A CYCLIC INVOLUTION OF PERIOD ELEVEN

W. R. HUTCHERSON

In two earlier papers* the writer discussed involutions of periods five and seven on certain cubic surfaces in S_{3}. In this paper, a quartic surface containing a cyclic involution of period eleven is considered.

The surface

$$
F_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv a x_{2} x_{3}{ }^{3}+b x_{1} x_{2} x_{4}{ }^{2}+c x_{1} x_{3}{ }^{2} x_{4}+d x_{2}{ }^{2} x_{3} x_{4}=0
$$

is invariant under the cyclic collineation T of period eleven,

$$
x_{1}^{\prime}: x^{\prime}{ }_{2}: x^{\prime}{ }_{3}: x_{4}^{\prime}=x_{1}: E x_{2}: E^{2} x_{3}: E^{3} x_{4} \quad\left(E^{11}=1\right) .
$$

Points $P_{1}(1,0,0,0), P_{2}(0,1,0,0), P_{3}(0,0,1,0)$, and $P_{4}(0,0,0,1)$ are all invariant under T and lie on the surface F_{4}. This fact may be stated in the following theorem.

Theorem 1. Each vertex of the tetrahedron of reference not only lies on the surface but is a point of coincidence.

By rewriting F_{4} in the order

$$
a x_{2} x_{3}{ }^{3}+x_{4}\left(b x_{1} x_{2} x_{4}+c x_{1} x_{3}^{2}+d x_{2}^{2} x_{3}\right)=0
$$

it is easily seen that the line $P_{1} P_{2}\left(x_{3}=x_{4}=0\right)$ lies on the surface. However, only the two points P_{1} and P_{2} of the line are invariant under T. In similar manner $P_{1} P_{4}, P_{1} P_{3}, P_{2} P_{4}$, and $P_{3} P_{4}$ lie on F_{4} with only two invariant points on each line. The line $P_{2} P_{3}$ does not lie on the surface. A second theorem has been proved.

Theorem 2. This surface includes all the six edges of the tetrahedron of reference, except $P_{2} P_{3}$.

It is true that P_{3} is simple on F_{4} while P_{2} and P_{4} are double, and P_{1} is triple. In this paper only point P_{3} will be investigated in detail.

Consider a curve C, not transformed into itself by T, and passing through P_{3}. Take the plane $x_{4}+K x_{1}=0$ of the pencil passing through P_{2} and P_{3}, tangent to C. This plane is transformed into $E^{3} x_{4}+K x_{1}=0$ or $x_{4}+K E^{8} x_{1}$ $=0$ by T and hence is non-invariant. The curve cut out on F_{4} by $x_{4}+K x_{1}=0$ is therefore non-invariant. The common tangent to the two curves is not

[^0]transformed into itself. Thus the two curves do not touch each other at $P_{\mathbf{8}}$. Now, since C was a variable curve through P_{3} satisfying the non-invariant property, it follows that P_{3} is an imperfect coincidence point: In similar manner it can be shown that P_{1}, P_{2}, and P_{4} are also imperfect coincidence points. The following theorem has just been proved.

Theorem 3. The I_{11} belonging to F_{4} in S_{3} has four imperfect points of coincidence.

Consider the complete system of curves $|A|$ cut out on F_{4} by all surfaces of order eleven. Its dimension is 243 , its genus is 243 , and the number of variable intersections of two members of the system is 484 . A curve A of this system is not in general transformed into itself by T. There are, however, eleven partial systems $\left|A_{i}\right|$ in $|A|$ which are transformed into themselves. By use of $\left|A_{1}\right|$ we find

