + 22(m− j)] ⋅ 1

j+1(
2 j
j )

= 2
m+1(

2m
m ) +

m−1

∑
j=0

[(
2(m− j−1)
m− j−1 ) + 22(m− j−1)] ⋅ 1

j+1(
2 j
j )

+
m−1

∑
j=0

[(
2(m− j)
m− j ) − (

2(m− j−1)
m− j−1 ) + 3 ⋅ 22(m− j−1)] ⋅ 1

j+1(
2 j
j )

=
(Induction)

2
m+1(

2m
m ) + 22m−1

+
m−1

∑
j=0

[
3(m− j)−2

m− j (
2(m− j−1)
m− j−1 ) + 3 ⋅ 22(m− j−1)] ⋅ 1

j+1(
2 j
j )

= 2
m+1(

2m
m ) + 22m−1

+ 3
m−1

∑
j=0

[(
2(m− j−1)
m− j−1 ) + 22(m− j−1)] ⋅ 1

j+1(
2 j
j )

− 2
m−1

∑
j=0

1
m− j (

2(m− j−1)
m− j−1 ) ⋅ 1

j+1(
2 j
j )

=
(Induction)

2
m+1(

2m
m ) + 22m−1

+ 3 ⋅ 22m−1
− 2

m−1

∑
j=0

1
m− j (

2(m− j−1)
m− j−1 ) ⋅ 1

j+1(
2 j
j )

=
(Segner rec.)

2
m+1(

2m
m ) + 22m+1

− 2
m+1(

2m
m ) = 22m+1 ,
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and so the claim holds. Hence the lemma is proved.

5 Domino Tableaux and Combinatorial Bijections

In the following, let λ be a partition of 2k, viewed as a Young diagram of shape λ (i.e.,
the parts of λ are the length of the rows of the diagram). We will picture them using
“English notation”.

5.1 (Signed Admissible) Domino Tableaux and Clusters

We now introduce the combinatorics of domino diagrams and tableaux, following
[53], and connect them a�erwards with the geometry of Springer ûbres and our cup
diagram combinatorics. _e cup diagrams then provide an elementary description of
the geometry, in particular pairwise intersections of components.

Deûnition 5.1 A domino diagram T with k dominoes of shape λ is a Young diagram
T of shape λ together with a partitioning of the boxes into subsets of order 2, called
dominoes, such that the paired boxes share a common edge (vertically or horizontally).
_e set of all domino diagrams with shape λ will be denoted by DY(λ).

When picturing a domino diagram, we omit the common edge of a pair.

Example 5.2 Here is an example of a domino diagram of shape λ = (4, 3, 1), the
le� diagram shows the 2-subsets, which are then turned into dominoes in the right
diagram:

Recall from Section 2 the notion of admissible partition that was used to label con-
jugacy classes of nilpotent elements. We now deûne admissible domino tableaux.

Deûnition 5.3 An admissible domino tableau t is a domino diagram from DY(λ)
together with a ûlling of the 2k boxes in the diagram with the integers 1, . . . , k such
that
(ADT1) Each integer occurs exactly twice and the two boxes it appears in form a

domino.
(ADT2) _e entries in each row and column are weakly increasing from le� to right

and top to bottom.
(ADT3) _e sequence of partitions starting with t and then obtained by successively

eliminating the domino labelled with the largest integer consists only of ad-
missible partitions as in Deûnition 2.3.

We denote the set of all admissible domino tableaux of shape λ by ADT(λ). If we drop
the last condition (ADT3), then we get more generally the set DT(λ) of standard
domino tableaux of shape λ.
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We again abbreviate admissible domino tableaux by drawing dominoes (instead of
pairs of boxes) with only one number per domino (instead of twice the same number
if the corresponding two boxes form a pair).

Example 5.4 _ere are two admissible domino tableaux of shape (3, 3),

ADT((3, 3)) = { t1 = 1 2 3
,

t2 = 1
2

3 }.
Indeed, we ûrst ûll the Young diagram of shape (3, 3) with the integers 1, 2, 3, each

occurring twice such that the ûllings are weakly increasing in rows and columns:

t1 = 1 2 3
1 2 3 t2 = 1 2 2

1 3 3 t3 = 1 1 3
2 2 3 t4 = 1 1 2

2 3 3
To satisfy (ADT1) we have to remove t4, since the two boxes labelled 2 do not form

a domino. Since t3 violates (ADT3) we are le� with t1 and t2, which indeed satisfy
(ADT1)–(ADT3).

From now on we restrict ourselves to partitions λ = (λ1 , λ2) with only 2 parts.
Note that the deûnition of an admissible domino tableau forces horizontal dominoes
to occur with the le� box in an even column. In particular, we must have a vertical
domino in the ûrst column (e.g., t3 is not possible).

Deûnition 5.5 Let T ∈ ADT((λ1 , λ2)) be an admissible domino tableau and let p
be a domino in T . We deûne the type of p as

type(p) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

V0 if p is vertical and in an even column,
V1 if p is vertical and in an odd column,
H if p is horizontal.

Remark 5.6 In [53] dominoes of type V0 , V1 , H are called of type I−, I+, N, respec-
tively.

To get a labelling set for the irreducible components of the Springer ûbre we need
to introduce an additional data in form of a sign for the dominoes of type V1.

Deûnition 5.7 A signed domino tableau is an admissible domino tableau with signs
(i.e., an element in {+,−}) attached to each domino of type V1.

_e set of signed domino tableaux of shape λ is denoted ADTsgn(λ).

Example 5.8 _ere are six signed domino tableaux of shape (3, 3) (with the under-
lying domino tableaux from Example 5.4):

t1,++ = 1

+

2
3

+

t1,+− = 1

+

2
3

−

t1,−+ = 1

−

2
3

+

t1,−− = 1

−

2
3

−

t2,+ = 1

+

2

3
t2,− = 1

−

2

3
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_e admissibility condition (ADT3) implies that dominoes of typeH have their le�
part in an even column, which means that our tableaux are built up from two basic
building blocks, called clusters.
A closed cluster is a connected part of an admissible domino tableau containing

all dominoes between a domino of type V1 and the next domino to its right of type
V0, including the two vertical dominoes. Hence a�er removing the ûlling, it is a part
of the underlying Young diagram of the following form (starting at an odd column
with an even number of dominoes of type H arranged in two rows of the same length
between the two vertical dominoes)

. . .

An open cluster is a connected part of an admissible domino tableau given by a domino
D of type V1 with no domino of type V0 to its right and all dominoes of type H to the
right, i.e., a diagram of the form

. . . . . .
.

Clearly, every (signed) admissible standard domino tableau decomposes uniquely
into a ûnite disjoint union of closed clusters and possibly one extra open cluster. Such
an open cluster exists if and only if the shape is (λ1 , λ2) with λ1 (and then also λ2)
odd.

Example 5.9 _e admissible domino tableau

t = 1
2

4

3

5
6 7 8 9

10

11
12 13

14

15

16

17

18 19

has three closed clusters

C1(t) = {1, 2, 3, 4, 5, 6}, C2(t) = {7, 8}, and C3(t) = {9, 10, 11, 12}

and one open cluster C4(t) = {13, 14, 15, 16, 17, 18, 19}.

Since by deûnition each of the clusters includes exactly one domino of type V1, we
can speak of the sign of a cluster for a signed domino tableau.

Deûnition 5.10 Let t, t′ ∈ ADTsgn(λ) be two signed domino tableaux that coincide
if we forget the signs. _en t ∼cl t′ if the signs of all closed clusters of t and t′ coincide.
_is is obviously an equivalence relation. We denote the equivalence classes for ∼cl by
ADTsgn,cl(λ).

Since in our case there is at most one open cluster for a given admissible domino
tableau, the equivalence classes consist of either one element, if there is no open clus-
ter, or of two elements, if there is an open cluster.

