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1. Introduction

In this note the theory of the integral equation

(i) +(*) = /to + /**(*. y)4>{y)dy

is reduced to elementary matrix algebra. The Fredholm theorems are proved
without the introduction of the usual parameter A and without using the
properties of the resolvent considered as an analytic function of the complex
variable X. There is an exact correspondence between the properties of the
equation (1) and the properties of a finite linear system. Here the proofs of
these properties are also in exact correspondence with the same for the
elementary case. Only the most fundamental analytic properties of the in t e-
gral are used and the discussion is the same whether K (x, y) is continuous or
in the Lebesgue class Lz. Though the Fredholm theory has been recounted
many times before, the essential simplicity of the present note seems to
have "been overlooked.

2. Infinite Matrices

The equation (1) is commonly written in symbolic notation

(2) <f>-K<f> = f

where <f>, f are 'function-vectors' and K is an 'operator'. Here we shall more
definitely regard the symbols as matrices and we gain a little by the use of a
few obvious properties of such matrices. A very brief description of the
notion will suffice.

Take axes in the plane'with OX "vertically downwards" and OY to the
right. The region- a ^x ?Lb, a ^y ^b corresponds to a square in the plane
and the function values K(x, y) attached to the points of this square constitute
a matrix K of type ' (oo x oo), i.e. with infinitely many rows and columns.
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[2] Algebraic Theory of Fredholm's Equation 135

The coordinate x fixes a row of K and the coordinate y fixes a column of K.
The analogy with a finite array aif will be apparent.

Matrices of type ( o o x w ) and (m x oo) will be used also. The former of
these, for example, consists of m functions Px{x), • • •, j>m{x), 'spread' over m
parallel lines running from x = a to x = b. Such a matrix P would be indi-
cated by the scheme

Here fa is a single column or (oo x 1) matrix.
The transposed matrix is defined in the obvious way. The transpose of K

will be denoted by K*. The transpose of P is

I*
P* = •

\k
of type (m X oo).

Addition and multiplication are defined as for finite matrices. For multi-
plication the row x column rule is used and integration replaces summation.
In particular K2 is the matrix corresponding to the iterated function

K™{x,y)=*\*K{x,s)K(s,y)ds.
Jo

If P, Q be the two matrices

P = ( / > ! • • • Pm), ( ? = ( ? ! • • • 9m)

then PQ* is the (oo x oo) matrix corresponding to the function

PiWqM -\ + pm{x) qm(y)

while Q*P is the m x tn matrix with elements

It will be clear that the usual rules of matrix algebra apply to these
infinite matrices. By introducing single columns /, <f> to represent the
functions /, <f> the equation (1) may be written in the form (2). Or, if K be a
finite matrix (w x m) and /, <f> be w-columns, then (2) represents a finite
linear system. This symbolic identity of the finite and infinite cases repre-
sents a real similarity in their properties.

The rank of an infinite matrix will be defined as follows. Draw m parallels
to each of the axes across the matrix square and number them from 1 to tn.
Let Kit be the value of K(x, y) at the point of intersection of the *-th parallel

https://doi.org/10.1017/S1446788700025519 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025519


136 W. B. Smith-White [3]

to OY and the ;-th parallel to OX. The determinant \KU\ will be called
a determinant of order m of the matrix K. The rank of K is m if some
determinant of order m does not vanish while all determinants of order
m + 1 do vanish. If no value of m satisfies this description then K has rank
oo. Corresponding definitions apply to matrices of type (oo X m) or (m X oo).

The following results are so simple that they may be stated here without
proof. Not all of them are used in the sequel.

(i) The (oo X m) matrix P has rank m if and only if the functions
Pi(x)> ' ' '> Pmix) a r e linearly independent.

(ii) If K is (oo X oo) and rank m then if = PQ* where P, Q are (oo X m)
and rank P = rank Q = m.

(iii) If K, L have finite rank so does K -f- L.
(iv) If P, Q are (oo X m) and rank P = m then rank PQ* = rank Q*.

In particular if PQ* = 0 then Q* = 0, so that a common factor P may be
cancelled from a matrix equation.

