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Abstract

We present a new model for seed banks, where direct ancestors of individuals may have
lived in the near as well as the very far past. The classical Wright–Fisher model, as well as
a seed bank model with bounded age distribution considered in Kaj, Krone and Lascoux
(2001) are special cases of our model. We discern three parameter regimes of the seed
bank age distribution, which lead to substantially different behaviour in terms of genetic
variability, in particular with respect to fixation of types and time to the most recent
common ancestor. We prove that, for age distributions with finite mean, the ancestral
process converges to a time-changed Kingman coalescent, while in the case of infinite
mean, ancestral lineages might not merge at all with positive probability. Furthermore, we
present a construction of the forward-in-time process in equilibrium. The mathematical
methods are based on renewal theory, the urn process introduced in Kaj, Krone and
Lascoux (2001) as well as on a paper by Hammond and Sheffield (2013).
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1. Introduction

In this paper we discuss a new mathematical model for the description of the genetic
variability of neutral haploid populations of fixed size under the influence of a general seed
bank effect. In contrast to previous models, such as the Kaj et al. [6] model, we are particularly
interested in situations where ancestors of individuals of the present generation may have lived
in the rather remote past.

Seed banks are of significant evolutionary importance, and come in various guises. Typical
situations range from plant seeds which fall dormant for several generations during unfavourable
ecological circumstances [11], [12], fruit tissue preserved in Siberian permafrost [13], to
bacteria turning into endospores if the concentration of nutrients in the environment falls below
a certain threshold. Such endospores may in principle persist for an unlimited amount of
time before they become active again (see, e.g. [2]). Seed bank related effects can be viewed as
sources of genetic novelty [7] and are generally believed to increase observed genetic variability.
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In [6], a mathematical model for a (weak) seed bank effect is investigated, with the number
of generations backwards in time that may influence the current population being bounded by
a constant m and being small when compared to the total population size (respectively during
passage to a scaling limit). Under such circumstances, it is then shown that the ancestral process
of the population can be approximately described by a time-changed Kingman coalescent,
where the (constant) time change leads to a linear decrease of the coalescence rates of ancestral
lineages depending on the square of the expected seed bank age distribution. Overall, genetic
variability is thus increased (in particular if mutation is taken into account), but the qualitative
features of the ancestral history of the population remain unchanged.

In the present paper we consider the ancestral process of a neutral seed bank model with
Wright–Fisher-type dynamics, assuming a constant population size N . However, the distance
measured in generations between the direct ancestor and potential offspring will not be assumed
to be bounded, but rather sampled according to some (potentially unbounded) age distribution
µ on N. For µ = δ1, we recover the ancestral process of the classical Wright–Fisher model, and
scaling by the population size yields a Kingman coalescent as the limiting ancestral process.
For µ with bounded support, say with a maximum value m, independent of N , we are in the
setup of [6], and obtain a time change of Kingman’s coalescent appearing in the limit (again
after classical scaling).

Yet, some species suggest (i.e. bacteria transforming into endospores) that µ could be
effectively unbounded, in particular nonnegligible when compared to the population size. This
can lead to entirely different regimes.

Our first result is that if µ has finite expectation, we again obtain a time-changed Kingman’s
coalescent after classical rescaling. The behaviour of the model however changes completely if
we assume µ to have infinite expectation. A natural example for age distributions is a discrete
measure µ with a power-law decay, that is,

µ({n, n + 1, . . .}) = n−αL(n)

for some α > 0 and some slowly varying function L. Depending on the choice of α, we
investigate the time to the most recent common ancestor (MRCA) of two individuals, if it
exists. It turns out (Theorem 2) that, for α > 1

2 , there is always a common ancestor, but the
expected time to the MRCA is finite if α > 1 and infinite if α < 1. If α < 1

2 , any two ancestral
lineages never meet at all with positive probability.

In the following section we construct our model and present the main results. The proofs
are given in Section 3.

2. Model and main results

We work in discrete time (measured in units of nonoverlapping generations) and with fixed
finite population size N ∈ N. Time in generations is indexed by Z. The dynamics of the
population forwards in time are given in the following way. Each individual chooses the
generation of its father according to a law µ on N, meaning that µ(n) gives the probability that
the immediate ancestor of an individual of generation i has lived in generation i −n. We call µ

the seed bank age distribution. To avoid technicalities, we will always assume that µ({1}) > 0.
After having chosen the generation, the individual picks the father uniformly among the N

possible ancestors from that generation.
For concreteness, we will often assume that the age distribution µ is of the form µ = µα ,

with
µα({n, n + 1, . . .}) = n−αL(n), n ∈ N,
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for some α ∈ (0, ∞) and some slowly varying function L. Let �α := {µα}, α ∈ (0, ∞),
denote the set of all measures µ of this form. We are interested in the question of whether
or not in such a population a genetic type eventually fixates, and if this happens in finite time
almost surely. In the backward picture, this is related to asking if a finite set of individuals has
an MRCA and when it lived.