5.2 Combinatorial Bijections

Given a cluster C in a (signed) domino tableau we call the part consisting of the domi-
noes of type H the standard tableau part of C, since viewing the dominoes as ordinary
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boxes of a tableau we have in fact a standard tableau T(C). Recall the well-known bi-
jection

{(ordinary) standard tableaux of shape (r, s)}(5.1)
1∶1
←→

{undecorated cup diagrams on r + s vertices with s cups}

sending a standard tableau T to the unique cup diagram C(T) where the s numbers
appearing in the bottom rowmark the right endpoints of the cups and the number in
the top row are the le� endpoint of cups or endpoints of rays; see e.g., [51, Proposi-
tion 3].

Example 5.11 _e following ûve standard tableaux T

1 2 5
3 4

1 3 5
2 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

correspond to the undecorated cup diagrams C(T):
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

We extend the bijection (5.1) and assign to a signed closed cluster C with standard
tableau part containing 2m dominoes of type H a cup diagram on 2m+2 vertices with
m + 1 cups by adding an additional vertex to the le� and right of C(T(C)) connected
by a cup. _is cup is dotted if the sign of C is − and undotted if the sign is +. If the
clusterC is open, we again take the cup diagramC(T(C)) associated with its standard
tableau part and add an additional vertex with a ray to the le� of C(T(C)). _is ray is
dotted if the sign of C is − and undotted if the sign is +. Since every signed standard
tableau is a concatenation of closed and possibly one open cluster, our assignment

closed
. . . { C(T) if −

C(T) if +

open { c(T) if −

c(T) if +

extends to a map F that assigns to each admissible tableau a cup diagram obtained by
putting the cup diagrams associated with the single clusters next to each other (in the
same order as the clusters).

Lemma 5.12 Let r and s be natural numbers such that (r, s) is an admissible shape.
_e assignment F deûnes a bijection

ADTsgn((r, s))
1∶1
←→ {cup diagrams on r+s

2 vertices with ⌊ s
2 ⌋ cups} .

Proof _e map is indeed well deûned, since no closed cluster appears to the right
of an open cluster, thus no dotted cup to the right of a ray and of course no dotted
cup nested inside another cup. _e inverse map is given as follows: take a cup di-
agram a of the above form and ûrst ignore all dots. _en create a domino tableau
with vertical dominoes exactly in the rows labelling the endpoints of outer cups to
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the le� of all the rays in a and the le�most ray in a. Fill them with their column num-
ber and add additionally a sign in case the column number is odd. _is sign is + if
the corresponding cup/ray was originally undotted and − in case it was dotted. _en
forget these outer cups and the le�most ray and add dominoes of type H in between
and to the right of these vertical dominoes to get the correct shape. Turn them into
standard tableaux parts of the clusters using the bijection (5.1). For the ûlling, the
numbers labelling the rows between the corresponding two vertical dominoes or to
the right of the rightmost vertical dominoes should be used (so the bijection (5.1) has
to be slightly adjusted by shi�ing the numbers for the ûlling by the column number
of the next vertical domino to the le�). Since inside an outer cup or to the right of the
le�most ray we have only undotted cups, the assignment makes sense. We omit the
straightforward calculations to verify that this is indeed the inverse map.

Corollary 5.13 _e bijection from Lemma 5.12 restricts to bijections

{T ∈ ADTsgn((r, s)) ∣ the number of − signs is even (resp. odd)}
1∶1
←→

{
cup diagrams on r+s

2 vertices with ⌊ s
2 ⌋ cups

and an even (resp. odd) number of dots }

and gives the following two bijections in the special case r = s = k:

{T ∈ ADTsgn((k, k)) ∣ the number of − signs is even} 1∶1
←→ Bevenk

{T ∈ ADTsgn((k, k)) ∣ the number of − signs is odd} 1∶1
←→ Bodd

k

Proof _is follows directly from the deûnitions and Lemma 5.12.

Remark 5.14 Lemma 5.12 transfers the notion of closed and open clusters to cup
diagrams: a closed cluster consists there of a cup c together with all cups contained in
c, with the property that c is not contained in any other cup and located to the le� of
all rays, whereas an open cluster consists of the le�most ray and all cups and rays to
the right of it.

A cycle move on a closed cluster is the move illustrated in the following diagram
changing a closed cluster C into a (not admissible) standard domino tableau Cyc(C)
containing only horizontal dominoes:
(5.2)

Cycle ∶ a b c d e
f g h i

j a b c d e
f g h i j

Note that neither the shape nor the set of numbers used for the ûlling is changed. _e
numbers are consecutive from a set of 2m numbers for the shape (2m, 2m). In con-
trast, it is important to observe that the ûlling in the subdiagrams of shape (2m′ , 2m′)
using the ûrst 2m′ dominoes for m′ < m is not a set of consecutive numbers.
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_e concept of cyclemoves goes back to [17]. We use them here to establish a bijec-
tion between signed domino tableaux of a ûxed shape and ordinary domino tableaux
of the same shape.

Lemma 5.15 Applying the cycle move (5.2) to each closed cluster with sign +, and
forgetting a�erwards all signs determines a bijection

Cyc∶ADTsgn,c l((r, s))
1∶1
←→ DT((r, s))

for any admissible shape (r, s).

Proof Obviously, the map is well deûned and injective. For surjectivity take a stan-
dard domino tableau S ∈ DT((r, s)). If there is no horizontal domino starting at
an odd column number, then just place minus signs at all vertical dominoes in odd
columns to obtain a preimage of S. Otherwise, take the ûrst such horizontal domino
D in the ûrst row. We claim it is the top le� domino of a unique connected subdia-
gram S′ of S of the form shown on the right-hand side of (5.2); in particular, it is the
smallest such rectangular shaped diagram containing consecutive numbers as ûlling.
Hence, the uniqueness is clear and also the existence in case S has two rows of the same
length. Otherwise, S has shape (r, s) with r, s odd in which case there is at least one
vertical domino to the right of D and the existence is again clear. Now use (5.2) and
apply Cycle−1 to S′ and assign a + sign to the resulting cluster. Repeat this procedure
with the part of the diagram to the right of S′ observing that this is again of admissible
shape. _e result is an admissible signed domino tableau except that probably some
signs are missing. Finally insert −’s for all missing signs to get Cyc−1

(S).

Example 5.16 _e bijection from Corollary 5.13 assigns to the cup diagrams from
Example 4.14 (read from le� to right columnwise from top to bottom) the following
signed domino tableaux:

1 2 3 4 5 6
+ + +

1 4 5 6
+ +

2
3 1 2 3 6

+ +

4
5 1 2 3 4 5 6

− − +

1 62 4
3 5+

1 2 3 4 5 6
+ − −

1 2 3 6
− −

4
5 1 62 3

4 5+

1 4 5 6
− −

2
3 1 2 3 4 5 6

− + −

_ey correspond via Lemma 5.15 to the following standard domino tableaux:

1 3 5
2 4 6

1 2 5
3 4 6

1 3 4
2 5 6 1 2 3 4 5

6
1 2 4
3 5 6

1
2 3 4 5 6 1 2 3 4

5 6 1 2 3
4 5 6 1 2

3 4 5 6 1 2 3
4 5 6

Remark 5.17 Another bijection between signed domino tableaux of a ûxed shape
and certain standard domino tableaux using cycle moves was established in [34]. _is
bijection diòers slightly from ours, since we never apply a cycle move to open clusters,
thus the shape stays unchanged; we ûx instead the parity of the total number of minus
signs.
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Deûnition 5.18 A 2-row character of type Dk is an unordered pair {λ, µ} of 1-row
partitions λ, µ with a total number of k boxes. A special bitableau of typeDk is a 2-row
character of typeDk ûlled with the numbers {1, . . . , k} increasing in the two rows. Let
Ωa ,b = Ω(Dk)a ,b be the set of such special bitableaux where λ has a boxes and µ has
b boxes.