(v) For any K, L, rank KL ^ | •

(vi) For a square if the trace of K is defined by

Then txKL = trLif. Or if P, @ are (ooxm) matrices, trP@* = tr Q*P,
where the term on the right is the usual trace of the (mxm) matrix Q*P.
Of course, in the Lebesgue theory, trK may be meaningless. However,

trK*K = jj*\K(x, y)\2dxdy < oo

where K* is the transposed conjugate of K.
(vii) Setting

11*11 = V(trK*K)
then, for any K, L

\\KL\\<\\K\\. \\L\\

These well known results depend on Schwarz's inequality.
To illustrate the conciseness of this notation consider a matrix P of type

(oo x m). Then P* P is hermitian and positive definite of type (m x m) so
there is a square c, type (m X m), such that

c*P*Pc = I

where / is the unit (m x m). Thus Q = Pc is unitary. This means that the
functions
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form a unitary-orthogonal set and are linear combinations of px(x), • • •, Pm{x)
This is the Gram-Schmidt orthogonalisation result.

3. Linear Systems

The most important difference between the finite square matrices and
those of infinite type is that the latter do not contain a unit matrix. Then also
there is no inverse to a given matrix. It is this fact which accounts for the
differences in the properties of finite linear systems and linear integral
equations.

When a is non-singular the solution of the finite system a<f> = / is <f> = &~xf,
and depends on the existence of the inverse. There is another formal solution
which we obtain by writing a — I — k, a - 1 = / — kx. The relations
aa~x = a~xa = / then give

(3) k + k1 = kk1 = kxk

and the solution of

(4) 4>-w = t
is

(5) f~kj = <f>

This solution (5) of (4) may be derived by the use of (3) only without reference to
the existence of the unit I and the inverse ar1. Thus, assuming (4) we multiply
it by kx,

kx<f> — kxk<j> = hxf,

and, substituting for kxk from (3), using (4) again, this reduces to (5).
Provided relations of the type (3) exist, this solution is equally valid for the
integral equation (2). This suggests the following definition:

DEFINITION. We say that matrix K of type (oo x oo) is regular if there
exists Kx such that

(6) K + Kx = KKX = KXK.

We call Kx the 'reciprocal' of K. The symmetry shows that K is the reciprocal
oi Kx.

Reverting, for a moment, to the finite system a<j> = f we note that the
general results for it now follow by transformation. The relations

with non-singular b, c, transform the equation a<f> = f to the equivalent one
A<f>' = /', where A = bac. At the same time the contragredient relations

g' = c*g, v» =
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transform the transposed system

a*yj = g

to A*rp' — g'. Further rp'*f = y>*f which states the invariance of the
scalar product.

The two fundamental theorems are

THEOREM 1. The homogeneous equations

(7) a<f> = 0 , a*y> == 0

have the same number r ( ^ 0) of independent solutions. For r = 0 the state-
ment means that the equations have only the trivial solutions <f> = 0, ip = 0.

THEOREM 2. Let <f>lf • • •, <f>r; \px, • • •, ipr be independent solutions of (7).
The non-homogeneous equation

(8) a<f> = /

has a solution if and only if

V ? / = °> * = 1, * • -,'•
Then the general solution is

<f> = <f>0 + cx<f>x -\ h cr<f>r

where <f>0 is a particular solution and cx, • • •, cr are arbitrary constants. In
particular for r = 0 the equation (8) has a unique solution for any /.

The proof of these may be obtained by noting that if the theorems hold
for A they hold also for a. Then by selecting suitable b, c we may suppose A
to be in diagonal form for which the theorems are obviously true.

We shall see that quite similar argument will establish the main Fredholm
theorems for the integral equation (2).

4. Regular Matrices, Equivalence and the Transformation of
Fredholm Equations

If K is regular according to the definition (6), then its reciprocal Kx is
unique. Thus the two relations

give, on postmultiplying the second by Klt

KKX + K[KX = K[KKX = K

which reduces to KKX = K[K, and to K + Kx = K + K[ or K'X =
For regular K the Fredholm equation

https://doi.org/10.1017/S1446788700025519 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025519


[6] Algebraic Theory of Fredholm's Equation 139

has the unique solution
<f> = f-KJ.

The argument has already been given. More generally, by the same argument,
either of the relations

M = L-KL, M - KrM = L

implies the other.
We define a composition or dot product of matrices K, L by the formula

K - L = K + L - KL.

Then (K • L) • M — K • (L • M). The matrices which are regular according
to the definition (6) form a group with this law of composition, the identical
element being the matrix 0, and the group inverse of K being its reciprocal

Two matrices K, K' are called equivalent if there are regular matrices
L, M such that

K' = L • K • M.

If K is regular so is K'; any two regular matrices are equivalent. The relation
of equivalence is reflexive, symmetric and transitive. We may indicate this
equivalence by writing K' ^ K.

If M is regular the correspondence <f>' -> <f> = <f>' — M<f>' is one-one with
the inverse relation <f>' — <f> — Mx^>. We use such correspondences to trans-
form the Fredholm equation (2) to an equivalent equation.

