
JFP 26, e7, 42 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000095

1

OCaml-Java: The Java Virtual Machine as the
target of an OCaml compiler�

XAVIER CLERC

(e-mail: xclerc@ocamljava.org)

Abstract

This article presents how the compiler from the OCaml-Java project generates Java bytecode

from OCaml sources. Targeting the Java Virtual Machine (JVM) is a technological challenge,

but gives access to a platform where OCaml can leverage multiple cores and access

numerous libraries. We present the main design choices regarding the runtime and the

various optimizations performed by the compiler that are crucial to get decent performance

on a JVM. The challenge is indeed not only to generate bytecode but to generate efficient

bytecode, and to provide a runtime library whose memory footprint does not impede the

efficiency of the garbage collector. We focus on the strategies that differ from the original

OCaml compiler, as the constraints are quite different on the JVM when compared to

native code. The level of performance reached by the OCaml-Java compiler is assessed

through benchmarks, comparing with both the original OCaml implementation and the Scala

language.

1 Introduction

The OCaml-Java project is an attempt to provide seamless integration of OCaml

and Java, allowing to combine both languages in a single code base. One key

objective is to run OCaml code on a Java Virtual Machine (JVM), allowing to

circumvent limitations of the original OCaml implementation. Even though a young

project, the OCaml-Java project already provides a high level of compatibility with

the original OCaml implementation, and decent performance compared with the

OCaml native compiler. The OCaml-Java project has already been presented at

large in Clerc (2012b), and its code generation scheme has been described broadly

in Clerc (2012a). This article provides a detailed description of the compiler, as well

as some key design decisions related to its runtime support.

In the remainder of this section, we provide an overview of existing compilers and

justify the interest in the JVM as a target platform. In Section 2, we summarize the

objectives and challenges our project faces. In Section 3, we present the compiler

architecture and particularly how it differs from existing OCaml compilers. Then,

in Sections 4 and 5, we respectively detail the runtime representation of values and

� http://www.ocamljava.org

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

2 X. Clerc

the code generation scheme. Section 6 is devoted to the exposition of the post-

compilation optimization process. Section 7 illustrates the performance level of the

current implementation through various benchmarks. Finally, Sections 8 and 9 put

forward related and future work.

1.1 Existing compilers

1.1.1 Original compilers

The official OCaml distribution (Leroy et al., 2013) ships with two compilers, ocamlc

and ocamlopt. The former compiles to a dedicated bytecode, while the latter compiles

to native code. The ocamlc compiler, and its associated virtual machine (ocamlrun),

are available on any 32- or 64-bit platform running any flavor of either Unix or

Windows. It is noteworthy that the ocamlrun virtual machine does not feature a

JIT compiler. It nevertheless delivers decent performance thanks to an optimized

design and implementation (Leroy, 1990).

The ocamlopt compiler is available on fewer platforms than OCaml, but provides

support for the two most widespread architectures: amd64 and ia32 under Linux,

Mac OS X, and Windows operating systems, powerpc under Linux, and Mac OS X

operating systems, arm under Linux, and sparc under Linux, and Solaris operating

systems. The ocamlopt compiler produces binaries “at worst twice as slow as

binaries produced by an optimizing C compiler” (objective stated by the project

managers).

1.1.2 Alternative compilers

Besides the two compilers from the official distribution, there are two notable

initiatives that propose to extend the range of targets for the OCaml compilers:

js of ocaml (Vouillon & Balat, 2014), and ocamlcc (Mauny & Vaugon, 2012).

The goal of the js of ocaml project is to support execution of OCaml programs

on a JavaScript engine, thus allowing to program dynamic web pages in OCaml.

This project is part of a larger endeavor, namely the Ocsigen project (Balat et al.,

2009), whose aim is to provide a full-stack framework for web programming, with a

particular focus on using the same programming language on both the server and

the client.

The goal of the ocamlcc project is to target the C programming language.

The underlying motivation is that it will provide native performance, while still

being portable. It is thus primarily useful for platforms where ocamlopt is not

available. It may also be useful on platforms supported by ocamlopt, by giving

access to optimizations performed by the C compiler but not performed by

ocamlopt.

Interestingly enough, both projects are not taking OCaml sources files as their

input, but rather bytecode files produced by the ocamlc compiler. This contrasts

with our compiler that is actually an extension of the ocamlopt compiler. This

choice, to build a toolchain on the output of ocamlc, is motivated by the fact that

it is easier for the developer to provide an external tool rather than to plug into

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 3

the compiler itself. Moreover, it is often argued that the bytecode format is more

stable than the internal representation manipulated by the compiler, leading to less

maintenance effort over successive OCaml versions.

1.2 The case for the Java target

Although the original compilers meet portability and performance requirements,

through respectively ocamlc and ocamlopt, targeting the JVM is appealing for

various reasons. The most important one is related to libraries: the number of

libraries available to the OCaml developer is a known weakness of the OCaml

ecosystem. Granting access to every Java library is attractive for an OCaml developer

in order to reduce the time needed to develop an application. In order to allow

the OCaml developer to leverage Java libraries, an extension of the OCaml type

system has been designed to integrate the typing of Java elements into OCaml.

The extension, presented in Clerc (2013b), supports instance creation, method calls,

field accesses, and implementations of Java interfaces through OCaml code. The

challenge is that the two type systems are very different: mostly versus totally

static typing, nominal versus structural typing, and covariant versus invariant

arrays.

Another compelling reason to target the JVM is to lift the constraint of the global

runtime lock of the original implementation. This lock means that at any time only

one thread can execute OCaml code (it is possible that several threads execute C

code in parallel). While this model may prove sufficient when computations are

dominated by i/o operations, it will fall short when one really needs to use the full

computing power of a recent multicore CPU. One way to circumvent this limitation

is to use several processes rather than several threads to perform computations

in parallel. Several libraries have been developed along these lines (Danelutto &

Di Cosmo, 2011; Filliâtre & Kalyanasundaram, 2011; Stolpmann, 2012), which all

follow the map/reduce model. Moreover, the JoCaml dialect (Fournet et al., 2003)

provides language extensions for parallel and distributed programming.

While very useful, these projects do not help when one really needs to work

in a shared-memory model. An option to get rid of the global runtime lock is,

of course, to rewrite the OCaml runtime and make it re-entrant, and to also

develop a parallel garbage collector. Making the OCaml runtime re-entrant is not

very difficult, but developing a parallel garbage collector is a huge endeavor. The

ocaml4mc project (Chailloux et al., 2009) proposes such a garbage collector for the

x86 64 architecture. However, due to an extensive use of assembly language, this

development would have to be re-done for each architecture to be supported.

2 Objectives and challenges

2.1 Objectives

There is a growing perception that one can look at Java under two different

perspectives: as a platform, and as a language. The goal of the OCaml-Java project

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

4 X. Clerc

is to provide seamless integration with Java by leveraging both the platform and the

language.

Leveraging Java as a platform is mainly the ability to run OCaml code on the

JVM. This entails the following practical advantages:

• portability of compiled code;

• first-class performance level based on a JIT;

• shared-memory concurrent programming based on a parallel garbage collector.

Leveraging Java as a language is the ability to use Java libraries from OCaml

sources. To this end, it is not enough to provide a compiler producing Java bytecode,

it is also necessary to provide means to manipulate Java entities inside OCaml

applications. For example, the following code shows how to read a mp3 file:

let read_mp3 url =

let media = Java.make "Media(_)" url in

let player = Java.make "MediaPlayer(_)" media in

Java.call "MediaPlayer.setOnEndOfMedia(_)" player

(Java.proxy "Runnable" (object

method run = exit 0

end));

Java.call "MediaPlayer.play()" player.

The Java.make function allows invoking constructors, while the Java.call function

allows invoking methods. The Java.proxy method allows to implement a Java

interface (Runnable in the example above) with OCaml code.

Handling of Java elements is done through an extension of the type system

that supports the creation and manipulation of Java objects from the OCaml

language, with no costly indirection. The extension to the type system is presented

in Clerc (2013b); two important properties of this extension are that (i) OCaml

syntax is unchanged (thus meaning that all tools working at the source level can

still be used), and (ii) Java manipulations are directly translated to plain bytecode

(thus meaning that there is no reflection involved and no additional runtime cost

incurred).

The extension of the type system is a layer on top of the original type system. The

layer encodes the type of Java instances into bare OCaml types, using a combination

of phantom types and polymorphic variants. The layer is also able to decode such

OCaml types in order to print error messages with easy-to-read references to Java

classes. The typing of Java elements is thus embedded into the OCaml type system,

unifying both worlds.

Of course, the goal of providing seamless integration also means that the OCaml-

Java project provides ways to access OCaml from Java. The ability to call OCaml

code from Java is useful, for example, to develop plugins for Java applications. This

can be done mainly by using the following:

• the Java scripting framework that supports the evaluation of code snippets

written using foreign languages;

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 5

• the ocamlwrap (see Section 8.1) tool (Clerc, 2013a) that supports the generation

of Java class definitions to easily manipulate OCaml values and functions.

2.2 Challenges

The challenges we face are indeed mainly the consequence of the obvious and implicit

goal to provide source compatibility with the original OCaml implementation, and

to present a compiler with decent performance. For example, OCaml uses tagged

integers to encode some simple values but Java does not provide an equivalent

mechanism. Likewise, OCaml uses exceptions for control flow manipulation while

Java uses them only for error handling. Still in the performance department,

the original OCaml compilers implement tail call optimization, while Java does

not provide out-of-the-box support for them. Finally, OCaml supports separate

compilation and handles polymorphism by having a single runtime type for all

values.

These challenges are quite different from those encountered by other functional

languages targeting the JVM, such as Scala (Odersky et al., 2003) or Clojure (Hickey,

2008). Indeed, these language have been designed from the ground up to run on

a JVM. This means that they have the possibility to rule out features that would

be too costly in terms of either CPU or memory usage; for example, we are tied

to the value representation of the existing compilers in order to remain compatible

with legacy code. The situation of F# (Syme et al., 2005) on the .NET platform is

similar in the sense that the object-oriented part of the language was designed to be

compatible with the object model of C# (Microsoft, 2000).

In this respect, the work presented here is closer to projects like OCamIL (Mon-

telatici et al., 2005), MLj (Benton et al., 1998; Benton & Kennedy, 1999), or

SML.net (Benton et al., 2004) that have to support an existing language and

accommodate the limitations of the target platform. Fortunately, thanks to recent

evolutions of the JVM, it is now easier to get decent performance for a functional

language. Most notably, Java 1.7 introduced the G1 garbage collector, and method

handles.