$$
\begin{aligned}
& a_{1} x_{1}{ }^{11}+a_{2} x_{2}{ }^{11}+a_{3} x_{3}{ }^{11}+a_{4} x_{4}{ }^{11}+a_{5} x_{1}{ }^{7} x_{3} x_{4}{ }^{3}+a_{6} x_{1}{ }^{6} x_{2}{ }^{2} x_{4}{ }^{3}+a_{7} x_{1}{ }^{6} x_{2} x_{3}{ }^{2} x_{4}{ }^{2} \\
& +a_{8} x_{1}{ }^{5} x_{2}{ }^{3} x_{3} x_{4}{ }^{2}+a_{9} x_{1}{ }^{4} x_{2}{ }^{5} x_{4}{ }^{2}+a_{10} x_{1}{ }^{6} x_{3}{ }^{4} x_{4}+a_{11} x_{1}{ }^{5} x_{2}{ }^{2} x_{3}{ }^{3} x_{4}+a_{12} x_{1}{ }^{4} x_{2}{ }^{4} x_{3}{ }^{2} x_{4} \\
& +a_{13} x_{1}{ }^{3} x_{2}{ }^{6} x_{3} x_{4}+a_{14} x_{1}{ }^{2} x_{2}{ }^{8} x_{4}+a_{15} x_{1}{ }^{5} x_{2} x_{3}{ }^{5}+a_{16} x_{1}{ }^{4} x_{2}{ }^{3} x_{3}{ }^{4}+a_{17} x_{1}{ }^{3} x_{2}{ }^{5} x_{3}{ }^{3} \\
& +a_{18} x_{1}{ }^{2} x_{2}{ }^{7} x_{3}{ }^{2}+a_{19} x_{1} x_{2}{ }^{9} x_{3}+a_{20} x_{1}{ }^{3} x_{2} x_{4}{ }^{7}+a_{21} x_{1}{ }^{3} x_{3}{ }^{2} x_{4}{ }^{6}+a_{22} x_{1}{ }^{2} x_{2}{ }^{2} x_{3} x_{4}{ }^{6} \\
& +a_{23} x_{1} x_{2}{ }^{4} x_{4}{ }^{6}+a_{24} x_{1}{ }^{2} x_{2} x_{3}{ }^{3} x_{4}{ }^{5}+a_{25} x_{1} x_{2}{ }^{3} x_{3}{ }^{2} x_{4}{ }^{5}+a_{26} x_{2}{ }^{5} x_{3} x_{4}{ }^{5}+a_{27} x_{1}{ }^{2} x_{3}{ }^{5} x_{4}{ }^{4} \\
& +a_{28} x_{1} x_{2}{ }^{2} x_{3}{ }^{4} x_{4}{ }^{4}+a_{29} x_{2}{ }^{4} x_{3}{ }^{3} x_{4}{ }^{4}+a_{30} x_{1} x_{2} x_{3}{ }^{6} x_{4}{ }^{3}+a_{31} x_{2}{ }^{3} x_{3}{ }^{5} x_{4}{ }^{3}+a_{32} x_{1} x_{3}{ }^{8} x_{4}{ }^{2} \\
& +a_{33} x_{2}{ }^{2} x_{3}{ }^{7} x_{4}{ }^{2}=0 \text {. }
\end{aligned}
$$

We refer the curves A_{1} projectively to the hyperplanes of a linear space of thirty-two dimensions. We obtain a surface φ, of order 44, as the image of I_{11}. The equations of the transformation for mapping I_{11} upon φ in S_{32} are