_e irreducible representations of the Weyl group W(Bk) are indexed by ordered
pairs of partitions (λ, µ); see e.g., [30] or [41, 8.2]. _eir restrictions S(λ ,µ) to the
index 2 subgroup W(Dk) stay either irreducible, but two irreducible representations
become isomorphic (namely the one indexed by (λ, µ) and (µ, λ) in case λ /= µ) or
split into two non-isomorphic irreducible summands Sλ ,µ ,+ , Sλ ,µ ,− (if λ = µ). Let
s i , 0 ≤ i ≤ k − 1 be the Coxeter generators ofW(Dk) labelled by the vertices of the
Dynkin diagram. We choose the labelling such that there is an edge between 0 and
2 and between i and i + 1 for 1 ≤ i ≤ k − 2. _en {s i ∣ 1 ≤ i ≤ k − 1} generate a
subgroup isomorphic to Sk . _e 2-row characters appear naturally as summands in
the following induced module.

Lemma 5.19 _e induced trivial representation IndW(Dk)
Sk

1 of Sk decomposes into a
multiplicity-free sum of 2-row characters.

Proof Let A = (Z/2Z)k−1. SinceW(Dk) ≅ A⋊Sk we can apply theWigner–Mackey
little group argument ([41, 8.2]) to construct the irreducible characters ofW(Dk). _e
Sk-action on the group of characters of Ahas exactly ⌊k/2⌋+1 orbits, andwe can chose
representatives χ0 , . . . , χ⌊k/2⌋ such that the stabiliserH i of χ i equals S i×Sk−i if i < k/2
andZ/2Z⋉(Sk/2 × Sk/2) if i = k/2. An irreducible character ofW(Dk) is of the form
IndW(Dk)

A⋊H i
(χ i ⊗ ρ) for some i and ρ an irreducible character of H i . Using Frobenius

reciprocity and the Mackey formula we obtain

HomW(Dk)( Ind
W(Dk)
A⋊H i

(χ i ⊗ ρ), IndW(Dk)
Sk

1)

≅ HomSk(ResW(Dk)
Sk

IndW(Dk)
A⋊H i

(χ i ⊗ ρ),1)

≅ HomSk( Ind
Sk
H i

ResA⋊H i
H i

(χ i ⊗ ρ),1) = HomSk( Ind
Sk
H i

ρ,1) .

_e latter is non-trivial if and only if ρ is the trivial representation of H i ; i.e., the
induced representation is of 2-row type and in case of i = k/2 equal to S(k/2),(k/2),+

or S(k/2),(k/2),−, depending on our choiceW(Dk) ≅ A ⋊ Sk of isomorphism. As the
dimension is at most 1, the claim follows.

We ûnish this section with a bijection between cup diagrams and a labelling set of
the basis elements of our irreducible representations ofW(Dk). Given a cup diagram
a on k vertices consider all the cups c that have no ray to the le� and are not contained
in any other cup. If c is undotted (resp. dotted), mark its le� (right) endpoint and also
the le� (right) endpoints of all the cups contained in c. _en mark the vertices at
rays (if they exist) and all le� endpoints of cups that are to the right of at least one
ray. Let x be the number of marked vertices. _e special bitableau Ω(c) of type Dk
associated with c is then the pair (λ, µ), where λ has x boxes and µ has k − x boxes
ûlled in increasing order with the number of the marked (resp. not marked) vertices.
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_e following bijection identiûes cup diagramswith special bitableaux, explaining the
counting formula from Remark 3.3.

Lemma 5.20 _e assignment c ↦ Ω(c) deûnes for odd r, s bijections

{
cup diagrams on k = r+s

2 vertices with ⌊ s
2 ⌋

cups and an even (resp. odd) number of dots }
1∶1
←→ Ω r+1

2 , s−1
2

and a bijection Bk
1∶1
↔ Ω k

2 ,
k
2
for even r = s = k.

Proof _e number of marked points equals the number of cups plus the number of
rays.

Remark 5.21 (i) _e induced sign representation was identiûed in [28, _eo-
rem 5.17] with a vector space with basis all cup diagrams on k vertices together with
a diagrammatical action ofW(Dk), and the decomposition into irreducible modules
given by the span of cup diagrams with a ûxed number of cups, [28, Remark 5.24].
We get the reûned decompositions of Lemma 5.19:

(5.3) IndW(Dk)
Sk

1 ≅

k−є
2

⊕
l=0

S((k−l),(l)) ,

where є = 1 for k odd and є = 0 for k even with S((k/2),(k/2)) then denoting one out of
the two S((k/2),(k/2)),± depending on the choicesmade, as in the proof of Lemma 5.19.
_e summands can be identiûed with Kazhdan–Lusztig cell modules. Lemma 5.20
does not induce aW(Dk)-equivariant isomorphism (even a�er twisting with the sign
representation) of the corresponding irreducible representations ofW(Dk), but only
compares the dimensions. To establish an explicit isomorphism between the two rep-
resentations, one has to link the canonical basis for the cellmodule (the cup diagrams)
with the analog of a Specht basis (the bitableau) using, for instance, [32], as was done
successfully for type A in [33]. Note, however, that outside of the class of 2-row char-
acters the cell modules are not necessarily irreducible.

(ii) _e bijection from Lemma 5.20 induces via Lemmas 5.12 and 5.15 bijections

DT(r, s) 1∶1
←→ Ω r+1

2 , s−1
2

if r, s odd,

DT(r, s) 1∶1
←→ Ω k

2 ,
k
2

if r = s = k even.

_ey are in fact special cases of known bijections between standard domino tableaux
and pairs of partitions with standard ûllings established in [50]. _ese Stanton–White
bijections were used, for instance, in the study of decompositions of tensor products
of representations of gln and generalized Littlewood–Richardson theory, see e.g., [9]
and in the representation theory of the Weyl group W(Bk); see e.g., [35].

Example 5.22 Figure 4 gives an example summarising our bijections (we only dis-
play half of the bitableaux, since the second half is then determined):

Note once more the diòerent behaviour for the shape (r, s) depending on r /= s or
r = s = k.
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1 3 4 1 2 3+ +
4

2 3 4 1 2 3− −
4

1 2 4 +1
2
3

4

1 2 3 +1
2
4

3

1 3 41 2 3+ −
4

2 3 41 2 3− +
4

1 2 4−1
2
3

4

1 2 3−1
2
4

3

1 3 1 2 3 4+ +

2 4 1 2 3 4− −

1 2 +1
2
3

4

1 41 2 3 4+ −

2 31 2 3 4− +

3 4−1
2
3

4

Figure 4

6 Irreducible Components of the Algebraic Springer Fibre

We consider again the algebraic Springer ûbre of type Dk from Deûnition 2.4. _e
irreducible components ofFN for classicalG were parameterized and partly described
by Spaltenstein in [45]. We brie�y recall the constructions needed in our case.

6.1 Classification of Irreducible Components

Let λ = λN be the partition corresponding to the nilpotent element N ∈ g and let F● ∈
FN . _en N deûnes a sequence of induced endomorphisms on Fn−i/Fi = (Fi)

⊥/Fi ,
for k ≥ i ≥ 0. _eir Jordan types give us a sequence of domino diagrams where
successive shapes diòer by exactly one domino. Putting the number i into the i-th
domino added in this way deûnes an admissible domino tableau SN(F●) of shape λN ,
thus an assignment

(6.1) SN ∶FN Ð→ ADT(λN)

For details we refer the reader to [45] or [53].
_e analogous construction in type A (to each ordinary full �ag F● one assigns an

ordinary standard tableau SAN(F●) encoding the Jordan types of the restriction ofN to
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the i-th part of the �ag) gives rise to thewell-known Spaltenstein–Vargas classiûcation
of irreducible components of Springer ûbres for SL(n).

_eorem 6.1 ([43, 52]) Let N ∈ sl(n,C) be nilpotent and let FA be the �ag variety
for SL(n,C) containing the Springer ûbre FAN . _e map SAN deûnes a surjection onto
the set oSYT(λN) of ordinary standard Young tableaux which separates the irreducible
components Irr(FAN) of FAN . _at is, it deûnes a bijection

SAN ∶ Irr(FAN) Ð→ oSYT(λN).

Given T ∈ oSYT(λN), the irreducible component XAT = (SAN)−1(T) equals the closure
of (XAT)0 = {F● ∣ SAN(F●) = T}.