The G1 garbage collector is more suited to functional languages than the previous

implementation, as its performance will not plummet under heavy allocation of

short-lived objects. It means that the allocation/collection pattern observed in most

functional programs will no longer deteriorate performance in dramatic proportions.

Nevertheless, we still need to be careful when designing our compilation schema

and data representation, in order to avoid unnecessary boxing.

Method handles, that are akin to function pointers in C, provide a simple and

efficient way to encode closures. Before method handles, there were basically two

techniques to implement closures: generation of multiples classes (one per method to

be called) implementing a given interface, or use of reflection to dynamically call a

given method. The former was a burden at both compilation time, generating many

almost-identical classes, and at runtime, polluting the classloader with the generated

classes. The latter was a burden at runtime because relying on reflection implies to

box all values, and is very costly performance-wise.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

6 X. Clerc

Table 1. Files manipulated by the various compilers

Compiler ocamlc ocamlopt ocamljava

Interface source .mli .mli .mli

Implementation source .ml .ml .ml

Compiled interface .cmi .cmi .cmi

Compiled implementation .cmo .cmx .cmj

Compiled library .cma .cmxa .cmja

Compiled plugin∗ .cmo .cmxs .cmjs

Object binaryo / .obj .jo

Library binarya, .so,ja

∗ A plugin is a module that can be dynamically loaded.

3 Compiler architecture

In this section, we will start by presenting how the original OCaml compilers

transform a source file into, respectively, bytecode and native code. Then, we will

explain how the same transformation occurs in the newly introduced ocamljava

compiler, underlining the differences with the original compilers.

Table 1 shows the extensions used for the different file kinds manipulated by

the compilers. All compilers share, of course, the same files for input sources;

they also produce the identical files for compiled interfaces. All compilers rely on

the principle of separate compilation. Through compiler execution, every .mli/.ml

couple defining an OCaml top-level module is first transformed into several files

containing:

• typing information about exported elements (.cmi file);

• list of imported modules with digests to ensure that all modules are compiled

against the same version (.cmi, .cmo, .cmx, and .cmj files);

• inlining information, in order to to perform cross-module inlining (.cmx, and

.cmj files).

The code for a module is stored by ocamlc inside .cmo files, while ocamlopt and

ocamljava store code inside dedicated files using, respectively, .o and .jo files. Such

.o files can be directly passed to the linker of the underlying platform. Once each

module has been compiled, implementation files can be linked together to produce

either a library or a standalone executable. The ocamljava compiler uses the .ja

extension for library binaries to differentiate them from executable .jar files. While

both .jo and .ja files are indeed Java archives, they do not use the .jar extension

to distinguish them from Java-generated files.

3.1 Original compilers

Both ocamlc and ocamlopt compilers naturally share a large code base: parsing

and typing are identical, using the very same code. Figure 1 shows the successive

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 7

Typemod.type_implementation

Translmod.transl_implementation

Simplif.simplify_lambda

Parsetree.structure

Typedtree.structure

Lambda.lambda

Lambda.lambda

ml

Bytegen.compile_implementation

Compile.implementation

Optcompile.implementation

Closure.intro

Selection.fundecl

Comballoc.fundecl

Spill.fundecl

Split.fundecl

Asmgen.regalloc

Linearize.fundecl

Scheduling.fundecl

Emit.fundecl

Instruct.instruction list

Lambda.lambda

cmo

Lambda.lambda

Cmm.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Linearize.fundecl

Linearize.fundecl

cmx o&

Cmmgen.compunit

 Clambda.ulambda

Fig. 1. Passes of original OCaml compilers.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

8 X. Clerc

passes of both compilers from an implementation source file to an implementation

compiled file. We do not detail the compilation of an interface source file because it

(i) does not produce code, and (ii) is identical in both compilers.

Figure 1 presents the various passes from a source file to a binary file, as well

as the different data structures used during the process. We only skip the passes

that are just intended to optionally pretty-print the intermediate data structures for

debugging. As previously stated, both compilers share the passes related to parsing

(Pparse.file) and typing (Typemod.type implementation). They also share the

very first passes related to code generation: Translmod.transl implementation

and Simplif.simplify lambda. These passes produce so-called lambda code,

which is the most abstract representation of code to be compiled. One distinctive

characteristic of lambda code is that it is untyped. Indeed, the compilation process

is based on type erasure, and relies on the strong and static typing of OCaml

to ensure that no type check is ever needed at runtime. It is also noteworthy

that constructs such as functors and first-class modules have been converted to,

respectively, functions and bare data blocks, which means that no special treatment

is required to compile them.

After lambda code, the two compilers diverge. The bytecode compiler only needs

two more passes to produce its result; these passes are straightforward because the

instruction set of the OCaml virtual machine is essentially based on the model of

the lambda code. Of course, the native compiler has far more work to perform

because it has to accommodate an instruction set that was not specifically designed

for functional programming, and has to target a register-based machine rather than

a stack-based machine.

The first ocamlopt-specific step, Closure.intro, handles the transformations

associated with closures (e.g. introducing explicit environment parameters where

needed), and related optimizations. These optimizations include inlining, basic

constant propagation, and identification of direct calls. A function call is direct

if the function is statically known, as opposed for example to a function passed as

a parameter or retrieved from a data structure. This optimization is crucial, because

direct calls often account for the vast majority of calls, and are dramatically cheaper

than generic function applications.

The Closure.intro function produces a variant of lambda code named C

lambda, the latter differing from the former mainly concerning function calls. Then

Cmmgen.compunit transforms C lambda into C-- (i.e. C minus minus), which is

lower-level and contains for example information about data size and alignment.

The Selection.fundecl function is responsible for producing machine code, which

is an abstract representation that is still largely independent from the target platform,

based on pseudo-instructions. The Comballoc.fundecl function optimizes memory

allocations performed in the same code block in order to merge them when

possible.

The next three phases of the native compiler, namely Spill.fundecl,

Split.fundecl, and Asmgen.regalloc implement register allocation. This first

determines the liveness of manipulated elements before actual register allocation

is done using a graph-coloring algorithm. The algorithm is the same for every

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 9

supported platform, but is of course fed with platform-specific information such as

the number of available registers.

Finally, Linearize.fundecl reifies pseudo-instructions into lists of instructions

for the target architecture, and Scheduling.fundecl optimizes the resulting order.

The very last step is to turn these instructions into a proper binary file. To this

end, the ocamlopt compiler outputs the assembly source for the instructions to a

temporary file, and executes an external assembler to produce the platform-specific

.o file.

3.2 OCaml-Java compiler

The OCaml-Java compiler follows the design of the ocamlc and ocamlopt compilers.

In this respect, it is very different from the js of ocaml and ocamlcc projects whose

inputs are the bytecode files output by the ocamlc compiler. There are three major

reasons to justify this design choice:

• Java puts a hard (and low) limit on the maximum size of a Java method (64

kb), meaning that it is impractical to have to treat the program as a single

whole (ocamlc-produced bytecode is monolithic);

• the OCaml-Java compiler does not only produce Java bytecode, it also provides

extensions to the type system in order to manipulate Java instances from an

OCaml program;

• implementing the unboxing strategy is easier, because we only have to propa-

gate types through compiler phases, while projects based on bytecode have to

reconstruct (an approximation of) this information.

The OCaml-Java compiler can be seen as a third branch of the tree depicted

by Figure 1. This means that passes up to Simplif.simplify lambda are shared

with the original compilers. Only a small modification is made to the lambda code

structure, in order to keep type information related to function declarations and

calls (see 5.4). This type information is used in subsequent passes to perform some

optimizations, such as unboxing. Sharing passes with the original compilers keeps

maintenance costs low. The most important part of the cost in indeed related to the

update of patches responsible for type propagation, which is scattered across less

than ten files.

Figure 2 shows which transformations are then performed on lambda code. First,

very similarly to the native compiler, Jclosure.jlambda of lambda is responsible

for the handling of closures, producing a slightly optimized Jlambda. Just like

ocamlopt, this pass is responsible for the identification of direct calls. It also performs

some other optimizations, such as loop unrolling and use of static exceptions (these

optimizations are discussed in Section 5).

Then, Macrogen.translate decomposes operations from the Jlambda code into

macro instructions that are not Java bytecode instructions but can be easily mapped

to them. This pass is also responsible for variable allocation which entails the

choice of their actual representation, and hence value unboxing. Here, the typing

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

10 X. Clerc

Javacompile.implementation

Jclosure.jlambda_of_lambda

Macrogen.translate

Bytecodegen.compile_function

cmj jo&

 Lambda.lambda (*)

Jlambda.jlambda

Macroinstr.expression

BaristaLibrary.Method.t

Typemod.type_implementation

Translmod.transl_implementation

 Simplif.simplify_lambda (*)

Parsetree.structure

Typedtree.structure

 Lambda.lambda (*)

ml

Fig. 2. Architecture of OCaml-Java compiler.

information added to lambda code plays a key role, allowing to determine optimal

data representation with no effort.

Finally, the last compiler pass, Bytecodegen.compile function, produces actual

Java bytecode using the Barista library to build an in-memory representation of the

class file to emit. This pass is quite straightforward as boilerplate operations such as

the computation of stack maps are handled by the Barista library. Indeed, the only

important optimization handled by this pass is tail-call optimization (see 5.1).

The point where ocamlopt and ocamljava compilers diverge (that is the function

named Jclosure.jlambda of lambda) has been chosen because the latter has to be

more aggressive regarding constants handling and propagation. Indeed, as presented

in Section 4, the native compiler uses a uniform representation and does not need

to optimize int values, as they are always unboxed (using a tagged representation).

On the other hand, our compiler stores int values as boxed values (in order to

keep a uniform representation despite the Java distinction between primitive and

object values), but tries to unbox values as much as possible when performing

computations in functions.

Another construct is treated in a different way by the ocamljava compiler:

switches, as the Java instruction set features both table and lookup instructions

while the native code generator only emits code corresponding to table switches.

Lookup switches are useful because they can be used where the original OCaml

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 11

compiler would emit intertwined jumps. The original compiler emits such jumps

when the different values to test are not contiguous. For example, in the following

program:

let f = function

| 0 -> ...

| 1 -> ...

| 2 -> ...

| 3 -> ...

| _ -> ...

let g = function

| 0 -> ...

| 100 -> ...

| 200 -> ...

| 300 -> ...

| _ -> ...

ocamlopt will compile f to a switch (defining an array of destinations and jumping

to the destination at the passed index/value), but produce the following pseudo-code

for g:

if (param >= 101) then

if (param != 200) then

if (param != 300)

...

else

...

else

...

else

if (param != 0) then

if (param >= 100) then

...

else

...

else

...

ocamljava will compile f to a tableswitch, i.e. an index-based jump:

label_f: push param

tableswitch default: 0 3

label_0:

label_1:

label_2:

label_3:

label_0: ...