$$
\begin{aligned}
& \rho X_{1}=x_{1}{ }^{11} \quad \rho X_{12}=x_{1}{ }^{4} x_{2}{ }^{4} x_{3}{ }^{2} x_{4} \quad \rho X_{23}=x_{1} x_{2}{ }^{4} x_{4}{ }^{6} \\
& \rho X_{2}=x_{2}{ }^{11} \quad \rho X_{13}=x_{1}{ }^{3} x_{2}{ }^{6} x_{3} x_{4} \quad \rho X_{24}=x_{1}{ }^{2} x_{2} x_{3}{ }^{3} x_{4}{ }^{5} \\
& \rho X_{3}=x_{3}{ }^{11} \quad \rho X_{14}=x_{1}{ }^{2} x_{2}{ }^{8} x_{4} \quad \rho X_{25}=x_{1} x_{2}{ }^{3} x_{3}{ }^{2} x_{4}{ }^{5} \\
& \rho X_{4}=x_{4}{ }^{11} \quad \rho X_{15}=x_{1}{ }^{5} x_{2} x_{3}{ }^{5} \quad \rho X_{26}=x_{2}{ }^{5} x_{3} x_{4}{ }^{5} \\
& \rho X_{5}=x_{1}{ }^{7} x_{3} x_{4}{ }^{3} \quad \rho X_{16}=x_{1}{ }^{4} x_{2}{ }^{3} x_{3}{ }^{4} \quad \rho X_{27}=x_{1}{ }^{2} x_{3}{ }^{5} x_{4}{ }^{4} \\
& \rho X_{6}=x_{1}{ }^{6} x_{2}{ }^{2} x_{4}{ }^{3} \quad \rho X_{17}=x_{1}{ }^{3} x_{2}{ }^{5} x_{3}{ }^{3} \quad \rho X_{28}=x_{1} x_{2}{ }^{2} x_{3}{ }^{4} x_{4}{ }^{4} \\
& \rho X_{7}=x_{1}{ }^{6} x_{2} x_{3}{ }^{2} x_{4}{ }^{2} \quad \rho X_{18}=x_{1}{ }^{2} x_{2}{ }^{7} x_{3}{ }^{2} \quad \rho X_{29}=x_{2}{ }^{4} x_{3}{ }^{3} x_{4}{ }^{4} \\
& \rho X_{8}=x_{1}{ }^{5} x_{2}{ }^{3} x_{3} x_{4}{ }^{2} \quad \rho X_{19}=x_{1} x_{2}{ }^{9} x_{3} \quad \rho X_{3 \theta}=x_{1} x_{2} x_{3}{ }^{6} x_{4}{ }^{8} \\
& \rho X_{9}=x_{1}{ }^{4} x_{2}{ }^{5} x_{4}{ }^{2} \quad \rho X_{20}=x_{1}{ }^{3} x_{2} x_{4}{ }^{7} \quad \rho X_{31}=x_{2}{ }^{3} x_{3}{ }^{5} x_{4}{ }^{3} \\
& \rho X_{10}=x_{1}{ }^{6} x_{3}{ }^{4} x_{4} \quad \rho X_{21}=x_{1}{ }^{3} x_{3}{ }^{2} x_{4}{ }^{6} \quad \rho X_{32}=x_{1} x_{3}{ }^{8} x_{4}{ }^{2} \\
& \rho X_{11}=x_{1}{ }^{5} x_{2}{ }^{2} x_{3}{ }^{3} x_{4} \quad \rho X_{22}=x_{1}{ }^{2} x_{2}{ }^{2} x_{3} x_{4}{ }^{6} \quad \rho X_{33}=x_{2}{ }^{2} x_{3}{ }^{7} x_{4}{ }^{2}
\end{aligned}
$$

By eliminating $\rho, x_{1}, x_{2}, x_{3}$, and x_{4} from these thirty-three equations and $F_{4}\left(x_{1} x_{2} x_{3} x_{4}\right)=0$, we get as the thirty equations defining the surface:

$$
\begin{aligned}
\left\|\begin{array}{l}
X_{1} X_{5} X_{6} X_{7} X_{8} X_{9} X_{11} X_{12} X_{16} \\
X_{5} X_{21} X_{22} X_{24} X_{25} X_{26} X_{28} X_{29} X_{31}
\end{array}\right\| & =0 \\
\left\|\begin{array}{l}
X_{2} X_{9} X_{13} X_{14} X_{17} X_{18} X_{19} \\
X_{13} X_{5} X_{7} X_{8} X_{10} X_{11} X_{12}
\end{array}\right\| & =0
\end{aligned}
$$

$$
\begin{aligned}
\left\|\begin{array}{rl}
X_{3} X_{15} X_{27} X_{30} X_{31} X_{32} X_{33} \\
X_{30} X_{6} X_{20} X_{22} X_{23} X_{24} X_{25}
\end{array}\right\| & =0 \\
\left\|\begin{array}{l}
X_{4} X_{20} X_{22} X_{23} X_{24} X_{25} \\
X_{21} X_{7} X_{11} X_{12} X_{15} X_{16}
\end{array}\right\| & =0 \\
\left\|\begin{array}{l}
X_{6} X_{7} X_{8} X_{10} X_{11} \\
X_{23} X_{25} X_{26} X_{28} X_{29}
\end{array}\right\| & =0
\end{aligned}
$$

and equation $a X_{31}+b X_{25}+c X_{28}+d X_{29}=0$. Designate by $P^{\prime}{ }_{3}$ the branch point of φ corresponding to the point P_{3} on F_{4}. The coordinates of $P^{\prime}{ }_{3}$ are all zero except X_{3}.