In typeD, admissible tableaux do not fully separate the components ofFN . It is still
true that F● ,G● ∈ FN with SN(F●) /= SN(F●) lie in diòerent irreducible components,
but the converse fails, since of course (XT)

0 = {F● ∣ SAN(F●) = T} and its closure
XT need not be connected. _e signed domino tableaux were introduced to account
for this disconnectedness in form of the following classiûcation of Van Leeuwen [53,
Lemmas 3.2.3 and 3.3.3].

_eorem 6.2 Let N ∈ g be nilpotent of admissible Jordan type λN = (λ1 , λ2) and
T ∈ ADT(λN).
(i) XT is a union of irreducible components of FN , labelled by all signed domino

tableaux that equal T a�er forgetting the signs.
(ii) All irreducible components of FN are obtained in this way.
(iii) _ere is a bijection between the set of admissible signed standard domino tableaux

of shape λN and the set of irreducible components of FN ,

ADTsgn(λN)
1∶1
←→ Irr(FN).

Remark 6.3 For general Jordan type, the labelling set of irreducible components is
given by certain equivalence classes of signed domino tableaux ([53,Deûnition 3.3.2]),
but in the special case of 2-row shapes the equivalence relation becomes trivial, since
every cluster contains only one domino of type V 1.

If N has Jordan type (r, s), irreducible components are of dimension ⌊ s
2 ⌋, [53,

Lemma 2.3.4 and p. 14]. Hence, the dimension equals the number of cups in the cup
diagram associated with the admissible signed domino tableau from _eorem 6.2 via
the bijection from Lemma 5.12.

6.2 Components as Iterated P1(C)-bundles

_e rest of this section gives an inductive construction of the irreducible components
and proves the following reûnement of _eorem 6.2.

Deûnition 6.4 A topological space X1 is an iterated ûbre bundle of base type
(B1 , . . . , B l) if there exist spaces X1 , B1 , X2 , B2 , . . . , X l , B l , X l+1 = pt and maps
p1 , . . . , p l such that p j ∶X j → B j is a ûbre bundle with typical ûbre X j+1.
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_eorem 6.5 Let N ∈ g nilpotent of type λN = (λ1 , λ2) and T ∈ ADT(λN).
(i) _e assignment SN from (6.1) induces a bijection

Ssgn
N ∶ADT(λN)

1∶1
←→ Irr(FN),

where (Ssgn
N )−1(T) is given by the algorithm in Section 6.4.

(ii) Every irreducible component Y is an iterated ûbre bundle of base type

(P1
(C),P1

(C), . . . ,P1
(C)),

where the number of components equals the number of cups in the cup diagram
corresponding to (Ssgn

N )−1(T) via Lemma 5.12.

_e proof of the theorem will be given in the next subsections.

6.3 Explicit Linear Algebra Conventions

Let W = Wa ,a be a complex vector space of dimension n = 2a. We ûx a basis
w1 , . . . ,wa ,w−1 , . . . ,w−a and set w0 = 0 = w−a−1. Deûne a bilinear form β = βa
on W by β(w i ,w j) = δ i ,− j , hence the non-trivial pairings can be displayed as

1 2 ⋅ ⋅ ⋅ a -a ⋅ ⋅ ⋅ −2 −1

Setting N(w i) = σ(i)w i−1 for −a ≤ i ≤ a with σ(i) = −1 if i < 0 and σ(i) = 1 if
i > 0, deûnes a linear endomorphism ofW . It satisûes β(Nw ,w′) + β(w ,Nw′) = 0
for w ,w′ ∈W , hence N ∈ o(W , β).

Let Va ,b = Ca+b be a complex vector space of dimension n = a + b with a, b odd.
We ûx a basis e1 , . . . , eb , e−1 , . . . , e−a , set e0 = 0 = e−a−1 and ûx the symmetric bilinear
form γ = γa ,b on V deûned by

γ(e i , e j) = (−1)i(δ i+ j,b+1 − δ i+ j,−(a+1))

i.e., graphically
1 2 ⋅ ⋅ ⋅ b-1 b −1 −2 ⋅ ⋅ ⋅ -(a-1) -a

.

Setting N(e i) = e i−1 for −a ≤ i ≤ −1, 1 ≤ i ≤ b deûnes a linear endomorphism N
of V satisfying γ(Nv , v′) + γ(v ,Nv′) = 0 for v , v′ ∈ V . Hence, N ∈ o(V , γ).

We identify Va ,a with Wa ,a via the following isomorphism.

Lemma 6.6 For odd a, the following deûnes an isomorphism

φ∶Va ,a Ð→ Wa ,a

e i z→

⎧⎪⎪
⎨
⎪⎪⎩

1√
2
((−1)i+1w i +w i+a+1) if i < 0,

1√
2
((−1)i+1w i−a−1 −w i) if i > 0.

of vector spaces satisfying β(φ(v), φ(v′)) = γ(v , v′) for any v , v′ ∈ V.
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Proof _e claim follows by a straightforward direct calculation. (_e inverse map is
given by φ−1(w i) =

1√
2
(−1)i+1(e i + ea+i+1) for i < 0 and φ−1(w i) =

1√
2
(e i−a−1 − e i)

for i > 0.)

6.4 Inductive Construction of the Irreducible Components

In this section we prove _eorem 6.5 by constructing the irreducible component
(Ssgn

N )−1(T) corresponding to a signed domino tableau T . _is will be done by induc-
tion on the number of dominoes. We distinguish the following basic cases (displaying
the rightmost cluster and indicating the position of the domino D with the largest en-
try):

(6.3)

I)

1
−

1
+

IIa) IIb) IIIa) IIIb)

Proof of_eorem 6.5 To each admissible signed domino tableau T with, say, d
dominoes, we construct now the corresponding irreducible component.

Our starting point is d = 1. _en N has two Jordan blocks of size 1 and we con-
sider W = W1,1. _e possible signed domino tableaux are displayed in (6.3)(I). _e
1-dimensional isotropic �ags in W are F1 = ⟨w−1⟩, and F1 = ⟨w1⟩ which are automat-
ically in the kernel of N . Each of them deûnes an irreducible component in FN . We
assign F1 = ⟨w−1⟩ to the ûrst (negative) signed tableau and F1 = ⟨w1⟩ to the second
(positive) signed tableau. _e signs indicate the components of F with respect to our
chosen basis. (Alternatively we could work with V = V1,1 and take F1 = ⟨e1 + e−1⟩ and
F1 = ⟨e−1 − e1⟩ respectively.)

Now let d > 1 and assume the theorem holds for less than d dominoes. Let D be
the domino in T ûlled with the highest number.

Case 1 T is of shape (a, b) and D is horizontal: Consider V = Va ,b .
A line in the kernel of N is of the form F1 = ⟨αe−a + βe1⟩, for some [α ∶β] ∈

P1(C), and is automatically isotropic. First focus on a generic point given by [α ∶β] ∉
{[0 ∶1], [1 ∶0]}. As a new basis Bnew of V pick

{
βe−a , βe−a+1 , . . . , βe−b−1 , βe−b + αe1 , . . . , βe−1 + αeb ,

αe−a + βe1 , . . . , αe−a+b−1 + βeb
}

Note that N maps an element of Bnew to its le� neighbour, the two le�most to zero.
Here F⊥1 is spanned by all vectors in Bnew except αe−a+b−1+βeb . Hence the endomor-
phism induced by N on F⊥1 /F1 is of Jordan type (a, b − 2).
For the point [0 ∶1], i.e., F1 = ⟨e1⟩, we can use the original basis of V and it holds

F⊥1 = ⟨e j ∣ −a ≤ j ≤ −1, 1 ≤ j < b⟩. Again, the induced endomorphism is of Jordan
type (a, b − 2). We identify F⊥1 /F1 and Va ,b−2 by mapping e i ∈ Va ,b−2 to e i + F1 for
i < 0 and to ie i+1 + F1 for i > 0. By taking the closure we thus obtain for Case (IIb)
a P1(C)-bundle over the space of �ags given by the tableaux T with the domino D
removed. Under the identiûcation of domino tableaux and cup diagrams, the label of
D is exactly the position of the right end of a cup; see Subsection 6.5 for an example.
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For the point [1 ∶0], i.e., F1 = ⟨e−a⟩, we see that F⊥1 = ⟨e j ∣ −a ≤ j < −1, 1 ≤ j ≤ b⟩
and F⊥1 /F1 is identiûed withVa−2,b bymapping the basis element e i ofVa−2,b to e i+F1
for i > 0 and to ie i−1 + F1 for i < 0. _e Jordan type of the endomorphism induced by
N on F⊥1 /F1 is (a − 2, b) in this case. Hence, for Case (IIa) we get a unique choice of
a subspace. Under the bijection with cup diagrams, the label of D will be a ray or le�
end of a cup.
For both cases the statement follows then by induction by looking at the quotient

F⊥1 /F1 with the respective identiûcations.