The relations

with regular L, M transform (2) to the equivalent equation <f>' — K'<f>' = /',
where K' = L • K • M. At the same time the contragredient relations

g' = g — M*g, y> = y>' — L*y>'

transform the transposed equation ip — K*y> = g to the equivalent equation
y' -K'*y> = g'.

Also

v"7' = ¥*if - Lf) = {¥* - ¥*L)f = v*A
These properties obviously correspond to those quoted in the previous
paragraph for finite systems. We may therefore state the following Fredholm
theorems for the equation (2) and observe that if they are true for any K
they will be true also for any K' ^ K.

THEOREM 3. The homogeneous equations

(9) <f> - K<f> = 0 , y> - K*y> = 0

have the same finite number r ( ^ 0) of independent solutions. For r = 0 the
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statement means that the equations have only the trivial solutions <f> = 0,
y> = 0.

THEOREM 4. Let <f>lt • • •, <f>r; y>lf • • •, y>r be independent solutions of (9).
The non-homogeneous equation

(10) <f>-K<f> = f
has a solution if and only if

Then the general solution is

^ = <f>o + q^i H h cr<f>r

where ^0 is a particular solution and clt • • •, cr are arbitrary constants. In
particular the equation (10) has a unique solution for any /.

>r,

5. Proofs of the Theorems

The proofs are obtained now in two steps. Firstly we show that if K has
finite rank then theorems 3 and 4 reduce to theorems 1 and 2. Secondly we
show that for any K there is an S of finite rank with K ~ S.It is only in this
final step that we use any analysis, apart from what is involved in the defini-
tion of an integral.

FIRST STEP. K is of finite rank m say. We write K = PQ*. The relations

(11) Z = Q*<f>

(12) * = Pf + /

set up a one-one correspondence between the solutions of the Fredholm
equation

(13) i-PQ*<f> = f

and the solutions of the finite system

(14) £-Q*P£ = Q*f.

Thus from (11) and (13), (12) follows immediately and (14) follows if we
pre-multiply (13) b y Q*. Similarly (12) and (14) yield (11) and (13).

In the same way the relations

set up a one-one correspondence between the solutions of the homogeneous
equations

y>-QP*y> = 0, V -
Further
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It follows that theorems 3 and 4 for If = PQ* reduce to theorems 1 and 2 for
a = I-Q* P.

SECOND STEP. This depends on two lemmas.
LEMMA 1. If \\K\\ < 1 then K is regular.
Set

Kx = -K-K*-K* .
The series on the right is the Liouville-Neumann series. Its convergence
(or convergence in mean square) under the condition \\K\\ < 1 was proved
by E. Schmidt (1908). Then clearly

K + Kx = KKX = KXK.

So that K is regular.
LEMMA 2. There is an S of finite rank such that K ~ S.
From the theory of the integral we may find a polynomial L{x, y) such

that
fjh

a\K{xy) - L[xy)\Hxdy < 1.

If K, L be the corresponding matrices we set K = L + M then L has finite
rank and ||M|| < 1, so M is regular. If S = L — MXL then S has finite
rank and L = S — MS. Thus

6. Conclusion

We need the following lemma to complete the account.
LEMMA. Suppose K — PQ* is of rank m. Then K is regular if and only if

k = Q*P is regular.
(i) Suppose K is regular. Then

Kx = KKX -K = PQ*KX - PQ* = PR*

say. Hence
PQ* + PR* = PQ*PR*.

From this relation we may cancel P in front and then postmultiply by P to
obtain

where kx = R* P. This means that k is regular or equivalently the deter-
minant \I — k\^ 0.

(ii) Suppose k is regular. If a = / — k, \a\ ^ o and

/ - a-1 = - ka-1 = - a-^k.

Multiply in front by P and behind by Q*. We get
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K. -f- K-\ == KKX = KXK

where Kx = — Pa~xQ*. Hence K is regular.
If K(x, y) is continuous we say that K is continuous. We may show then

that Kx is also continuous. This is obvious from the formula Kx = — Pa~xQ*
when K has finite rank. In general it follows by the argument in the second
step of § 5 since then L, M and so S are continuous.

If K is not regular then <f> = K<f> has a non-trivial solution. This is obvious
from the lemma and the correspondence of the first step of § 5 when K has
finite rank. In general it follows as above.

We define a regular K by the two conditions (6). But one only of these
relations is sufficient. For if, for instance,

K + Kx = KXK

and K were not regular, we would have a non-zero <j> with K<f> = <(>. This
gives successively

KXK$ = Kx<f>,

K<f> + - ^ i ^ = Kx(f>,

a contradiction.

University of Sydney.
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