The curves A_{1} on F_{4} pass through P_{3} if $a_{3}=0$. The tangent plane at P_{3} to F_{4} is $x_{2}=0$. Now, the system of eleventh-degree surfaces passing through P_{3} cuts $x_{2}=0$ in the curves $x_{2}=0$, and
$a_{1} x_{1}{ }^{11}+a_{4} x_{4}{ }^{11}+a_{5} x_{1}{ }^{7} x_{3} x_{4}{ }^{3}+a_{10} x_{1}{ }^{6} x_{3}{ }^{4} x_{4}+a_{21} x_{1}{ }^{3} x_{3}{ }^{2} x_{4}{ }^{6}+a_{27} x_{1}{ }^{2} x_{3}{ }^{5} x_{4}{ }^{4}+a_{32} x_{1} x_{3}{ }^{8} x_{4}{ }^{2}=0$.
For general values of the constants this is an eleventh-degree curve with a triple point at P_{3}, two branches being tangent to the line $x_{2}=x_{4}=0$ and one to the line $x_{2}=x_{1}=0$. When $a_{5}=a_{10}=a_{21}=a_{27}=a_{32}=0$, the plane eleventh-degree curve breaks up into eleven lines through P_{3}. These are all distinct except when either $a_{1}=0$ or $a_{4}=0$, when they coincide with $x_{2}=$ $x_{4}=0$ or $x_{2}=x_{1}=0$, respectively. Since P_{3} is imperfect, the $\left\langle A_{1}\right|$ through P_{3} must have eleven distinct branches unless each branch touches one of the two invariant directions. In the plane $x_{2}=0$, the involution I_{11} is generated by the homography T_{1}, which is $x^{\prime}{ }_{1}: x^{\prime}{ }_{3}: x^{\prime}{ }_{4}=x_{1}: E^{2} x_{3}: E^{3} x_{4}$.

By use of the plane quadratic transformation $X, y_{1}: y_{3}: y_{4}=w_{1} w_{4}: w_{3}{ }^{2}: w_{1} w_{3}$ and $X^{-1}, w_{1}: w_{3}: w_{4}=y_{4}{ }^{2}: y_{3} y_{4}: y_{1} y_{3}$ one gets

$$
\left(w_{1}, w_{3}, w_{4}\right) \sim_{X-1}\left(y_{4}^{2}, y_{3} y_{4}, y_{1} y_{3}\right) \sim_{T_{1}}\left(E^{6} y_{4}, E^{5} y_{3} y_{4}, E^{2} y_{1} y_{3}\right) \sim_{X}\left(E^{6} w_{1}, E^{5} w_{3}, E^{2} w_{4}\right)
$$

or

$$
x_{1}^{\prime}: x_{3}^{\prime}: x_{4}^{\prime}=E^{4} x_{1}: E^{3} x_{3}: x_{4} \quad \text { for } T_{2}
$$

Again $\left(w_{1}, w_{3}, w_{4}\right) \sim_{X-1}\left(y_{4}{ }^{2}, y_{3} y_{4}, y_{1} y_{3}\right) \sim_{T_{2}}\left(y_{4}{ }^{2}, E^{3} y_{3} y_{4}, E^{7} y_{1} y_{3}\right) \sim_{X}\left(w_{1}, E^{3} w_{3}, E^{7} w_{4}\right)$ or T_{3} is $x^{\prime}{ }_{1}: x^{\prime}{ }_{3}: x^{\prime}{ }_{4}=x_{1}: E^{3} x_{3}: E^{7} x_{4}$. By use of $X T_{3} X^{-1}$ one gets

$$
\left(w_{1}, w_{3}, w_{4}\right) \sim\left(E^{14} w_{1}, E^{10} w_{3}, E^{3} w_{4}\right)
$$

or T_{4} is $x^{\prime}{ }_{1}: x^{\prime}{ }_{3}: x^{\prime}{ }_{4}=E^{11} x_{1}: E^{7} x_{3}: x_{4}=x_{1}: E^{7} x_{3}: x_{4}$.
Thus, the following theorem has just been established.
Theorem 4. The imperfect point of coincidence P_{3} has an imperfect point in the first order neighbourhood along the $x_{1}=x_{2}=0$ direction. It also has an imperfect point in the second order neighbourhood. In the third order neighbourhood there is a perfect point.