Case 2 T of shape (a, a) and D vertical: Consider the spaceWa ,a . Now, a line in
the kernel of N is of the form F1 = ⟨αw−a + βw1⟩ for [α ∶β] ∈ P1(C) and again auto-
matically isotropic. For a generic point given by [α ∶β] ∉ {[0 ∶1], [1, ∶0]}, we choose
the new basis Bnew ofW as

{
αw−a − βw1 , αw−a+1 + βw2 , . . . αw−1 + (−1)aβwa ,
αw−a + βw1 , −αw−a+1 + βw2 , . . . (−1)a+1αw−1 + βwa

}

Note again that N sends each vector to its le� neighbour (but multiplied by −1 in the
ûrst row), the le�most ones to zero. Now F⊥1 is spanned by all elements in Bnew except
αw−1 + βwa . In the case where a is even, this is the rightmost vector in the ûrst row,
and thus N induces on F⊥1 /F1 an endomorphism of Jordan type (a − 1, a − 1), and,
moreover, F⊥1 /F1 ≅ Wa−1,a−1 with the induced bilinear form. In the case where A is
odd, αw−1+βwa is amultiple of the rightmost vector in the second row, so the induced
endomorphism is of Jordan type (a, a − 2).

Hence for Case (IIIa), i.e., a is even, we obtain, as the closure, a P1(C)-bundle
over the space of �ags for the tableaux where D is removed. Again the label of D is
the position for the right end of a cup.

Looking at the two points [1 ∶0] and [0 ∶1], i.e., F1 = ⟨w−a⟩ and F1 = ⟨w1⟩, it holds
F⊥1 = ⟨w i ∣ −a ≤ i ≤ −1, 1 ≤ i < a⟩ and F⊥1 = ⟨w i ∣ −a ≤ i < −1, 1 ≤ i ≤ a⟩, respectively.
For both choices F⊥1 /F1 ≅Wa−1,a−1 with the induced bilinear form, and N induces an
endomorphism of Jordan type (a − 1, a − 1).
For Case (IIIb), i.e., a is odd, we obtain two choices corresponding to the sign of

the domino D in this case. We assign the choice F1 = ⟨w−a⟩ to the negative sign in
D and F1 = ⟨w1⟩ to the positive sign in D (In this case corresponding to a dotted or
undotted ray at the label of D or the le� end of a cup). Again the statement follows by
induction looking at F⊥1 /F1.
By construction, the ûrst part of _eorem 6.5 holds. Moreover, we have shown

that the components are iteratedP1(C)-bundles of the correct base type and therefore
smooth (see e.g., [40, Section 8] for a detailed argument).

6.5 An Explicit Example

We illustrate the inductive construction of the irreducible components for the admis-
sible shape (5, 3) and refer to Example 5.22 for the corresponding cup diagrams. We
identifyC5+3 with the vector space V5,3 with basis e−5 , e−4 , e−3 , e−2 , e−1 , e1 , e2 , e3 and
form γ.

_e irreducible components attached to the four diagrams 1 2 3
± ±

4 :
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_e domino labelled 4 puts us in Case (IIa). _is implies F1 = ⟨e−5⟩ and removing
the domino means passing to ⟨e i ∣ −5 ≤ i ≤ −2, 1 ≤ i ≤ 3⟩/F1, which we identify with
W3,3 via Lemma 6.6 with basis

{
w−3 =

1√
2
(ie−4 + e1), w−2 =

1√
2
(−ie−3 − e2), w−1 =

1√
2
(ie−2 + e3),

w1 =
1√
2
(ie−4 − e1), w2 =

1√
2
(ie−3 − e2), w3 =

1√
2
(ie−2 − e3)

} .

_e domino labelled 3 belongs to Case (IIIb), thus F2 = F1 + ⟨w−3⟩ if the sign is − and
F2 = F1+⟨w1⟩ if it is+. We identify the span ofw−2 ,w−1 ,w1 ,w2 (resp. w−3 ,w−2 ,w2 ,w3)
with F⊥2 /F2. _e domino labelled 2 belongs to Case (IIIa), hence we consider the
generic bases (i.e., [α ∶β] ∉ {[1 ∶0], [0 ∶1]}) of F⊥2 /F2:

{
αw−2 − βw1 , αw−1 + βw2 ,
αw−2 + βw1 , −αw−1 + βw2

} and{ αw−3 − βw2 , αw−2 + βw3 ,
αw−3 + βw2 , −αw−2 + βw3

}

depending on the two choices made previously, together with F3 = ⟨αw−2 + βw1⟩ and
F3 = ⟨αw−3 + βw2⟩, respectively.

_e ûnal domino labelled 1 puts us in Case (I) with the choice F4 = F3 + ⟨−αw−1 +

βw2⟩ corresponding to + and F4 = F3 + ⟨αw−2 − βw1⟩ to −; this is similar for the
second choice. Altogether, we obtain dense subsets of the four components are given
by the following generic choices for each step in the complete full �ags:

e−5

w−3

w1

αw−2 + βw1

αw−3 + βw2

αw−1 − βw2

αw−2 − βw1

αw−2 − βw3

αw−3 − βw2

αw−2 − βw1

αw−1 − βw2

αw−3 − βw2

αw−2 − βw3

αw−1 + βw2

αw−1 + βw2

αw−2 + βw3

αw−2 + βw3

w3

w3

w−1

w−1

e−1

e−1

e−1

e−1

Expressing these as �ags in the original basis we get the isotropic �ags F● with F j =

F j−1 + ⟨x j⟩, 1 ≤ j ≤ 4, where the tuple (x4 , x3 , x2 , x1) is given as follows (depending
on the sign conûguration):

−− α(ie−2 + e3) − β(ie−3 − e2), α(ie−3 + e2) − β(ie−4 − e1), ie−4 + e1 , e−5
+− α(ie−3 + e2) + β(ie−4 − e1), α(ie−3 + e2) − β(ie−4 − e1), ie−4 + e1 , e−5
−+ α(ie−3 + e2) + β(ie−2 − e3), α(ie−4 + e1) + β(ie−3 − e2), ie−4 − e1 , e−5
++ α(ie−4 + e1) − β(ie−3 − e2), α(ie−4 + e1) + β(ie−3 − e2), ie−4 − e1 , e−5 .

(We denoted the �ags in reversed order, with F1 on the right, so they ût with the cup
diagrams and domino shapes.)

_e irreducible components attached to the two diagrams
±

1 2
3

4 :

We have again F1 = ⟨e−5⟩ and we pass to ⟨e−5 , ie−4 , ie−3 , ie−2 , e1 , e2 , e3⟩ /F1, which
we identify with V3,3. Case (IIb) uses the basis Bnew, for the generic choice, given by

{
βie−4 + αe1 , βie−3 + αe2 , βie−2 + αe3 ,
αie−4 + βe1 , αie−3 + βe2 , αie−2 + βe3 .

}

A�er applying Cases (IIa), (I) we obtain dense subsets of the components are given
by the following generic choices of �ags:

− −e−3 + ie2 , ie−4 , αie−4 + βe1 , e−5
+ −e−3 − ie2 , ie−4 , αie−4 + βe1 , e−5 .
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_e irreducible components attached to the two diagrams
±

1 2
4

3 :
_e dense subsets are given by the following generic �ags:

− −e−3 + ie2 , e−4 , e−5 , αe−5 + βe1
+ −e−3 − ie2 , e−4 , e−5 , αe−5 + βe1 .