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

12 X. Clerc

label_1: ...

label_2: ...

label_3: ...

default: ...

and will compile g to a lookupswitch, i.e. defined by key/destination couples:

label_g: push param

lookupswitch default:

0 => label_0

100 => label_100

200 => label_200

300 => label_300

label_0: ...

label_100: ...

label_200: ...

label_300: ...

default: ...

In both cases, ocamljava produces the same code that would be produced by a

Java compiler.

When compiling a top-level module named Module from a file named module.ml,

two files are produced: a module.cmj file corresponding to the .cmx file of the

native compiler, and a module.jo file corresponding to its .o file. The module.jo

file is actually a Java archive containing three entries:

• Module.class is the class file containing the implementation of all module

functions as Java static methods, as well as an entry() method executing the

module initialization code;

• Module$Global.class is the class file used to hold all global variables for the

module (such variables can be mutable);

• Module$Constants.class is the class file used to hold all structured constants

for the module (such values, for example strings or arrays can be mutated).

The class Module.class can be safely shared by several programs in the very same

JVM, as it holds no state. The Module$Global.class and Module

$Constants.class classes hold the state, and there should be one instance per

running program.

Compiled modules are later linked to produce an executable .jar file. The

ocamljava compiler currently supports four linking modes:

• genuine applications, that are bundled as standalone executable .jar files;

• applets, that are designed to be run inside a web browser to provide interactivity

to web pages;

• servlets, that are designed to be run in containers serving web pages computed

on the server side;

• scripts, that are used to provide support for the Java scripting framework

(implemented by the javax.script package).

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 13

The linking of modules involves the creation of the entry point of the program (e.g.

a class named ocamljavaMain in the case of a genuine application), that is responsible

for calling the entry() method of each linked module, in the appropriate order. This

also involves the loading of modules’ constants and initialization of global variables.

Both constants and globals of a module are stored using thread-local variables.

The use of thread-local variables introduces an arguably unnecessary indirection,

but is actually needed as several OCaml programs may run inside the very same

JVM (e.g. through several applets on the same page, or several servlets in the same

container), with each program keeping its own copy of the data. This is even needed

for constants as, despite their misleading name, some of them are indeed mutable

(their name stems from the fact that they appear as constant literals in the source

file). For example, OCaml string is actually mutable byte arrays.

The key points are that (i) threads are managed by the OCaml-Java runtime, and

that (ii) a given thread is attached to a given program. It is thus fine to access the data

of a program through thread-local variables, allowing to share the very same code

for several programs (e.g. the code of the standard library). The entry() method of

a module is responsible for initializing the module data of a given program.

This indirection incurs a runtime overhead that should ideally be paid only when

one is running several programs inside the very same JVM. As a consequence, a tool

named ocamljar, whose detailed role is presented in Section 6, has been developed

to optimize .jar files produced by the compiler. The motivation for such a tool

is that it is easier to only have one version of the compiled modules and then to

only modify the resulting .jar rather than to deal with multiple module versions

compiled with use of thread-local storage turned either on or off. Moreover, the

ocamljar tool, working on complete programs, it able to perform optimizations

permitted only when whole-program information is available.

4 Value representation

The compilation scheme of OCaml performs type erasure, meaning that almost all

typing information is lost during the compilation process. This is of course not a

problem as OCaml is statically and strongly typed, meaning that no type test has to

be performed at runtime.

Basically, all values share a common representation, namely value in the original

runtime, written in C. Having a common type for all values at runtime greatly

simplifies the compilation process because such a common representation makes

polymorphism compilation easier, particularly in the case of separate compilation.

More precisely, the use of the value type is mandatory at function boundaries (i.e.

to call an OCaml function, or a C primitive), but a function is free to use whatever

representation it prefers for local values. This freedom is indeed crucial in order to

reach good performance because it supports unboxing of values. Values still need

to be boxed at function’s call site, but this penalty can also be partially avoided

through function inlining.

In the remainder of this section, we first present the de facto specification of

runtime values set by the original OCaml implementation, and then present how

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

14 X. Clerc

size (in words) tagcolor

07891063

Fig. 3. Header of an OCaml block (on a 64-bit architecture).

such a specification is implemented in OCaml-Java. It is noteworthy that OCaml-

Java has to closely follow the value representation set by the original runtime,

because some OCaml core libraries rely on the value representation. For example,

the implementation of both Printf and Scanf modules relies on the precise memory

layout of closures.

For example, in order to handle the expression Printf.printf "%d -> %s" 1

"one", the compiler:

• parses the format string to determine the number and types of arguments;

• ensures that passed arguments are actually compatible;

• generates a call to the Printf.printf function with one argument that is the

format string, this call returning a closure;

• generates an application of this closures with parameters 1 and "one".

At runtime, the Printf.printf function parses the passed (format) string in order

to determine the number and types of arguments, and uses this information to

determine the shape of the closure. Then, when actually printing the elements on

the standard output, the function accesses the closure parameters.

4.1 Original runtime

The various values manipulated at runtime by an OCaml program can be specified

by the following grammar:

value ::= long unboxed value

| pointer to managed block

| pointer to unmanaged block.

A long value (used for example to encode the OCaml int type) is differentiated

from a pointer value using tagging: the lowest bit is set to one for long values, while

it is set to zero for pointer values (which is fine as memory addresses are always

even). The encoding of an integer value i as a long unboxed value l is thus done

according to the following equation: l = (i � 2) + 1. A managed pointer (i.e. inside

the OCaml heap) is discriminated from an unmanaged one (i.e. allocated by C code)

by keeping the list of memory blocks allocated as parts of the OCaml heap. To this

end, the current implementation uses an hash table that is used for example by the

garbage collector to know whether it should follow a given pointer.

A managed block is made of two parts: its header and its contents. The header,

depicted by Figure 3 contains three elements: (i) the total size of the block, (ii) its

color (used by the garbage collector), and (iii) its tag. The tag is used to know how

the contents of the block should be interpreted. The following grammar offers a

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 15

simplified view of the various possible block kinds:

managed block ::= header with tag ⊕ array of size values

| header with string tag ⊕ array of bytes, padded to size

| header with double tag ⊕ 64-bit float value

| header with double array tag ⊕ array of size 64-bit float

values

| header with closure tag ⊕ code pointer ⊕ array of size - 1

values

| header with object tag ⊕ pointer to method table

⊕object identifier ⊕ array of size - 2 values (instance

variables)

| header with lazy tag ⊕ thunk value

| header with forward tag ⊕ value

| header with abstract tag ⊕ pointer to C heap

| header with custom tag ⊕ pointer to custom operations ⊕
raw data.

In the first case, the tag is not used to denote the kind of element(s) stored by the

block, but is used to discriminate between the various cases of a sum type. For

example, the following values x and y:

type t1 = A of int | B of string

let x = A 3

let y = B "abcd"

would be respectively represented by the following:

• a block with tag 0, and a nested integer value of 7 (tagged integer);

• a block with tag 1, and a nested block with string tag holding an array of 4

bytes.

Given the possible contents of a managed block, we see that some typing

information is retained at runtime. However, this is not enough to recover the

typing information present in the source, because several different types in the

source are mapped to the same runtime representation. For example:

• 0, false, [], and A (under e.g. the type definition A | B) are all encoded by

the long value zero;

• similarly, :: (list constructor), (x, y) (couple), and { a; b } (record with

two elements) are all encoded using a block with tag zero and two nested

values.

Again, strong typing has been enforced at compile time, so no confusion could be

made at runtime between values of different types.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

16 X. Clerc

Most tags are self-explanatory, but lazy, forward, abstract, and custom tags

deserve an additional explanation. Lazy tags are, obviously, used to represent a

non-evaluated lazy value whose associated code is stored as a nested value. For

example, lazy expr is compiled to a block with a lazy tag holding a pointer to a

function fun () -> expr. When the value is forced, the function is called, and the

following modifications occur:

• the tag is changed from lazy to forward ;

• the nested value is changed from fun () -> expr to the result of the function

evaluation.

The abstract tag is used to wrap a pointer to the C heap into an OCaml value.

As we have seen before, it is also possible to directly use a C pointer as a value,

but wrapping it as an OCaml value is encouraged as it provides a more uniform

representation of values, and also alleviates the work done by the garbage collector

to know whether a pointer should be followed.

Finally, the custom tag is used for types that optionally come with specific

primitives for comparison, hashing, and (de-)serialization. It is noteworthy that

OCaml int32, int64, and nativeint types are all encoded by custom blocks,

meaning that besides the int type, all OCaml integer types are boxed. This implies

that it is crucial to devise an appropriate unboxing strategy to be able to get decent

performance for code based on these types.

4.2 OCaml-Java runtime

The representation of values is based on multiple classes for the various kinds of

values. All classes inherit from a parent Value abstract class. This class implements

the operations for all the kinds of values, possibly proposing a dummy or failing

implementation. It is then the responsibility of children classes to override that

base implementation with a correct one. The guarantee that a dummy or failing

implementation will never be called is based on the static and strong typing occurring

at compile time. We opted for a class rather than an interface in order to have more

control over derived classes: for instance, forbidding third-party implementations by

having only package-level constructors.

Derived classes are defined for long values, string values, double values, double

array values, and block values. Contrary to the original runtime, all values even

long ones are allocated because the JVM does not support tagged values. However,

every creation of a value has to be done through a factory method, which allows

us to share values through a cache. As an example, long values are immutable and

a cache shares values between −128 and 255. These values are allocated once, at

program startup, and then reference comparisons are used for values between the

bounds. Caching is important from a performance standpoint: for example testing

whether a list is empty by a simple reference comparison. In order to be fully

compatible with the original implementation, we use 63-bit arithmetic. Indeed, the

original implementation uses 1-bit tagging to tell integers and pointers apart.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 17

The compilation scheme of OCaml turns a type such as a record or a tuple of

values into a mere block at runtime. Again, strong and static typing ensures that the

program will not try to access an element that does not exist (e.g. trying to access

the third component of a pair). For this reason, the original OCaml compilers do

not generate code for testing such bounds. However, in Java it is not possible to

remove bound checks when accessing the elements of an array.1 As a consequence,

if the elements of a block were stored into an array, we would have to pay the price

of a bound check at every access. Moreover, due to the covariant nature of Java

arrays, each array store operation incurs a check that the actual class of the object

to be stored is correct with respect to the array type.