Now, investigate the characteristics of the point adjacent to P_{3} along the invariant direction $x_{4}=x_{2}=0$. By use of $Y T_{1} Y^{-1}$, where the transforma-
tion Y is $y_{1}: y_{3}: y_{4}=w_{3} w_{4}: w_{3}^{2}: w_{1} w_{4}$ and the inverse is $w_{1}: w_{3}: w_{4}=y_{3} y_{4}$: $y_{1} y_{3}: y_{1}{ }^{2}$, we get $\left(w_{1}, w_{3}, w_{4}\right) \sim_{Y-1}\left(y_{3} y_{4}, y_{1} y_{3}, y_{1}{ }^{2}\right) \sim_{T_{1}}\left(E^{5} y_{3} y_{4}, E^{2} y_{1} y_{3}, y_{1}{ }^{2}\right) \sim_{Y}\left(E^{5} w_{1}\right.$, $\left.E^{2} w_{3}, w_{4}\right)$. We have an imperfect point. Define $T^{\prime}{ }_{2}$ as $Y T_{1} Y^{-1}$. Now apply $X T^{\prime}{ }_{2} X^{-1} \equiv T^{\prime \prime}{ }_{2}$ to our next order point, remembering that $T^{\prime}{ }_{2}$ may be written $x^{\prime}{ }_{1}: x^{\prime}{ }_{3}: x^{\prime}{ }_{4}=E^{5} x_{1}: E^{2} x_{3}: x_{4}$. We obtain

$$
\left(w_{1}, w_{3}, w_{4}\right) \sim_{X-1}\left(y_{4}^{2}, y_{3} y_{4}, y_{1} y_{3}\right) \sim_{T_{3}^{\prime}}\left(y_{4}^{2}, E^{2} y_{3} y_{4}, E^{7} y_{1} y_{3}\right) \sim_{X}\left(w_{1}, E^{2} w_{3}, E^{7} w_{4}\right)
$$

This transformation $T^{\prime \prime}{ }_{2}$ or $x^{\prime}{ }_{1}: x^{\prime}{ }_{3}: x^{\prime}{ }_{4}=x_{1}: E^{2} x_{3}: E^{7} x_{4}$ gives evidence of another imperfect point. For the third order neighbourhood, we use $Y T^{\prime \prime}{ }_{2} Y^{-1} \equiv T^{\prime \prime \prime}{ }_{2}$. This becomes $\left(w_{1}, w_{3}, w_{4}\right) \sim\left(E^{9} w_{1}, E^{2} w_{3}, w_{4}\right)$, denoting an imperfect point in the third order neighbourhood of P_{3} along the $x_{2}=x_{4}=0$ direction.

Finally, by use of $X T^{\prime \prime \prime}{ }_{2} X^{-1} \equiv T^{\mathrm{iv}}{ }_{2}$ we get $\left(w_{1}, w_{3}, w_{4}\right) \sim\left(w_{1}, E^{2} w_{3}, E^{11} w_{4}\right)$ or $\left(w_{1}, E^{2} w_{3}, w_{4}\right)$ since $E^{11}=1$. This indicates a perfect point. We shall state our result in the following theorem.

Theorem 5. Along the invariant direction $x_{2}=x_{4}=0$, there are no perfect points in either the first or second or third order neighbourhood of P_{3}. There is, however, a perfect point in the fourth order neighbourhood.

The following theorem is self-evident.
Theorem 6. The imperfect point P_{3} on F_{4} has no perfect points in the neighbourhood of the first or second order. It does have one in the third order neighbourhood and one in the fourth order neighbourhood, however.

University of Florida

[^0]: Received September 26, 1949. Presented to the American Mathematical Society, September 1, 1949.
 *W. R. Hutcherson, Maps of certain cyclic involutions on two-dimensional carriers, Bull. Amer. Math. Soc., vol. 37 (1931), 759-765; A cyclic involution of order seven, Bull. Amer. Math. Soc., vol. 40 (1934), 143-151.