We now compare the intersection behaviour of the irreducible components in both
the algebraic and the topological Springer ûbre for the case of an odd number of dec-
orations. We look at the following diagrams respectively the corresponding cup dia-
grams (the components will be labelled by A, B, C and D).

1 2 3
− +

4

A

−

1 2
3

4

B

−

1 2
4

3

C

1 2 3
+ −

4

D

Starting with the topological Springer ûbre, we note that the deûnition of the compo-
nents from (4.1) generalises and one easily checks that the only non-empty intersec-
tions (a single point in each case) are: SA ∩ SB , SB ∩ SC , SB ∩ SD , and ûnally SC ∩ SD .
For the algebraic Springer ûbres, we summarise what the irreducible components

look like for the cases above by giving the �ags F● in each case:

XA =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F1 = ⟨e−5⟩ , F2 = F1 ⊕ ⟨ie4 − e−1⟩ ,
F3 = F2 ⊕ ⟨α(ie−4 + e1) + β(ie−3 − e2)⟩ ,
F4 = F3 ⊕ ⟨α(ie−3 + e2) + β(ie−2 − e3)⟩

RRRRRRRRRRRRR

[α ∶β] ∈ P1
(C)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

XB = {
F1 = ⟨e−5⟩ , F2 = F1 ⊕ ⟨αie−4 + βe1⟩ ,
F3 = ⟨e−5 , e−4 , e1⟩ , F4 = F3 ⊕ ⟨−e−3 + ie2⟩

∣ [α ∶β] ∈ P1
(C)}

XC =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F1 = ⟨αe−5 + βe1⟩ , F2 = ⟨e−5 , e1⟩ ,
F3 = ⟨e−5 , e−4 , e1⟩ ,
F4 = F3 ⊕ ⟨−e−3 + ie2⟩

RRRRRRRRRRRRR

[α ∶β] ∈ P1
(C)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

XD =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F1 = ⟨e−5⟩ , F2 = F1 ⊕ ⟨ie−4 + e1⟩ ,
F3 = F2 ⊕ ⟨α(ie−3 + e2) + β(ie−4 − e1)⟩ ,
F4 = ⟨e−5 , e−4 , ie−3 + e2 , e1⟩

RRRRRRRRRRRRR

[α ∶β] ∈ P1
(C)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

_is description directly implies that XC ∩XD = ∅, while the other components have
the same intersection behaviour as the topological version. In the algebraic case we
thus have a Kleinian singularity of type D4; see [42].

7 Cohomology of Algebraic and Topological Springer Fibre

We give a concrete description of the cohomology ring the algebraic Springer ûbres
and prove _eorem 1.2. Let n = 2k and G′ = SO(2k,C) and g′ its Lie algebra with
Cartan subalgebra h. Let P be a maximal parabolic of type A with Lie algebra p and
Levi component L. _e connected centre S of L is one-dimensional. Let s be its Lie
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algebra. Explicitly, we realize g′ as a Lie algebra of complex n × n-matrices A that are
skew-symmetric with respect to the anti-diagonal, i.e., A i , j = −An− j+1,n−i+1. It has
basis

L i , j = E i , j − En− j+1,n−i+1 , 1 ≤ i , j ≤ k,
X i , j = E i ,n− j+1 − E j,n−i+1 , 1 ≤ i < j ≤ k,
Yi , j = En− j+1, i − En−i+1, j , 1 ≤ i < j ≤ k,

where E i , j denotes the elementarymatrix with 1 at position (i , j) and zeros elsewhere.
We choose h to be the Lie subalgebra given by diagonal matrices on which the Weyl
groupW =W(Dk) acts byw .L i , i = Lw(i),w(i) forw ∈ Sk and s0 .L1,1 = −L2,2, s0 .L2,2 =

−L1,1, and s0 .L i , i = L i , i for i /= 1, 2. _e L i , j ’s form a Levi subalgebra isomorphic to
gl(k,C) inside the subalgebra p generated by the L i , j ’s and X i , j . In this realisation, s
is the one-dimensional subspace spanned by xL = ∑

k
i=1L i , i . (Note g′ = so(W , β)).

7.1 Algebraic Springer Fibre

We consider the closed aõne subvariety of h × h deûned as

(7.1) Zk = {(wx , x) ∈ h × h ∣ x ∈ s,w ∈W} .

Its coordinate ringC[Zk] has, by [24], an S(s∗)-algebra structure coming from the
projection onto s, where S(s∗) = C[s] denotes the algebra of regular functions on s.
To determine C[Zk], and then compute H(F′N), we view Zk as a closed subvariety
of h × s and choose explicit coordinates. We identify C[s] with C[T] such that T
evaluated on xL is equal to 1, andC[h]withC[X1 , . . . , Xk] by identifying X i with the
basis element dual to L i , i .
For any I ⊂ {1, 2, . . . , k} we denote XI = ∏i∈I X i ∈ C[X1 , X2 , . . . , Xk].

_eorem 7.1 Let N ∈ g′ be nilpotent of Jordan type (k, k).
(i) _e S-equivariant cohomology ring of F′N equals

(7.2) HS(F
′
N) ≅

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

C[X1 ,X2 , . . . ,Xk ,T]
⟨{X2

i −T2 ,XI−X J}⟩ if k is even,
C[X1 ,X2 , . . . ,Xk ,T]
⟨{X2

i −T2 ,XI−X JT}⟩ if k is odd,

where 1 ≤ i ≤ k and I, J ⊂ {1, 2, . . . , k} with I ∩ J = ∅ such that ∣I∣ = k
2 = ∣J∣ for

even k and ∣I∣ = k+1
2 = ∣J∣ + 1 for odd k.

(ii) In particular,

H(F′N) ≅

⎧⎪⎪
⎨
⎪⎪⎩

C[X1 , X2 , . . . , Xk]/⟨{X2
i , XI − XJ}⟩ if k is even,

C[X1 , X2 , . . . , Xk]/⟨{X2
i , XI}⟩ if k is odd.

Explicit bases are given by the images of the XI , ∣I∣ ≤ k−1
2 , in the case where k is

odd; by the XI for all I, ∣I∣ < k
2 , in the case where k is even and k ∉ I; and by the

XI for all I, ∣I∣ ≤ k
2 , in the case where k is even and k ∈ I.

Proof Weûrst show that HS(F
′
N) ≅ AS(k), where AS(k) denotes the quotient rings

on the right-hand side of (7.2), but assuming [24, _eorem 1.2]. _e homomorphism
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of the inclusion Zk ⊂ h × s as closed subvariety induces a surjection

(7.3) C[X1 , . . . , Xk , T] Ð→ C[Zk].

By [24,_eorem 1.2], its kernel is contained in the kernel of the correspondingmap to
HS(F

′
N) given by the equivariant Borel morphism on the ûrst factor and the induced

map C[Zk] → HS(F
′
N) is an isomorphism.

Since Zk is a cone, to determine the vanishing ideal of Zk , it is enough to look
at homogeneous polynomials vanishing on all points of the form (w .xL , xL). _e
W-orbit of xL = ∑

k
i=1 L i , i is easy to determine, namely

W .xL = {
k

∑
i=1

є iL i , i ∣ є i = ±1,
k

∏
i=1

є i = 1} .

It is a trivial calculation to check that the polynomials X2
i − T2 and XI − XJ (resp.

XI − XJT), as deûned above vanish on W .xL × {xL} ⊂ s × h. _us, the map (7.3)
factors through AS(k).

Since F′N is equivariantly formal in the sense of [19], HS(F
′
N) is naturally a free

S(s∗)-module of rank ∣W/Sk ∣ = 2k−1, which is the number of S-ûxed points, [24,
Lemma 2.1]. On the other hand, AS(k) is also a free module overC[T] = S(s∗) with
basis given by all XI for all I such that ∣I∣ ≤ k−1

2 in the case where k is odd, and ∣I∣ < k
2

or ∣I∣ = k
2 with k ∈ I in the case where k is even. _e rank equals

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
k−1
2

l=0 (
k
l) = 2k−1 if k is odd,

1
2(

k
k/2) +∑

k
2 −1
l=0 (

k
l) = 2k−1 if k is even.

