SPREADS WHICH ARE NOT DUAL SPREADS

A. Bruen and J. C. Fisher

(received April 25, 1969)

In this note we show the existence of a spread which is not a dual spread, thus answering a question in [1]. We also obtain some related results on spreads and partial spreads.

Let $\Sigma = PG(2t-1, F)$ be a projective space of odd dimension (2t-1, t > 2) over the field F. In accordance with [1] we make the following definitions. A partial spread S of Σ is a collection of (t-1)-dimensional projective subspaces of Σ which are pairwise disjoint (skew). S is maximal if it is not properly contained in any other partial spread; in particular, if every point of Σ is contained in some member of S then S is a <u>spread</u>. If each (2t-2)-dimensional projective subspace of Σ contains exactly one member of S then S is called a <u>dual spread</u>. |S| will denote the number of subspaces in S.

THEOREM 1. If F is finite then S is a spread if and only if S is a dual spread.

<u>Proof.</u> Suppose S is a spread which is not a dual spread of Σ . Let δ be any correlation of Σ (for the existence of such a δ see [3, page 41]). Then S^{δ}, the image of S under δ , is a partial spread which is not a spread. But $|S^{\delta}| = |S|$ and F is finite so we obtain a contradiction. Similarly every dual spread is a spread.

For simplicity we now specialize to the case t=2 and we assume that F is commutative to facilitate the notion of regulus. We say a spread S is <u>regular</u> provided that, for every line ℓ of Σ which is not in S, the lines of S meeting ℓ form a regulus R of Σ . Not all spreads are regular: we can obtain a new non-regular spread S' from S by the process of replacing some regulus R by its opposite regulus R'. If S' can be obtained from a regular spread S by finitely many iterations of such a process, S is called subregular.

Canad. Math. Bull. vol. 12, no. 6, 1969

801

THEOREM 2. Every regular spread S of Σ is a dual spread.

<u>Proof.</u> Let π be any plane of Σ ; π contains at most one line of S. To show that there must be one let ℓ be any line of π which is not in S. The lines of S meeting ℓ form a regulus R. Let p and q be any two lines of the opposite regulus R' different from ℓ . p and q meet π in distinct points P and Q not on ℓ . The line PQ of π meets ℓ and hence meets three lines of R'. Thus PQ is a line of R, that is, of S.

A straightforward extension of this argument yields the following result.

THEOREM 3. Let S be a spread which is a dual spread. Suppose S contains a regulus R. Then the spread S' obtained from S by replacing the regulus R by its opposite regulus R' is also a dual spread.

COROLLARY. Every subregular spread is a dual spread. THEOREM 4. There exists a spread S of Σ such that

- (1) S is not a dual spread;
- (2) <u>no four lines of</u> S <u>are contained in a regulus</u>.

<u>Proof.</u> Let F be infinite and countable. Choose any plane π and list the points in π (P_1 , P_2 , P_3 , ...) and the points not in π (Q_1 , Q_2 , Q_3 , ...). Through P_1 construct the line $\ell_1 = P_1 Q_1$. Suppose ℓ_1 ,..., ℓ_n have been constructed such that (i) no ℓ_1 is in π , (ii) no two ℓ_1 intersect, and (iii) no four ℓ_1 are in a regulus. We now show that ℓ_{n+1} can be constructed in such a way that (i) - (iii) are satisfied also by $\{\ell_1, \ldots, \ell_{n+1}\}$.

If n is odd, let $X = P_j$ be the first point in π which is on none of the lines ℓ_1, \ldots, ℓ_n and $Y = Q_k$ the first point not in π such that (a) Y is on none of the n planes $X\ell_i$ (i = 1,...,n) and (b) XY does not belong to any one of the $\binom{n}{3}$ reguli determined by ℓ_1, \ldots, ℓ_n . Then put $\ell_{n+1} = XY = P_jQ_k$.

802

If n is even, let $X = Q_s$ be the first point not in π which is on none of the l_i , i = 1,...,n and $Y = P_t$ the first point in π such that (a) and (b) are satisfied. Then put $l_{n+1} = XY = Q_s P_t$.

Clearly $\ell_1, \ldots, \ell_{n+1}$ satisfy conditions (i) - (iii). Furthermore, our construction guarantees that each point of Σ is on a line of S. Thus the theorem is proved.

There is an interesting consequence of Theorem 4.

COROLLARY. Maximal partial spreads W, which are not spreads, exist in Σ .

Proof. Consider the image W of S under any correlation of Σ .

<u>Remark.</u> The above corollary is also true if F is finite (for an example in PG(3,4) see [4]). One of the authors [2] has constructed such maximal partial spreads W, with

 $q^2 - q + 1 < |W| < q^2 - q + 2$ in PG(3,q), for any q.

REFERENCES

- R.H. Bruck and R.C. Bose, The construction of translation planes from projective spaces. J. Algebra 1 (1964) 85-102.
- A. Bruen, Blocking sets in finite projective planes. (unpublished).
- 3. P. Dembowski, Finite eometries (Springer-Verlag, 1968).
- D. M. Mesner, Sets of disjoint lines in PG(3,q). Canad. J. Math. 19 (1967) 273-280.

University of Toronto

803