For this very reason, we resort to what could be called data unrolling. Rather than

having only one class named BasicBlockValue storing its elements as one Value[]

field, we define several classes named BasicBlockValuen that store n elements as n

Value fields. This allows us to define methods such as get0() that returns the first

element of a value with no bound check.

Experimentation showed measurable speedups when growing the n value up to

8. The current version of the runtime hence contains classes with n ranging from

0 to 8. The source code for these classes is, of course, generated. Also, in addition

to those classes, a BasicBlockValue is defined to be able to store an unbounded

number of elements in an array. Then, array bound checks cannot be avoided but

experience indicates that this representation is indeed used for OCaml types that

turn out to be arrays, and should indeed test bounds at runtime for every access.

Figure 4 shows a slightly simplified version of the class hierarchy used to

encode OCaml values when running a program on the JVM. As previously stated,

container classes (used for blocks) come in several versions according to their

sizes. This encoding is not only used for bare blocks (class BasicBlockValue) but

also for blocks holding double arrays (class DoubleArrayBlockValue), and blocks

holding long arrays (class LongBlockValue). Long blocks do not enjoy a specific

representation in the original OCaml runtime, but ocamlopt uses the fact that an

array contains only long values to avoid write barriers when working with such

blocks. In OCaml-Java, a special representation is used, alleviating the need to box

long values when they are stored inside the block.

The class named MethodHandleValue is used to represent closures, storing argu-

ments from partial application into a simple block. An instance of

MethodHandleValue holds, as its name suggests, a handle to the static method

implementing the function. Instances of MethodHandleValue are used only when

a function is either passed to a higher order function, or when partial application

is used. Indeed, when a totally applied call is made to a function that is known at

compile time, it results in a single INVOKESTATIC instruction. Lambda expressions

are compiled as classical functions, after being given fresh names.

1 The HotSpot compiler can remove such tests if it can prove that no illegal access will happen, but the
developer cannot request to remove such tests. Albeit, as we will see in Section 6, it is possible to use
unsafe operations akin to pointer arithmetic in Java.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

18 X. Clerc

Value

� LongValue

� MethodHandleValue

� BlockValue

� DoubleValue

� AbstractCustomValue

� Int32Value

� Int64Value

� NativeIntValue

� StringValue

� CachedStringValue

� AbstractBasicBlockValue

� BasicBlockValue0, . . ., BasicBlockValue8
� BasicBlockValue

� LargeBasicBlockValue

� AbstractLongBlockValue

� LongBlockValue0, . . ., LongBlockValue8
� LongBlockValue

� LargeLongBlockValue

� AbstractDoubleArrayValue

� DoubleArrayValue0, . . ., DoubleArrayValue8
� DoubleArrayValue

� LargeDoubleArrayValue

Fig. 4. Hierarchy of classes representing OCaml values.

The compilation of a function capturing values is done by building and environ-

ment that is basically a tuple of the captured values. This environment is then passed

to the function as an additional parameter. For example, the following function:

let f x y =

x + y + z + t

is actually compiled as:

let f x y (env_z, env_t) =

x + y + env_z + env_t.

It is also noteworthy that functors are compiled as simple functions. For example,

the following functor:

module Functor (S : Signature) = struct

let some_value = ...

let some_function x y = ..

let some_other_function x y z = ...

end

will be basically compiled as a function returning a record:

let functor s =

{ some_value = ...;

some_function = fun x y -> ...;

some_other_function = fun x y z -> ...; }.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 19

The StringValue and CachedStringValue classes are used to implement string

values, that are mutable in OCaml while the Java String class is immutable. Both

StringValue and CachedStringValue classes thus implement strings as byte arrays,

and provide conversion methods. A CachedStringValue instance also contains an

actual String instance, that is the cached conversion of the byte array, in order to

avoid repeated conversions.

The large blocks in Figure 4 are developed to handle the storage of blocks that

contain more values than a Java array can store (a Java array uses 32-bit indexes,

while an OCaml array uses 63-bit indexes). To this end, they use two-dimensional

arrays, thus allowing to store values indexed by a Java long rather than a Java int.

4.3 Alternative encodings

At first, one may wonder why the encoding of values in OCaml-Java is a direct

translation of the encoding set by the original compilers. The use of tags, in

particular, seems superfluous as different Java classes can be used to discriminate

between the various kinds of blocks. Unfortunately, we are constrained by the

need to be compatible with core libraries of the OCaml distribution that have

implementations based on the low-level memory layout of values. As an example,

the Printf and Scanf modules directly manipulate closures, thus enforcing to use

the a memory layout akin to the original one, at the expense of lost optimization

opportunities. Of course, such libraries could be rewritten, but it would increase

the maintenance cost of the project, and also leave unanswered the question of

third-party libraries (that may, as well, be based on such low-level implementation

details).

Even under those constraints, other encoding schemes could be devised, and

previous versions explored some alternatives. We experimented with an encoding

based on the classes from java.lang with Object rather than Value as the parent

class of all values, but performance was inferior due to the number of casts to

perform. Another scheme was used in versions 1.x of the project: rather than having

multiple subclasses, only one Value class was used for every kinds of values. In

order to avoid casts, we used multiple fields to store the multiple kinds of values.

This encoding led not only to a waste of memory, but also to a great performance

penalty as the garbage collector had far more references to iterate over (most of

them being null values).

When comparing the encoding scheme to the ones of other JVM languages, it is

important to only compare to languages sharing the same constraints: whether the

implementation has to be compatible with an existing reference implementation, or

is for a brand new language. Indeed, languages such as Clojure (Hickey, 2008) or

Scala (Odersky et al., 2003) are completely free to design their encoding schemes

because they do not have to abide by an existing specification. At the opposite,

projects such as JRuby (Nutter et al., 2008) or OCaml-Java have a more constrained

design space. For example, the idea of data unrolling in order to avoid array bound

checks is also used in JRuby.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

20 X. Clerc

4.4 Constants and globals

Constants are used only in the compiled module and are grouped together only for

practical purpose, meaning that they are never used as a whole. Conversely, globals

can be used by foreign modules and are used as a whole as the module representation

(needed for example for functor application or use as

first-class module). Constants and globals also differ in the sense that constant

values are by definition always used to designate boxed (i.e. allocated) values while

global values can be either boxed or unboxed. These differences lead to different

storage policies for constants and globals.

The constant values for a module are stored in instances of a Module$Constants

class that only contains a field of type Value for each constant. The class inherits

from java.lang.Object and does not provide any method; it is only used as a

data container.

The global values for a module Module are stored in instances of a Module$Global

class that contains a field for each value. The type of the field depends on the type

of the stored value, meaning that an OCaml int64 value will be stored in a Java

long field. The class inherits from Value as it will be used as a classical OCaml

value by functors. Inheriting from Value also means that the class has to provide

accessors to its fields through get/set methods, so that it can be used as any other

boxed value. However, when some code accesses to a given field, it can also directly

read or write the corresponding field, short-circuiting the accessor method. This is

particularly important when the value is stored unboxed as the use of an accessor

method would result in boxing/unboxing.

5 Bytecode generation

In this section, we detail how bytecode is actually generated by the ocamljava

compiler, and highlight the key points that make the compiler different from

ocamlopt. We first present the overall generation scheme and its use of the Barista

library. Then, we explain how exceptions and primitives are handled. Finally, we

discuss how type propagation is used by the compiler, and how loops are optimized.

5.1 General scheme

As already seen in Section 3, compilation from lambda code to Java bytecode is

done in three steps:

1. Jclosure.jlambda of lambda handles the transformation of closures, and

identifies direct calls;

2. Macrogen.translate handles the choice of data representation;

3. Bytecodegen.compile function produces an in-memory representation of

the Java class file.

The Jclosure.jlambda of lambda function determines whether a function call

can be translated into a mere Java static method invocation, or has to go through

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 21

the more general mechanism of function application (that can be partial or total).

It is noteworthy that tail-call optimization is not performed at this step (see below).

The Macrogen.translate function determines how values are locally stored by

compiled functions. Most notably, this implies to choose between boxed and unboxed

representations for integer and float types. This is a crucial operation as we observed

a gain in the 25%–33% interval between programs without any unboxing and the

current strategy.

The Bytecodegen.compile function function is responsible for a wide range of

low-level optimizations that are specific to OCaml-Java, such as the use of specialized

block containers (as seen at Section 4) or the use of the value cache (holding

integers constants, just like the JVM does for Integer instances). It produces the

code for each function to be compiled as a sequence of bytecode instructions. The

Bytecodegen.compile function function also optimizes direct calls to the current

function, thus performing (a restricted) tail-call optimization. This means that the

tail-calls optimized by the ocamlopt but not optimized by ocamljava are the tail-

calls between mutually recursive functions. In practice, supporting optimization of

tail-calls only for directly recursive functions is enough for most programs.

The resulting sequence of bytecode instructions is then passed to the underlying

Barista library (Clerc, 2007) that is in charge of boiler-plate operations over bytecode,

with no knowledge of the OCaml-Java specifics. The Barista library first builds a

control-flow graph from the sequence of instructions, and then uses that graph as the

basis for various optimizations. The nodes of the graph are labeled with instruction

sequences, and the graph structure encodes the control flow of the function. The

optimizations can be split into two categories:

• non-structural optimizations that are modifications to the instruction sequence

attached to a node;

• structural optimizations that are modifications to the graph structure.

Non-structural optimizations are simple peephole optimizations that modify the

instruction sequence for better size and speed. Better size is obtained by changing

generic instruction into specialized one (e.g. using ALOAD 0 instead of ALOAD 0).

Better speed is obtained by removing unnecessary operations (e.g. pushing a static

field value and then popping that value), and taking advantage of neutral/absorbing

elements as well as removing identity operations.

Structural optimizations of the graph include optimization of jumps over jumps

(thus short-circuiting empty nodes), removal of nodes that cannot be reached (thus

removing dead code), and partial evaluation. Partial evaluation supports control-

flow-aware constant folding, and optimization of conditional jumps whose condition

is statically known into unconditional jumps.

Finally, the Barista library uses the graph to compute the stack information to be

recorded in the Java file along with each method:

• the maximum size of locals;

• the maximum size of the operand stack;

• the stack frame at each branching point.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

22 X. Clerc

The maximum sizes have always been used by the JVM for safety reasons, while the

stack frames are used since Java 1.6 in order to speed up the class file verification.