_us, (7.3) induces an isomorphism between AS(k) and HS(F
′
N). Again, using equi-

variant formality, we get H(F′N) ≅ HS(F
′
N) ⊗C[T] C, and part (ii) follows. It remains

to verify the surjectivity assumption of [24], which is Proposition 7.2.

Proposition 7.2 Let N ∈ g be a nilpotent endomorphism of C2k with Jordan type
(k, k). _en the canonical map H(F) → H(FN) is surjective. _e same holds for the
canonical map H(F′) → H(F′N).

Proof We ûrst claim that the top degree is completely contained in the image of
the canonical map for any nilpotent of admissible Jordan type (r, s) of type Dk . Re-
call from Section 2 that for r = s = k even, the component group is trivial. _en
the claim is a special case of a general result of Hotta and Springer [21, _eorem 1.1,
Corollary 1.3]. In case of odd r = s = k, the component group is Z/2Z and swaps
between the two connected components of FN , see [53, Section 3]. By _eorem 6.5
and Lemma 5.20, the total number of irreducible components equals twice the dimen-
sion of the corresponding irreducible representation ofW(Dk) attached to N via the
Springer correspondence. Hence, when we replace F by the setB of Borel subgroups
and consider the top degree ofH(BN) for the corresponding ûxed point varietyBN , it
carries the structure of an irreducibleW(Dk)-module. Hence, the statement follows
again by [21, Corollary 1.3]. _e remaining case r /= s is similar.

Let now N be of type (k, k). We claim there is a ûltration by subvarieties

(7.4) Y0 ⊂ Y1 ⊂ ⋅ ⋅ ⋅ ⊂ Y k−є
2
= FN
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(with є = 0 or є = 1 depending on the parity of k) such that Y j = FN j , where the Jordan
type of N is (k, k) if j = k/2 and (2k−2 j−1, 2 j+1) otherwise. To see this consider the
labelling set,C j , of Irr(FN j) by cup diagrams. _ediagrams inC j have exactly one cup
less than the ones in C j+1 and can all be obtained (in a nonunique way) by replacing a
cup by two rays in some diagram from C j+1. Now recall the inductive construction of
the components. Each cup corresponded to a P1(C)-choice. If we interpret replacing
a cup by two rays as picking the nongeneric point in P1(C), then this gives exactly the
construction of the components of the smaller dimensional Springer ûbres and thus
constructs the required chain of subvarieties. By construction, it is independent of the
choices and the claim follows. Now each Yi is equidimensional of complex dimen-
sion i, so that it contributes only toH2i(FN), the degree 2i in cohomology. Moreover,
by the beginning of the proof the subspace spanned by the classes of the irreducible
components is in the image of the canonical map H(F) → H(FN). Hence, it re-
mains to show that all of these (linearly independent) classes span H(FN). We have
dimH(FN) = 2k , since FN has a cell partition with 2 ⋅ 2k−1 strata by [24, Lemma 2.1].
On the other hand, the parametrization of irreducible components from_eorem 6.2
together with Lemmas 5.12 and 5.20 gives

k−є
2

∑
l=0

∣ Irr(Yl)∣ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2∑
k−1
2

l=0 (
k
l) = ∑

k
l=0 (

k
l) = 2k if k is odd,

(
k

k/2) + 2∑
k
2 −1
l=0 (

k
l) = ∑

k
l=0 (

k
l) = 2k if k is even.

Hence, the canonical map is surjective.

Remark 7.3 _e last steps of this proof follow more directly from a general result
of Lusztig [29], providing an isomorphism H(F′N) ≅ IndW(Dk)

Sk
1 asW(Dk)-modules.

_e ûltration (7.4) then corresponds to the decomposition (5.3) into irreducible sum-
mands. _e two possible choices of embedding Sk into W(Dk) (using s i , i /= 0 or
s i , i /= 1) give for even k the two diòerent representations labelled (k/2), (k/2) in top
degree.

Remark 7.4 _e action of s i , i > 0, on H(F′N) is given by permuting the variables,
and s0 acts by swapping X1 and −X2. It is induced from the natural le� action on
the ûrst factor in (7.1). _e diòerent representations S(k/2),(k/2),± arise in top degree
depending on the two possible choices of p of which we chose one.

7.2 Cohomology of Topological Springer Fibre

We are now ready to prove_eorem 1.2.

_eorem 7.5 Let N ∈ g be a nilpotent endomorphism ofC2k with Jordan type (k, k).
_en we have isomorphisms of graded rings H(S̃) ≅ H(FN).

Proof Recall that via the isomorphism τ from _eorem 4.10 the ring H(S̃) is iden-
tiûed with the centre of the algebra Kk , which in turn is isomorphic to H(FN) by
[10].
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8 Jordan Type (k, k): Category O and W-algebras

Let now N ∈ g be nilpotent of Jordan type (k, k). In this case the S-ûxed points FS
N

of FN are easy to determine, namely all �ags F● = F●(I) where for each 1 ≤ j ≤ k we
have F j = ⟨w l ∣ l ∈ I⟩ where I is a union I = I− ∪ I+ of two sets of consecutive indices
of the form

I− = {−k,−k + 1,−k + 2, . . . ,−k + r + 1}, I+ = {1, 2, . . . , s}

such that ∣I∣ = r + s = j. (_ese are obviously ûxed points and there are altogether
2 ⋅ 2k−1 = 2k such choices, which is the desired number by [24, Lemma 2.1].)

In the sequel, we will identify S-ûxed points with combinatorial weights via the
following easy observation.

Lemma 8.1 _ere is a bijection between ûxed points and combinatorial weights of
length k sending F●(I) ∈ FN to the combinatorial weight λ = λ(I) which has at vertex
i an ∧ if −i ∈ I and a ∨ if i ∈ I.

_e following proposition generalizes [51, Lemma 12].

Proposition 8.2 Let N be of Jordan type (k, k). _en the following hold.
(i) _eûxed points F●(I) ∈ FS

N contained in an irreducible component Y are precisely
the combinatorial weights λ = λ(I) such that λc is an oriented cup diagram, where
c denotes the cup diagram associated with Y via _eorem 6.5 and Corollary 5.13.

(ii) _e ûxed points P(I) contained in the intersection Y ∩Y ′ of two irreducible com-
ponents are precisely the combinatorial weights λ = λ(I) such that c∗λd is an
oriented circle diagram, where c (resp. d) denotes the cup diagram associated with
Y and Y ′.

From the constructions we directly obtain a reûnement of _eorem 6.5.

Corollary 8.3 Pairwise intersections of components are either empty or again iterated
P1(C)-bundles, namely of base type (P1(C))c , where c is the number of circles in the
corresponding circle diagram.

Remark 8.4 Each P ∈ FS
N deûnes a vector of H(FN) as follows. Take the weight

λ of length k identiûed with P. _is deûnes the unique cup diagram c = c(λ) on k
vertices such that λc is oriented and of degree 0, see [28]. Using the ûltration (7.4) it
deûnes a subvariety of FN whose class deûnes a vector in cohomology. By the proof
of _eorem 7.2, these vectors form indeed a basis.

Example 8.5 Consider FN , where N has Jordan type (4, 4). _e S-ûxed points in
the pairwise intersections of irreducible components labelled by Bodd

4 are displayed
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in the following table (the case Beven4 is similar).

