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Abstract

In a recent paper estimates of the solutions of two nonlinear differential equations
were made by use of the hypercircle method. Here exact solutions are given which are
compared with those estimates.

1. Introduction

In a recent paper [1] estimates for the solution of certain nonlinear differential
equations were found by use of the hypercircle method. In this note it is pointed out
that both examples considered in [1] admit exact solutions and comparison is made
with the trial functions previously used. Of course, the general method described in
[1] is still available for problems in which the exact solution is not known.

2. Solution for example 1

The first example concerned the nonlinear ordinary differential equation problem

d2<p _

(1)

The solution of this problem is given in terms of Jacobian elliptic functions as
follows. Multiplication of the equation in (1) by d(f>/dx and integration leads to

^ = [ 0 2 - ^ + (l/6)W>3-</>o)], (2)
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on using the evenness of the solution in x, and setting $(0) = 4>0, as yet unknown.
Previous results in [1] show that $' vanishes only at the origin in [0,1], and that (f> is
monotonic increasing in this interval.

Separation of variables in (2) and integration leads to the solution

16-*x|m) (3)

with the notation of [3], and where

«1 > 2 = - 3 ( 1 + 4>0/2)± ±[3(2-</>„) ( 6 + tf>0)]±, |

(4)
A-»=i(-Ua)* and m = {Ul-u2)l(-u2).)

In order to satisfy the boundary conditions in (1), we require that <t>0 satisfies

(/>0 = 1+ Ml sc2(A-16-± | m) = /(</>„), (5)

and (f>0 must be found by numerical iteration. This can be a tedious process unless a
good initial estimate of <j)0 is available; happily this is provided by the previous
estimate 0.6100 in [1]. Since |/'(0.6100)| ^ 0.07, the iteration <t>r+i = f(<j>r)
converges reasonably quickly to the value <p0 = 0.60850, and the comparison in
Table 1 of the exact solution (j> of (1) with our trial function (f>l of [1] can be made.

TABLE 1
Comparison of exact solution <j> and trial function <j>, of example 1

x 0.0 ±0.2 ±0.4 ±0.6 ±0.8 ±1.0
4> 0.60850 0.62258 0.66557 0.73977 0.84918 1.0
<£, 0.60100 0.61696 0.66484 0.74464 0.85636 1.0

The mean-square error is found by numerical integration (Simpson's rule with
h = 0.05):

= I* (6)

so that the upper bound of [1], £((/>,) = 44 x 10~5 is conservative, as could be
expected with this simple function (/>,.

Further, it can be remarked that the trial function 0, of [1], found by minimizing
the hypersphere radius,

</>, =0.601 +0.399*2, (7)

is a close pointwise approximation in [0,1] to the expansion of the exact solution (3)
to the same order :

4>^ 0.6085 + 0.35053x2. (8)
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3. Solution for example 2

The second example in [1] was the nonlinear boundary-value problem in the
plane

in V,

4> = 1 on B,
(9)

where Fis the disc r < 1, so that B is given by r = 1. Here k is a positive real constant.
There is a general solution available for the differential equation in (9) (with k
positive or negative) due to Liouville [2], and an alternative derivation of this
appears in the appendix. It would clearly be of use if the domain Fwere other than
the unit disc, and a conformal map on the unit disc were employed.

However, since in (9) radial symmetry is assumed, there is merely an ordinary
differential equation to be solved,

(r4>J = kre*, (10)

where a dash denotes differentiation with respect to r. If we differentiate (10) again
we get

(11)

Setting

v=\+r<t>' (12)

and eliminating the exponential by means of (10), we find from (11) that

rv" = vv'. (13)

Next, using v" =• v' dv'/dv, and noting that

dv dv'

we obtain from (13) that

—-(rv) = v+l, (14)
dv

after division by v'. Integration then gives

v2

rv' = -~-+v + C,

and the condition v = 1 at r = 0 gives C = — 3/2 since we assume </>' finite in [0,1].
Separation of variables and integration gives v as a rational function of r2; then,

returning to <j>' by (12), another integration gives
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<P = \n{A(a2-r2)-2}, (15)

where A and a are arbitrary constants.
Satisfaction of the differential equation and boundary condition in (9) requires

that the constants satisfy the conditions

A = Sa2/k and e{\-a2f=A.

Solving the resulting quadratic equation for a2 and selecting the root greater than
unity, we then obtain the solution

-r2r2l (16)
with

a2 = l+4/(ke) + {(l+4/{ke))2-l}i. (17)

Since a2 is greater than unity the solution is continuous in V. We now compare it
with the hypercircle estimate. Using the exact solution (16) we calculate the mean-
square error <</> — (/>!,(£ — $!> of the trial function

used in [1]. A comparison with the upper bound E(<f> t) for this error is given in Table
2, and again £(</>!) is conservative, but could of course be improved by using a more
elaborate trial function.

Mean-square errors

k

5
2
1

P

1.405
0.8065
0.4926

TABLE 2
and upper bounds, £((;

81.6
9.69
1.49

(>[), example 2

1641.5
166.6
22.17

The pointwise approximation of <j>1 to the power series approximation for

<t> ~ a + br2

is not quite as good as in the case of example 1, but improves as k decreases. For
example, for k = 1 we have

4>~ 0.5252+0.4227/-2 and </>t = 0.5074+0.4926r2. (18)
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Appendix. Derivation of the solution to problem (9)

Liouville's general solution [2] of the differential equation in (9) can be written

4> = In {AF'(z)F'(z)/tF(z)F(z)+cY}, (Al)

where A and c are arbitrary constants, z = x + iy, F(z) is an arbitrary analytic
function of z, and the bar denotes the complex conjugate. Both positive and negative
values of the parameter k in (9) are allowed.

The following derivation seems a little more direct than the original, and follows
at the outset that of Weston [4]. The equation in (9) is

&, = (*/4)e* (A2)

where subscripts denote partial derivatives. Differentiating this equation with
respect to z we find

4>«* = 4>*4>* (A3)

having eliminated the exponential. Integration gives

* „ - * # = 5,(4 (A4)

where B, is an analytic function of z. Next we differentiate (A2) with respect to z
obtaining similarly

& f - i # = B2(z), (A5)

where B2 is an antianalytic function of z (that is, 8B2/dz = 0).
Now in (A4) set

(A6)

where F is analytic, the dash denoting the derivative, and F' is supposed nonzero in
r < 1. We deduce that G satisfies a Riccati equation

^ ^ G 2 . (A7)

Setting, as usual, G = — 2hjh, we solve (A7) for G and find that

4>z = F"(z)/F(z) - 2F'(z) k{z)HF{z) k(z) + n(z)l (A8)

with k and n arbitrary.
Similarly, from (A5) we may deduce that

= F'\z)IF\z)-2F'(z)s(z)l[F{z) s(z) + p(z)l (A9)
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with s and p arbitrary. Finally, using <j>z- = <j>!z, we find by comparison that
s(z) = F(z), k(z) = F(z), and n(z) = p(z) = c, constant. The solution (Al) is thus
established.

In the case of the problem in (9), we set F(z) = z in{Al), and the constants A and c
(= — a2) are determined as in Section 3.
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