By providing explicitly the stack frame, the JVM verifier only has to check that

the frame is consistent with the instructions, while in previous versions it had to

actually infer the frame, which is more costly. Providing stack frames thus reduces

the startup time of a Java application, and is mandatory in recent Java versions.

5.2 Handling of exceptions

Both OCaml and Java languages provide support for exceptions, and it is thus

natural to translate OCaml exceptions to Java ones. However, a problem arises as

the semantics differ:

• in OCaml, when an exception is raised, only the stack elements that have been

pushed since the begin of the protected block has been entered are popped;

• in Java, when an exception is raised, the operand stack is emptied.

Of course, the semantics of Java is perfectly legitimate as a try/catch construct is

a statement and cannot thus appear in an expression. Practically, this means that

although try/catch statements can be nested, the operand stack is always empty at

the beginning of each statement. On the opposite, the try/with construct of OCaml

is an expression that can then appear inside another expression, as in the following

example:

let x =

funct

arg0

(try ... arg1 ... with _ -> ... arg1’ ...)

...

argn.

As a consequence, a naive mapping of an OCaml exception to a Java exception

would discard all value on the stack whenever an exception is caught. In the previous

example, the JVM would discard the arg0 value. The naive bytecode would be akin

to:

push arg0

try: push arg1

goto next

with: push arg1’

next: push arg2

...

push argn

invoke funct

with an exception table stating that any exception occurring between labels try

and with should transfer control to with. However, this bytecode would not pass

verification. There are two paths to the next label: with and with no exception.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 23

With no exception, the operand stack contains arg0 and arg1; with exception, the

operand stack contains only arg1’. The JVM would reject this bytecode because,

for safety reasons, all paths leading to a given point have to be equivalent with

respect to the contents of the operand stack.

The ocamljava compiler performs some code motion to ensure that both

semantics are aligned. This means that the code has to be modified in such a

way that every time the control flow enters a try/with construct, the stack is empty.

To meet this requirement, it is possible to resort to let/in constructs, resulting in

the following code in the case of our example:

let x =

let tmp = try ... arg1 ... with _ -> ... in

funct arg0 tmp ... argn

where tmp is a fresh identifier.

The behavior of this version is equivalent to the previous one, except if the

evaluation of arg0 involves side effects. This is not a fundamental problem, as the

OCaml language does not specify the evaluation order. However, developers are

used to either left-to-right or right-to-left evaluation order and may find odd to

observe any other order. For this reason, the ocamljava compiler examines the

other arguments to determine whether they may contain side effects. If they do,

they are moved just like the expressions containing the try/with constructs. In our

example, if the evaluation of arg0 cannot be determined to be pure, the following

code is actually compiled:

let x =

let tmp0 = arg0 in

let tmp1 = try ... arg1 ... with _ -> ... in

funct tmp0 tmp1 ... argn

where tmp0 and tmp1 are fresh identifiers. The tmpi variables are stored into the

locals of the Java method, ensuring that the operand stack remains empty. The code

above shows that ocamljava evaluates arguments from left to right, because Java

method calls expect parameters in this order on the operand stack.

The purity check is currently mainly syntactic, with hard-coded knowledge about

some primitives. The check is performed to avoid unnecessary use of local variables

that make the code more complex.

The code transformation presented above ensures that there is no semantic

mismatch between OCaml and Java exceptions. There is nevertheless another

point where exceptions in the two languages differ: speed. OCaml exceptions are

notoriously faster than Java ones, so fast indeed that they are sometimes used to

manipulate the control flow of a program, just like break inside Java loops:

try

for i = ... to ... do

...

if some_condition then raise Exit

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

24 X. Clerc

...

done

with Exit ->

...

To get decent performance when exceptions are used, the OCaml-Java runtime

generates stack trace elements only when support for backtrace is required.2 While

this greatly improves speed (up to 30% for exception-intensive programs), Java

exceptions are still several time slower than OCaml ones.

As a consequence, we introduced an optimized compilation strategy for static

exceptions. An exception is said to be static if we can determine at compile-time

which handler will take care of it, should it be raised. For example, in the following

code:

let f arg0 ... argn =

try

...

if ... then raise Exit;

...

if ... then raise (Sys_error ...);

...

with

| Not_found -> ...

| Exit -> ...

| _ -> ...

it is statically known that if raise Exit is executed, the control flow will be passed

to the second handler of the with clause. Similarly, if Sys error is raised, the

control flow will be passed to the third handler. Determining whether an exception

is static is based on a syntactic criterion. For example, in the following code, the

exception raised inside the body of g are not optimized as static exceptions because

the raise expression do not occur in the try/catch construct:

let g arg0 ... argm =

...

if ... then raise Exit;

...

if ... then raise (Sys_error ...);

...

let f arg0 ... argn =

try

...

g argi ... argj

2 Stack trace generation is disabled by simply overriding the Throwable.fillInStackTrace() method
with an empty implementation.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 25

...

with

| Not_found -> ...

| Exit -> ...

| _ -> ...

In practice, this limitation is mitigated by inlining that may decide to replace the g

occurrence in f’s body by its definition.

The compiler only has to ensure that exception names actually refer to the very

same exception and are not homonyms. For example, in the following program, the

call to f from g’s body will be inlined but the exception E of f is not to be confused

with the exception E of g:

exception E (* original definition *)

let f x =

...

raise E

exception E (* shadows previous definition *)

let g x =

try

f x

with E -> (* refers to the second definition *)

...

The compiler also inspects the exception handlers to determine whether the

exception value is used; indeed, there is no point in allocating the value if it is

never used (it is not uncommon to have catch-all clauses such as try ... with

-> ...).

Once static exceptions and exception value uses have be determined, respectively

in the body and in the handlers of a try/with construct, it is possible to turn

the raises into bare jumps to the appropriate handlers. The try/with construct is

however kept, as it can be used to catch exceptions raised by nested calls to other

functions.

5.3 Handling of primitives

In the original OCaml implementation, primitives are used as the privileged way

to encode manipulations of the runtime system (e.g. creation of blocks), and as the

way to access foreign routines through the C interface. The same is true in the

OCaml-Java implementation, the foreign routines being obviously written in Java.

Primitives written in the foreign language have to abide by a number of con-

ventions in order to respect the model of the compiled OCaml code. The most

obvious convention is of course about data representation, but there are additional

constraints in the original OCaml implementation, linked to the garbage collector.

Indeed, as memory management is explicit in C, the developer has to indicate to

the OCaml runtime which values should be tracked by the garbage collector. In

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

26 X. Clerc

OCaml-Java, all the code is based on the garbage collector of the JVM whatever

its source language is. It is thus not necessary to take care of values that should or

should not be tracked by the garbage collector.

The major constraint regarding data representation in the original implementation

is that parameter and return values to and from primitives have to be boxed. This

may thus imply a runtime cost as the compiler is free to choose an unboxed

representation for data manipulated inside an OCaml-written function. The risk is

to have to convert back and forth between boxed and unboxed representation at

each primitive call. Fortunately, this problem is mitigated by the fact that some

primitives are intrinsics, meaning that the compiler knows how to compile them

directly and hence does not resort to an actual call to the primitive.

In order to get rid of this primitive wall hindering performance, the ocamljava

compiler provides two implementations for the primitives (one with all values

boxed, and another one with all values unboxed), when at least one value among

the ones passed as parameters or returned can be unboxed. We have to keep two

implementations, as the non-optimized one is used for generic application. The

optimized implementation takes precedence and is used everywhere else, avoiding to

pay the price of boxing/unboxing at every primitive call. The most common case is

to have a mix of boxed and unboxed parameters, leading to method signatures akin

to meth(Value,int,float,Value).

5.4 Use of propagated types

Beside the primitive wall mentioned in the previous section, the original OCaml

implementation builds another wall: the function wall. This means that, like prim-

itives, functions receive and return values in their boxed form, whatever form is

used internally by the function. This problem is indeed more important than the

one related to primitives as primitive calls often account for a rather small share

of all calls. It is noteworthy though that the problem of the function wall can be

mitigated in the original OCaml implementation by setting a higher limit to inlining.

Unfortunately, the same is not quite true in OCaml-Java as the JIT of the JVM

(which is responsible for inlining) tends to prefer smaller methods: the JIT has

basically an inlining budget, and will use it to inline several small methods rather

than a large one.

The objective is thus to be able, as for primitives, to call OCaml functions

accepting and returning unboxed values. It is a bit more difficult for functions than

for primitives, as we have to know the types of the manipulated values to known

whether the unboxed representation can be used.3 This explains why, as seen in

Section 3, and contrary to the ocamlopt compiler, the ocamljava compiler attaches

type information to lambda code. For example, the following function:

let f x y =

3 From a theoretical standpoint, the same is true for primitives but in practice the full type of primitives
is set once for all by the runtime implementation.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 27

print_string x;

y + 10

will be annotated in ocamljava with the information that x has type string, y has

type int, and the return value also has type int.

By keeping the information produced by the type system, we determine the repre-

sentation for the parameter and return values of each function. The representation is

also saved inside the .cmj file as other modules have to also know the representation

in order to call the function. It is necessary to store the representation of parameters

alongside the module signature, in order to be able to unbox opaque types (e.g. if

an opaque type is actually an integer). It would not be enough to store the Java

signature either, as a Java long can be used for an OCaml int or an OCaml char.

As for primitives, if any value among the passed and returned ones can be

unboxed, two functions are emitted rather than one:

• the genuine function, using the unboxed representation;

• an associated surrogate function, using the boxed representation and merely

performing boxing/unboxing operations to call the genuine function.

The second function is used for generic application, including partial application,

higher-order functions, etc.

Beside the types supporting an unboxed representation already presented at

Section 4, that are integer and float types, another type enjoys a special treatment:

the unit type. We indeed erase the unit parameters and return values, thus reducing

the number of stack operations.

There is another optimization that is performed with the help of type propagation:

the use of an optimized representation for blocks used for values of the OCaml int

array type. In this case, the optimization is not about unboxing the whole value

itself but about storing the elements of the block in their unboxed representation.

The ocamlopt compiler already provides some support for int arrays: although

the representation is the same as for bare blocks, they enjoy special implementation

of element accesses. The key point is that as all elements of the block are guaranteed

to be of the int type, it is not necessary to register the operation with the garbage

collector.

In OCaml-Java, we do not have direct low-level control of the garbage collector,

but lessen its work by avoiding unnecessary allocations, and by using unboxed

integers. This optimization is performed by rewriting the function calls creating

arrays and replacing them with call to specialized functions if the propagated type

indicates that the array to be built is made of int values. It is noteworthy that

this information cannot be retrieved at runtime. For example, suppose the following

code is executed:

type t = A | B of int

let first_array = Array.make 3 A

let second_array = Array.make 3 0.