∧ ∧ ∨∧ ∨ ∨ ∨∧
∧ ∧ ∧∨ ∨ ∨ ∧∨

∧ ∧ ∨∧
∨ ∨ ∧∨ empty intersection

∧ ∧ ∨∧
∨ ∨ ∧∨

∧ ∨ ∧∧ ∨ ∧ ∨∨
∧ ∨ ∧∧ ∨ ∧ ∨∨

∧ ∨ ∧∧
∨ ∧ ∨∨

empty intersection ∧ ∨ ∧∧
∨ ∧ ∨∨

∨ ∧ ∧∧ ∧ ∨ ∧∧
∨ ∧ ∨∨ ∧ ∨ ∨∨

Proof of Proposition 8.2 For part (i) we assume ûrst that k is even. In addi-
tion, assume that the signed domino tableau attached to Y has only one clus-
ter. By construction of the component Y (Case IIIa) in (6.3)) we choose the basis
y−k , . . . , y−1 , y1 , . . . , yk , where

y− j = αw− j + (−1) j+1βwk+1− j and y j = (−1) j+1αw j−k−1 + βw j

for 1 ≤ j ≤ k and have F1 = ⟨y1⟩. To describe F2, we apply Case IIb) of (6.3) and choose
a basis of F⊥1 /F1 of the form zk−1 , . . . , z−1 , z1 , . . . , zk−1, where z− j = (−1) j+1 y j + yk− j

and z j = (−1) j+1 y j−k − y j for 1 ≤ j ≤ k − 1 such that F2 = F1 + ⟨δz−(k−1) + γz1⟩ for
δ, γ ∈ C. Now δz−(k−1) + γz1 = (γ + δ)y−(k−1) + (δ − γ)y1, thus choosing γ = δ
gives us y−(k−1) and γ = −δ gives us y1. Now, choosing (α, β) ∈ {(0, 1), (1, 0)} ûnally
gives us the required w’s. _ese arguments can be repeated to give the claim for the
standard tableau part. For the remaining vertical domino we have Fk = Fk−1+⟨b+b′⟩
if the sign is − and Fk = Fk−1 + ⟨b − b′⟩ if the sign is +, where for b = γz−k/2 + δzk/2
and b′ = δz−k/2 + γzk/2, hence b + b′ = (γ + δ)z−k/2 + (γ − δ)zk/2 and b − b′ =
(γ − δ)z−k/2 + (γ + δ)zk/2. Hence, choosing γ = δ or γ = −δ and α, β as above shows
part (i) in case there is only one cluster. In the case where there is more than one
cluster, we start as above with the ûrst cluster and then repeat the same arguments for
the spaceW/Fk with the basis given by the remainingw’s (i.e., in case the ûrst cluster
had shape (s, s) these are the w i ’s where −k + s/2 ≤ i ≤ −1 and s/2 + 1 ≤ i ≤ k if the
sign was +, and −k + s/2 + 1 ≤ i ≤ −1 and s/2 ≤ i ≤ k if the sign was −) etc. _is
settles the case for even k. For k odd we argue as for k+ 1 in the even case, but remove
a�erwards the rightmost vertical domino that destroys half of the ûxed points and the
claim follows again.

Part (ii) follows directly frompart (i) and the deûnition of oriented circle diagrams.

Remark 8.6 Note that Proposition 8.2 is, in general, wrong for Jordan types (r, s)
where r /= s. Consider Section 6.5 for a counterexample where the intersections of the
algebraic Springer are not given by the cup diagram combinatorics.

8.1 Connections with the Algebra Kk and Category O

As a consequence we obtain _eorem 1.4.
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_eorem 8.7 Let N ∈ g be nilpotent of Jordan type (k, k). _en there exists an
isomorphism of graded vector spaces

Kk = ⊕
(Y1 ,Y2)∈Irr(FN)×Irr(FN)

H(Y1 ∩ Y2)⟨d( a(Y1), a(Y2))⟩

where a(Yi), i = 1, 2 denotes the cup diagram associated with Yi .

Proof By _eorem 7.1 we have an isomorphism of vector spaces H(FN) ≅ C∣FS
N ∣

with basis naturally labelled by the S-ûxed points. Hence, there is at least an isomor-
phism of vector spaces by Proposition 8.2 and the deûnition ofKk . _e ûltration (7.4)
determines the degree of each basis vector, and the theorem follows easily from the
deûnition of the grading on Kk .

Remark 8.8 Since circle diagrams encode the (Dk ,Ak−1)-Kazhdan–Lusztig combi-
natorics,_eorem 8.7 implies that the combinatorics of intersection of components in
FN for the equal length two row case is controlled by Kazhdan–Lusztig polynomials.

8.2 Connections with W-algebras and Category O

Let e ∈ g be nilpotent of Jordan type 2k for even k and consider the associated
W-algebraW(e) of ûnite type as introduced originally by Premet, [36]. Let Fin0(e)
be the abelian category of ûnite dimensionalW(e)-modules with trivial central char-
acter. By a result of Brown [5], the simple objects in Fin0(e) are naturally indexed by
the set Pk of s-tables of shape 2k .
An s-table is a Young diagram of shape (2k) with a ûlling with the numbers

±1, . . . ,±k such that the columns are strictly decreasing from top to bottom and the
rows are strictly increasing from le� to right. Moreover the ûlling needs to be skew-
symmetric in the sense that the i-th entry in the ûrst column equals the negative of
the (k − i + 1)-th entry in the second column.
For an s-table P we denote by I = I(P) the set of numbers in the second column

and encode the associated type Dk weight as in [28] as the combinatorial weight with
the i-th symbol an ∧ if i ∈ I and a ∨ if −i ∈ I, that is the weight λ = λ(−I(P)) in the
notation of Lemma8.1. To thisweight λwe can assign the associated cupdiagram c(λ)
as in Remark 8.4. Hence, we get an assignment I↦ Cup(I) sending an s-table to a cup
diagram. For instance, I = {1, 2, 3, 4}, I = {1,−2, 3, 4}, respectively I = {−1, 2,−3, 4}
deûne the cup diagrams in (1.1). It is easy to check for a weight λ that c(λ) ∈ Bk if and
only if strictly to the le� of each ∨ in λ there is at least one more ∧ than ∨.

Lemma 8.9 _e assignment P(I) ↦ Cup(I) deûnes a bijection Pk
1∶1
↔ Bk .

Proof Let P ∈ Pk . If there is a∨ in Cup(P) at position i, then P has i in column 1 and
fewer numbers bigger than i in column 1 than in 2. Hence themap is well-deûned and
obviously injective. To see that it is surjective, we have to show that for any D ∈ Bk
the associated ûlling P deûnes an s-table. _is is clear if D has only dotted cups, as
then I = {1, 2, . . . , k}. Otherwise, choose an undotted cup c connecting vertices i
and i + 1. Increase the numbers below −(i + 1) in the ûrst column by 2 and decrease
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the numbers above i + 1 in the second column by 2 and then remove ±i and ±(i + 1)
from the ûlling. _e result is the ûlling associated with D with c removed. _e claim
follows by induction observing that the base holds for even k.

Let p and p′ be the two parabolic subalgebras in g with Weyl group generated by
s i , i /= 0 and i /= 1, respectively. Let Op

0(g) and O
p′

0 (g) be the corresponding principal
blocks of parabolic category O. By [10], the (isomorphism classes) of indecompos-
able projective-injectivemodules are naturally labelled byBevenk respectivelyBodd

k and
have all the same Loewy-length namely 2k + 1. (Cup diagrams on k vertices label all
indecomposable projective modules. _e number of cups encodes, as in [15, Propo-
sition 58], the GK-dimension of the corresponding simple quotient, and induces a
ûltration categorifying the decomposition (5.3) by taking successive subquotient cat-
egories.) Now Conjecture 1.5 is implied by [48, _eorem 10.1]

Corollary 8.10 Let O ∶= Op(g)0 ⊕ Op′(g)0 and consider P ∶= ⊕P(Cup(I)), where
I runs over all s-tables. _en HomO(P, ?)∶O → mod − EndO(P) is fully faithful
on projective objects. Assuming Conjecture 1.5 this deûnes via the identiûcation from
Lemma 8.9 a functor HomO(P, ?)∶O → Fin0(e), again fully faithful on projective ob-
jects. In particular, Fin0(e) is a quotient category of O.

Remark 8.11 _e indecomposable projective objects inFin0(e) are also in bijection
with orbital varieties of G, since k is even. Identifying the two equivalent summands
of O corresponds then to passing to orbital varieties for the adjoint group. We nor-
malized our setup using cup diagrams with an even and odd number of dots such
that they describe precisely the ûbres of the Spaltenstein-Steinberg map; see [31, _e-
orem 3].
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