At runtime, the Array.make function will receive two values: the length of the array

to build and the initial value for each element. Both calls to Array.make receive the

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

28 X. Clerc

very same values, as the value A is encoded exactly as the integer 0. This may lead

the function to believe it is building an int array in the first call. However, it is

not the case and the expression a.(0) <- B 1 is perfectly legitimate and would try

to store a block at index 0. The very limited type information retained at runtime

is hence not sufficient, and we have to resort to compile-time information to know

whether we are building an int array.

5.5 Loop optimizations

The last category of optimizations performed by ocamljava with respect to

ocamlopt are loop optimizations. These basic and well-known optimizations provide

some speed improvements. They are all controlled by the inlining parameter that

can be passed to the compiler through the command-line, as:

• the method size is strictly limited by the Java class file format;

• the JIT does prefer to have to compile several small methods than a big one.

The user can get oversized methods if inlining parameter is too high. However,

the compiler will not produce an invalid class file but output a meaningful error

message.

A while loop, as well as a for loop whose bounds are unknown, can be optimized

by performing “unrolling”: jumps are avoided, and references to the loop index are

replaced by constants. This means that, according to the inlining threshold and the

size of the body, its contents is repeated. For example, the following loop:

while cond do

body

done

can be transformed into:

while cond do

body

if not cond then jump to loop_end

body

done

loop_end:

Loop unrolling can yield better performance by avoiding jumps. It also interacts

with partial evaluation, that can further optimize the loop if it can be statically

determined that condition is true at start, leading to code akin to:

loop_start:

body

if not cond then jump to loop_end

body

if cond then jump to loop_start

loop_end:

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 29

A for loop whose bounds are known can be completely inlined in such a way that

the loop actually disappears, provided the inlining budget is sufficient. For example,

the following loop:

for i = 1 to 4 do

let x = i * ... + ... in

func x

done

can be transformed into:

let x1 = 1 * ... + ... in

func x1;

let x2 = 2 * ... + ... in

func x2;

let x3 = 3 * ... + ... in

func x3;

let x4 = 4 * ... + ... in

func x4;

where the xi are fresh identifiers. Such a transformation does not only saves costly

jumps; it also leverages the combined benefits of inlining and constant folding. This

explains why loop unrolling is interesting at the compiler level even though the JVM

is also able to unroll loops. Indeed, by performing loop unrolling at the compiler

level, we are able to trigger other compiler optimizations such as constant folding,

and partial evaluation.

6 Bytecode optimization

The OCaml-Java distribution features a tool named ocamljar that is best described

as a “post-compilation optimizer”. It takes as its input a standalone .jar file compiled

and linked by the ocamljava compiler and outputs an equivalent optimized .jar file,

performing a number of global and local optimizations. The range of optimizations

to apply can be selected through command-line switches, and the safety of the

optimizations depends on how the program will be used and cannot be ensured by

the tool itself. The tool works by transforming class files from the archive, changing

fields’ definitions as well as method bytecode. It also uses the information saved by

the ocamljava compiler as Java annotations in the various produced class files.

A Java archive produced by the linking of several previously compiled modules

contains essentially the following entries:

• a Module.class containing the code for the module, along with

Module$Global to store global variables and Module$Constants to store

the module constants;

• an ocamljavaMain.class acting as the entry point of the whole application,

and that is responsible for calling the entry() method of each linked module;

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

30 X. Clerc

• classes under the org/ocamljava/runtime path, forming the OCaml-Java

runtime support (written in Java, and compiled by the classical javac com-

piler).

The ocamljar tool applies different optimizations to the different kinds of entries,

but it is noteworthy that it optimizes both class files produced by the ocamljava

and javac compilers. This is indeed one of the reason for using a post-compilation

tool rather than options to the ocamljava compiler. It is far more convenient to

add a step to the build process of an application than to have to handle multiple

versions of the compiled modules and runtime.

The following sections present the main optimizations performed by ocamljar.

Using the tool can lower startup time by several tenths of seconds, and results in

a global performance gain comprised between 5% and 10% on most applications.

The actual gain heavily depends on the application profile.

6.1 Optimization of critical sections

As previously mentioned, the original OCaml implementation relies on a global

runtime lock that is indeed mandatory as some core runtime routines are not re-

entrant and the garbage collector uses a stop-the-world collector. By contrast, the

OCaml-Java runtime is re-entrant, and the garbage collector of the JVM can be

executed concurrently. There is hence no need for OCaml-Java to be based on

a global runtime lock. However, some OCaml programs and libraries make the

assumption that the code executes under a global runtime lock. For this reason, the

default mode of OCaml-Java is to use such a lock. The ocamljar tool allows eliding

the lock, the developer being responsible for ensuring that the code is still correct if

the assumption of a global lock is lifted.

Throughout the OCaml-Java code (both code from the runtime and code compiled

using ocamljava), all critical sections materializing the global runtime lock are

implemented by calls to methods of the CurrentContext class. It is thus sufficient

to erase these calls to ensure that the program never acquires the runtime lock; for

example, a routine from the i/o support library is transformed from:

try {

CurrentContext.enterBlockingSection();

((Channel) channel.asCustom()).write8u(...);

CurrentContext.leaveBlockingSection();

} catch (final IOException ioe) {

CurrentContext.leaveBlockingSection();

Sys.sysError(null, ioe.toString());

}

into:

try {

((Channel) channel.asCustom()).write8u(...);

} catch (final IOException ioe) {

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 31

Module Module$Constants

Module$Global

accessor methods

thread-local access to constants
thread-local access to globals
entry() method
implementation of module functions

Module

entry() method
implementation of module functions

Module$Global

accessor methods

ocamljavaConstants

(a)

(b)

Fig. 5. Handling of constants and globals (a) before and (b) after optimization.

Sys.sysError(null, ioe.toString());

}.

This optimization is applied to ocamljava-produced classes, as well as to the

runtime classes.

This optimization is safe if and only if either (i) the program does not spawn

threads, or (ii) the program does not assume that OCaml primitives (e.g. printing

functions) are protected by a lock.

6.2 Optimization of constants and globals

Constants come in two flavors: non-structured ones that are used for boxed values

of type int32/int64/nativeint/float and are immutable, and structured ones

that are used among other things for values of type string/array and are mutable.

This means that non-structured constants can be safely shared by different modules,

while structured ones have to be private to one module (and even to one module

instance if several programs run on the same JVM).

Figure 5 shows how constants are optimized by the ocamljar tool, the ar-

rows representing references to instances. The class used to store constants is

dismissed and its fields are moved to the main module class for structured constants

and to a newly introduced ocamljavaConstants for non-structured ones. The

ocamljavaConstants also merges constants referring to the same value from

different modules. Additionally, the indirection via thread-local storage is removed.

In practice, this means that an access to a constant is just an access to a static field

after optimization.

Global variables still have to be stored in a dedicated instance that should also be

a Value, in order to be used as a module representation for functor application or

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

32 X. Clerc

first-class module wrapping. However, ocamljar performs another kind of opti-

mization that discards the code used to initialize global values that are never read.

Determining which global values are never read of course requires whole-program

information. Constructing this information is done in three steps:

1. at compile-time, ocamljava stores for each class the list of global elements

used (both in the current and in foreign modules);

2. at link-time, ocamljava stores the list of modules used to build the application;

3. at optimization-time, ocamljar gathers the information produced at the

previous steps and builds a complete representation of global variables use.

Equipped with this information, ocamljar then removes the code initializing

these never-used global variables. A large part of these variables consists of closures

corresponding to functions exported by the module. It is crucial not to build these

closures as it is a costly operation that requires resolving method handles. Avoiding

these closure constructions significantly reduces startup time. It should be noticed

that this optimization would not benefit the ocamlopt native compiler as it is able

to directly store closures in the data segment of the produced binary, thus paying

no runtime penalty for their initialization.

This optimization is applied only to ocamljava-produced classes.

This optimization is safe if and only if there is one ocamljava-compiled program

running on the JVM.

6.3 Optimization of context accesses

We want to be able to use ocamljava-compiled code to execute applets or servlets.

It is also possible to use compiled code as a plugin of Java applications. In such

situations, it is possible to have several ocamljava-compiled programs running in

the same JVM and to share the same modules (and hence class files).

To ensure that the states of the various programs are not intertwined, it is

necessary to clearly separate the data of each program. To this end, the context of a

given program (e.g. current path, the list of opened file channels) is stored as a Java

instance and is retrieved from a thread-local variable (a given thread being attached

to a single program).

However, even if we have to take into account situations where several programs

coexist in the very same JVM, the user may also want to get rid of the thread-local

indirection when she is absolutely sure that only one program will be run by the

JVM. In this case, the ocamljar tool is able to rewrite accesses to the context from

thread-local value retrieval to simple lookup of a static field.

The first versions of OCaml-Java explicitly passed the context as an additional

argument to every function, but it turned out to be quite costly (we gained about

10% when switching to thread-local storage) and most of the time unnecessary

because most functions do not use the context.

This optimization is applied to ocamljava-produced classes, as well as to the

runtime classes.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 33

This optimization is safe if and only if there is one ocamljava-compiled program

running on the JVM.

6.4 Optimization of array accesses

We have seen in Section 4 that we can partially avoid array bound checks by

providing classes specialized for a given size. However, the cost of array bound

checks has still to be paid for classes whose size is above that threshold. It is

nevertheless common to run production code at full speed, trading safety for speed

by removing array bound checks from a well-tested program.

To this end, ocamljar can be instructed to change every use of the

BasicBlockValue, DoubleArrayValue and LongBlockValue classes to their unsafe

equivalents. These unsafe classes are based on the sun.misc.Unsafe class that

provides accesses to array elements through pointer arithmetic, avoiding array

bound checks.

This optimization is disabled by default as bogus code can corrupt the memory and

crash the JVM. Moreover, executing an application based on the sun.misc.Unsafe

class involves placing its code in the boot class path4, as privileged rights are

mandatory for Java code using unsafe features. Additionally, the use of the unsafe

containers does not always result in a performance gain as it may disable some JIT

optimizations.

This optimization is applied to ocamljava-produced classes, as well as to the

runtime classes.

This optimization is safe if and only if there is no out-of-bounds array access in

the program.

7 Benchmarks

In this section, we assess how the version 2.0-alpha3 of OCaml-Java5 compares to

the original OCaml implementation. We first focus on CPU performance, and then

discuss the accessory elements that are startup time and memory consumption.

7.1 Single core benchmarks

In order to evaluate the performance level of OCaml-Java, we compare it to the

original ocamlopt compiler. To perform the comparison, we use programs provided

by the Computer Language Benchmarks Game6. We retain only the programs that

do not rely on external libraries (such as GMP). It is important to notice that

we used the very same OCaml code for both ocamlopt and ocamljava compilers,

even if the OCaml code present in the Computer Language Benchmarks Game has

allegedly been optimized for the ocamlopt compiler.

4 Through one of the following java switches: -Xbootclasspath/a:class-path-elements , or
-Xbootclasspath/p:class-path-elements .

5 Available at http://www.ocamljava.org.
6 http://benchmarksgame.alioth.debian.org

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

34 X. Clerc

The various programs exercise different areas of the code generation:

• binarytrees, exercising recursive functions over trees;

• fannkuch, exercising integer computations over arrays;

• fasta, exercising float computations, string manipulations and i/o operations;

• mandelbrot, exercising float computations and i/o operations;

• meteor, exercising integer computations over arrays;

• nbody, exercising float computations;

• revcomp, exercising string computations and i/o operations;

• spectralnorm, exercising heavy float computations over arrays;

• threadring, exercising threads and mutexes.

Additionally, we add the following test cases:

• meteors, that is just the repetition (64 times) of meteor because meteor is so

short that start-up has a major impact on overall performance;

• kb benchmark from the test suite of the original OCaml distribution, as

an example of functional code extensively using higher order functions, and

exceptions for backtracking.

The various pieces of software used throughout the benchmark procedure are:

• java version1.7.0 71 build;

• ocamlopt version 4.01.0;

• ocamljava version 2.0-alpha3.

Following the setup of the Computer Language Benchmarks Game, we always pass

both -noassert and -unsafe flags to the compilers. For each compiler, we test

the binaries produced with either -inline 100 (inlining used by the Computer

Language Benchmarks Game), or -inline 0 (inlining being disabled). Moreover,

we also assess the impact of the ocamljar utility by applying it to each ocamljava-

compiled program. We hence test six programs:

• opt+i: ocamlopt ... -inline 100;

• opt-i: ocamlopt ... -inline 0;

• ocj+i-o: ocamljava ... -inline 100;

• ocj+i+o: ocamljava ... -inline 100 with ocamljar applied;

• ocj-i-o: ocamljava ... -inline 0;

• ocj-i+o: ocamljava ... -inline 0 with ocamljar applied.

Each program is run under Mac OS X seven times, the worst time being

ruled out to take into account code warm-up. All programs running on a JVM

use the very same parameters, that are -server -XX:+TieredCompilation -XX:+

AggressiveOpts. Table 2 presents the results for each compiler/benchmark combi-

nation with the mean time given in seconds. Figure 6 presents the ratio of the best

ocamljava-compiled program over the best ocamlopt-compiled program for each

bench mark.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 35

Table 2. CPU performance of the various compilers (time in seconds)

Test opt+i opt-i ocj+i-o ocj+i+o ocj-i-o ocj-i+o best opt best ocj

kb 0.89 0.93 14.66 15.34 13.53 15.40 0.89 13.53

binary trees 29.91 29.83 23.80 19.47 23.20 23.35 29.83 19.47

fannkuch 67.05 76.10 108.37 108.55 107.38 107.46 67.05 107.38

fasta 9.23 9.82 139.66 150.31 15.45 11.18 9.23 11.18

mandelbrot 44.20 43.85 42.34 40.88 35.33 41.19 43.85 35.33

meteor 0.74 0.77 2.89 2.39 2.90 2.41 0.74 2.39

meteors 46.45 48.61 117.72 90.46 112.86 89.61 46.45 89.61

nbody 11.67 11.66 13.01 13.04 12.60 12.57 11.66 12.57

revcomp 3.27 3.28 25.45 17.47 25.39 17.49 3.27 17.47

spectralnorm 11.81 19.54 15.81 15.02 16.33 16.34 11.81 15.02

threadring 61.95 61.89 53.00 50.53 52.94 50.31 61.89 50.31

kb

binarytrees

fannkuch

fasta

mandelbrot

meteor

meteors

nbody

revcomp

spectralnorm

threadring

average

average \ kb

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1,8

3,0

0,8

1,3

5,3

1,1

1,9

3,2

0,8

1,2

1,6

0,7

15,2

Fig. 6. Ratio of ocamljava over ocamlopt (using best times).

The performance level of the ocamljava compiler is encouraging; on most

benchmarks of the Computer Language Benchmarks Game, performance is within

a factor of 2:

• binary trees: 0.7;

• fannkuch: 1.6;

• fasta: 1.2;

• mandelbrot: 0.8;

• meteors: 1.9;

• nbody: 1.1;

• spectralnorm: 1.3;

• threadring: 0.8.

However, the ratio degrades to 3.2 for meteor and to 5.3 for revcomp. Regarding

meteor, as shown by meteors, the problem is largely due to the shortness of the

benchmark that mechanically increases the impact of the start-up time. Regarding

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

36 X. Clerc

Table 3. Impact of ocamljar (gain in percents)

Test ocamljar gain (inlining on) ocamljar gain (inlining off)

kb -4.7% -13.8%

binarytrees 18.2% -0.6%

fannkuch -0.2% -0.1%

fasta -7.6% 22.7%

mandelbrot 3.4% -16.6%

meteor 17.1% 16.6%

meteors 23.2% 20.6%

nbody -0.2% 0.2%

revcomp 31.4% 31.1%

spectralnorm 5.0% -0.1%

threadring 4.7% 5.0%

revcomp, a detailed analysis reveals that the bad performance stems from the

combination of two elements: string operations are slower in the ocamljava runtime,

and the unboxing heuristics are not as efficient as in other benchmarks.

Finally, the worst result is obtained on the kb benchmark with a ratio of 15.2.

This underlines that there is still a lot of work to be done in the area of higher

order functions and closures, and that despite some optimizations, exceptions are

still far more costly on the JVM. Regarding higher order function and closures,

it is important to notice that their use implies that function calls are not direct

anymore, but are executed through a generic mechanism. This mechanism does not

only add an indirection, but also requests all parameters to be passed using a boxed

representation. Regarding exceptions, it is noteworthy that exceptions were designed

in Java to handle errors, while they are sometimes used in OCaml to encode the

control flow of the program.

7.2 Impact of post-compilation optimization

Post-compilation optimization, as performed by the ocamljar tool has quite an

impact on the performance level. Table 3 presents the gain due to ocamljar for the

various benchmarks. The programs that benefit the most from ocamljar are those

making frequent use of global variables, including those where such uses are made

from functions of the standard library (e.g. a function that outputs strings on the

standard output uses the global variable holding the channel associated with the

standard output).

7.3 Startup time and memory consumption

CPU usage is not the only metric that can be used to characterize an execution.

Memory consumption, and to a lesser extent startup time are other important

characteristics. The startup time is measured by executing an empty program under

the same conditions as before. Results for the various compilers, as well as for Java

and Scala, are given in Table 4. The ocamlopt compiler clearly outperforms other

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 37

Table 4. Startup time for the various compilers (in seconds)

Compiler Startup time

ocamlopt 0.01

ocamljava 0.32

ocamljava (with ocamljar applied) 0.30

javac 0.13

scalac 0.13

Table 5. Memory consumption on the various benchmarks (in hundreds of megabytes)

ocamljava/ ocamljava/

Test javac ocamlopt ocamljava scalac javac scalac

binary trees 16.74 9.71 30.27 16.69 1.8 1.8

fannkuch 0.90 0.03 14.48 1.03 17.2 15.1

fasta 0.93 0.12 2.40 1.17 2.6 2.0

mandelbrot 0.91 0.12 2.26 1.06 2.5 2.1

meteor 1.40 0.20 7.58 4.76 5.4 1.6

meteors 2.12 0.20 13.45 4.77 6.4 2.8

nbody 0.90 0.03 1.56 1.11 1.7 1.4

revcomp 24.98 9.01 33.50 22.01 1.3 1.5

spectralnorm 0.93 0.07 1.57 1.06 1.7 1.5

threadring 6.51 0.30 6.55 ... 1.0 ...

compilers, which is expected as produced code does not need a virtual machine.

Programs compiled with javac and scalac exhibit similar startup times, while

ocamljava is 2.3 times slower. The ocamljava overhead comes from the initialization

of the runtime system, including initialization of cached values and loading of

numerous class definitions.

For each benchmark, Table 5 gives the maximum amount of memory used by the

process in hundreds of megabytes. We do not differentiate runs with inlining and

post-compilation optimization on/off as they only have a minor impact on memory

consumption. Unsurprisingly, ocamlopt-compiled code uses far less memory than

programs run on a Java Virtual Machine. Also, ocamljava-compiled code requires in

general twice as much memory as javac-/scalac-compiled code, with two particular

benchmarks (namely fannkuch and meteor) where the ratio is far bigger. This can

be explained by the fact that a number of OCaml values are boxed, e.g. when stored

in a data structure.

8 Related work

In this section, we review projects aiming at providing support for functional

languages on alternative runtimes. We first describe such projects in the OCaml

ecosystem and then consider functional language implementations targeting the

JVM, and finally other managed runtimes.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

38 X. Clerc

8.1 In the OCaml world

We have already mentioned some up-to-date alternative runtimes for OCaml:

js of ocaml (Vouillon & Balat, 2014) that generates JavaScript code, and ocamlcc

(Mauny & Vaugon, 2012) that generates C code. Both projects are based on the

output of the ocamlc compiler, the OCaml bytecode being considered as more

stable than the internal compiler representation manipulated by ocamlc/ocamlopt/

ocamljava. However, this implies that those projects have to reconstruct, either

completely or partially through heuristics, information that is explicit inside the

compiler and only implicit in the bytecode.

Both projects exhibit good results in terms of performance, and the js of ocaml

project is also well integrated with the JavaScript runtime, supporting for example

manipulation of DOM elements to dynamically modify a web page. The OCaml-

Java project took a different path by forking from the original compilers at a point

where a higher level representation of the code is available. This alleviates the need

to recover information, and also allows us to propagate some type information,

which has become crucial in recent versions to reach decent performance. It is also

enables an extension of the type system that allows the developer to manipulate

Java instances from pure OCaml sources (Clerc, 2013b).

There is also an older project worth mentioning, namely OCamIL (Montelatici

et al., 2005), that targeted the .NET runtime, which is very similar to the JVM.

This project was a patch against the original OCaml distribution, providing a

compiler producing MSIL bytecode. The project also included a tool named

O’Jacaré.net (Chailloux et al., 2007) responsible for generating wrappers for .NET

libraries for the OCaml languages by both direct calls and registered callbacks. One

advantage of OCaml-Java over OCamIL is that its runtime library covers almost

the whole original OCaml library, while OCamIL lacks supports in various areas.

Another version of the O’Jacaré (Chailloux & Henry, 2004) tool is also available to

interface with Java rather than with .NET. In this case, the camljava project (Leroy,

2004) is used to bridge the gap between OCaml and Java through the use of JNI

and the OCaml FFI based on C. The O’Jacaré/camljava duo is thus very different

from the OCaml-Java project in that it relies on ocamlc/ocamlopt and lacks binary

portability as the C code interfacing JNI and OCaml FFI has to be recompiled

on each platform. A fork of the O’Jacaré targeting OCaml-Java has been recently

developed, thus lifting the portability issues.

In OCaml-Java, integration with the Java language is made through two different

mechanisms:

• an extension to the type system, as already mentioned, to access Java elements

from OCaml sources;

• a tool named ocamlwrap that takes as input OCaml compiled interface files

and generates Java class definitions.

The class definitions generated by the ocamlwrap tool allow the Java developer

not only to call functions, but also to build values of the various types through a

type-safe interface.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 39

8.2 In the Java world

One of the earliest attempts to port a functional language onto the JVM is the SMLj

project (Benton et al., 1998; Benton & Kennedy, 1999), that delivers a compiler for

the Standard ML language producing Java bytecode. It is noteworthy that this was

at the time a greater endeavor than today, as the JVM greatly evolved and nowadays

provides all the elements needed to efficiently run foreign languages on the JVM.

For example, method handles were not available, and the compiler adds to generate

multiple classes to provide support for closures.

The SMLj compiler does not only produce class files to be run on the JVM, it

also provides an object-oriented extension to the Standard ML language, supporting

creation of Java instances, calls to Java methods, and accesses to Java fields. The

language extensions also make it possible to implement Java interfaces with Standard

ML code.

This extension of the Standard ML language is quite different from the one we

devised for the OCaml language for various reasons. First, we wanted to keep the

original syntax in order to be able to reuse every source-level tool already developed

for the language. More importantly, the constraints are different as OCaml already

possesses an object system, contrary to Standard ML.

More recently, new functional languages appeared on the JVM. Among them,

two high-profile languages are Clojure (Hickey, 2008) and Scala (Odersky et al.,

2003). These new languages have an advantage over existing ones in that they are

by definition not tied by backward compatibility constraints and can thus decide

whether to integrate a feature on considerations based on the target platform.

8.3 Elsewhere

Besides the Scala language, OCaml was also an inspiration for the design of the

F# language (Syme et al., 2005). The object system is based on the one of the C#

language, to allow interoperability between the two languages through the CLR of

the .NET platform.

F# programs deliver first-class performance, which is of course made easier by the

fact that the language implementers have designed the language given its runtime

environment. Moreover, the F# implementers enjoy tail-call support from the .NET

platform, while developers implementing functional languages on the JVM do not

have access to such a facility.

9 Future work

The future work to be undertaken in the context of the OCaml-Java project can

be split into two categories: work related to the compiler itself, and work related

to the project at large. The work related to the compiler is obviously focused on

performance issues; we list in the following paragraphs some possible enhancements.

First, although unboxing is already quite powerful, it can be enhanced by trying

to unbox values besides those of types int, int32, int64, nativeint, and float.

For example, a tuple can sometimes be unboxed by storing each component

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

40 X. Clerc

independently. Inlining can also be enhanced, by inlining recursive functions. This

may seems odd at first sight, but if a recursive function has only tail recursive calls

and is thus translated into a simple loop, it is then possible to inline it. Another way

to strengthen inlining would be to inline higher order functions more aggressively.

Related to higher order functions, function application and particularly partial

application could be optimized. The difficulty here is that some OCaml core libraries

heavily rely on the actual memory representation of closures, hindering possible

Java optimizations related to method handles. It would be possible to rewrite these

libraries to pave the way to optimizations in closure representation. Also, as the

ocamljava compiler already propagates type information up to code generation,

this information may be used to monomorphize polymorphic functions.

Another optimization worth mentioning is the intent to let the user choose between

63- and 64-bit representation for the OCaml int type. The current implementation

favors compatibility and thus uses 63-bit int values. However, one alternative

OCaml implementation, namely js of ocaml, uses JavaScript numbers that are

only 53-bit int values (mantissa of a 64-bit floating-point value), meaning that

the developer can overcome such a mismatch. The remaining question is whether

third-party libraries rely on the precise representation.

Besides compiler optimizations, some work could also be done in the area of

usability. For example, integration of the OCaml and Java language could be

tightened by providing a custom interface to libraries such as Swing or JavaFX.

Interfacing the latter may imply some modifications to the compiler through the

introduction of an additional linking mode in order to handle the JavaFX application

model.

Another way to tighten the integration of both languages will be to leverage

the novelties of Java 1.8. The most prominent change is the support of so-called

lambdas. Even if this is mostly a language change (as opposed to a JVM change),

it has a decisive impact on the semantic gap between the languages and will thus

probably make library sharing easier.

Finally, another area where Java libraries are likely to play a key role is concurrent

and distributed programming. The current version of OCaml-Java ships with a

comprehensive library for concurrent programming, but it could be extended in

order to provide support for distributed programming.

Acknowledgments

Part of this work was performed while the author was visiting OCaml Labs at

Cambridge University. The author would like to thank the OCaml Labs for providing

a great working environment.

References

Balat, V., Vouillon, J. & Yakobowski, B. (2009) Experience report: Ocsigen, a web

programming framework. Sigplan not. 44(9), 311–316.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

The JVM as the target of an OCaml compiler 41

Benton, N. & Kennedy, A. (1999) Interlanguage working without tears: Blending SML with

Java. In Proceedings of the 4th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’99. New York, NY, USA: ACM, pp. 126–137.

Benton, N., Kennedy, A. & Russell, G. (1998) Compiling Standard ML to Java bytecodes.

In Proceedings of the 3rd ACM SIGPLAN International Conference on Functional

Programming, ICFP ’98. New York, NY, USA: ACM, pp. 129–140.

Benton, N., Kennedy, A. & Russo, C. V. (2004) Adventures in interoperability: The SML.net

experience. In Proceedings of the 6th ACM SIGPLAN International Conference on

Principles and Practice of Declarative Programming. New York, NY, USA: ACM, pp.

215–226.

Chailloux, E., Canou, B. & Wang, P. (2009) OCaml for Multicore Architectures. Available at:

http://www.algo-prog.info/ocmc/web/.

Chailloux, E. & Henry, G. (2004) O’Jacaré, une interface objet entre Objective Caml et Java.

L’objet.

Chailloux, E., Henry, G. & Montelatici, R. (2004) Mixing the Objective Caml and C#

programming models in the .NET framework. In Workshop on Multiparadigm Programming

with Object-Oriented Languages (MPOOL), Oslo, Norway.

Clerc, X. (2007) The Barista library. Available at: http://barista.x9c.fr.

Clerc, X. (2012a) OCaml-Java: From OCaml sources to Java bytecodes. In Implementation

and Application of Functional Languages. IFL 2012, pp. 71–85.

Clerc, X. (2012b) OCaml-Java: OCaml on the JVM. In Trends in Functional Programming.

TFP 2012, pp. 167–181.

Clerc, X. (2013a) OCaml-Java: An ML implementation for the Java ecosystem. In

International Conference on Principles and Practices of Programming on the Java Platform,

PPPJ 2013, New York, NY, USA: ACM, pp. 45–56.

Clerc, X. (2013b) OCaml-Java: Typing Java accesses from OCaml programs. In Implementation

and Application of Functional Languages. IFL 2013, pp. 167–181.

Danelutto, M. & Di Cosmo, R. (2011) Parmap: minimalistic library for multicore programming.

Available at: https://gitorious.org/parmap.

Filliâtre, J.-C. & Kalyanasundaram, K. (2011) Functory: A Distributed Computing Library

for Objective Caml. In Trends in Functional Programming, TFP 2011, pp. 65–81.

Fournet, C., Le Fessant, F., Maranget, L. & Schmitt, A. (2003) JoCaml: A language for

concurrent distributed and mobile programming. In Advanced Functional Programming ,

Jeuring, J. & Jones, S. (eds), vol. 2638. Berlin/Heidelberg: Springer, pp. 1948–1948.

10.1007/978-3-540-44833-4.

Hickey, R. (2008) The Clojure programming language. In Proceedings of the 2008

Symposium on Dynamic Languages, DLS ’08. New York, NY, USA: ACM. Available

at: http://dl.acm.org/citation.cfm?id=1408681

Leroy, X. (1990) The ZINC Experiment: An Economical Implementation of the ML Language.

Technical Report, INRIA.

Leroy, X. (2004) The Camljava Project. Available at: http://forge.ocamlcore.org/

projects/camljava.

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D. & Vouillon, J. (2013)

The OCaml System Release 4.01. Documentation and User’s Manual. Available at:

http://caml.inria.fr/pub/docs/manual-ocaml/

Mauny, M. & Vaugon, B. (2012) OCamlCC–Raising low-level bytecode to high-level C. OCaml

Users Developers. Copenhagen, Denmark (http://oud.ocaml.org/2012/).

Microsoft. (2000) The C# language a collective Microsoft project.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

42 X. Clerc

Montelatici, R., Chailloux, E., Pagano, B. et al. (2005) Objective Caml on .NET: The ocamil

compiler and toplevel. In Proceedings of the 3rd International Conference on .NET

Technologies. Open-source project: main developers are Charles Oliver Nutter, Thomas

Enebo, Ola Bini and Nick Sieger.

Nutter, C. et al. (2008) JRuby a Java-Powered Ruby Implementation. Available at:

http://jruby. org.

Odersky, M. et al. (2003) The Scala Language. Available at: http://www.scala-lang.org/.

Stolpmann, G. (2012) Plama: Map/Reduce and Distributed Filesystem. Available at:

http://plasma.camlcity.org/.

Syme, D. et al. (2005) The F# Language. Available at: http://fsharp.org.

Vouillon, J. & Balat, V. (2014) From bytecode to JavaScript: The js of ocaml compiler. In

Software: Practice and Experience, 44(8), 951–972.

https://doi.org/10.1017/S0956796816000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000095