It turns out that in the above construction an ancestral line can be described by a renewal
process with interarrival law µ. The question of existence of a common ancestor and the time to
the MRCA can therefore be investigated via classical results of Lindvall [8] on coupling times
of discrete renewal processes, which are controlled in the power-law case via applications of
Karamata’s Tauberian theorem for power series; see, e.g. [1]. This leads to three different
regimes; see Theorem 2. If, on the other hand, one is interested in the forward-in-time
process, mathematical modelling problems arise. In order to obtain a new generation of such a
population, one requires information about the whole history, i.e. it is necessary to start sampling
at ‘−∞’. In Subsection 2.2 we present a construction of such a population in equilibrium, which
allows us to study the correlations of the allele frequency process. This construction can be
formalized in terms of Gibbs measures, following the paper of Hammond and Sheffield [4],
where the case N = 1 is considered in order to construct a discrete process with long-range
correlations that converges to fractional Brownian motion. This is sketched in Appendix A.

2.1. Renewal construction of ancestral lineages and the time to the MRCA

We start with a description of the ancestral lineages of samples in our model in terms
of renewal theory. Fix N ∈ N and a probability measure µ on the natural numbers. Let
v ∈ VN := Z × {1, . . . , N} denote an individual of our population. For v ∈ VN , we write
v = (iv, kv) with iv ∈ Z, and 1 ≤ kv ≤ N ; hence, iv indicates the generation of the individual
in Z, and kv the label among the N individuals alive in this generation.

The ancestral line A(v) = {v0 = v, v1, v2, . . . } of our individual v is a set of sites in VN ,
where iv0 , iv1 , . . . ↓ −∞ is a strictly decreasing sequence of generations, with independent
decrements ivl

− ivl−1 =: ηl, l ≥ 1, with distribution µ, and where the kv0 , kv1 , . . . are
independent and identically distributed Laplace random variables with values in {1, . . . , N},
independent of {ivl

}l∈N0 . Letting

Sn :=
n∑

l=0

ηl,

where we assume that S0 = η0 = 0, we obtain a discrete renewal process with interarrival
law µ. In the language of [9], we say that a renewal takes place at each of the times Sn, n ≥ 0,
and we write (qn)n∈N0 for the renewal sequence, that is, qn is the probability that n is a renewal
time.

It is now straightforward to give a formal construction of the full ancestral process starting
from N individuals at time 0 in terms of a family of N independent renewal processes with
interarrival law µ and a sequence of independent uniform random variables Ur(i), i ∈ −N,

r ∈ {1, . . . , N}, with values in {1, . . . , N} (independent also of the renewal processes). Indeed,
let the ancestral processes pick previous generations according to their respective renewal times,
and then among the generations pick labels according to their respective uniform random
variables. As soon as at least two ancestral lineages hit a joint ancestor, their renewal processes
couple, i.e. follow the same realization of one of their driving renewal processes (chosen
arbitrarily, and discarding those remaining parts of the renewal processes and renewal times
which are no longer needed). In other words, their ancestral lines merge.
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Denote by P
µ
N the law of the above ancestral process. For v ∈ VN with iv = 0, we have

qn = P
µ
N(A(v) ∩ ({−n} × {1, . . . , N}) �= ∅),

and the probability that w ∈ VN is an ancestor of v, for iw < iv , is given by

P
µ
N(w ∈ A(v)) = 1

N
qiv−iw .

For notational convenience, let us extend qn to n ∈ Z by setting qn = 0 if n < 0. Note that
q0 = 1.

In [6] it was proved that if µ has finite support then the ancestral process, rescaled by the
population size, converges to a time-changed Kingman coalescent. Our first result shows that
this remains true with the same classical scaling for µ with infinite support, as long as it has
finite expectation. We consider the ancestral process of a sample of n ≤ N individuals labelled
v1, . . . , vn sampled from generation k = 0. We define the equivalence relation ‘∼k’ on the set
{1, . . . , n} by

i ∼k j ⇐⇒ A(vi) ∩ A(vj ) ∩ ({−k, . . . , 0} × {1, . . . , N}) �= ∅,

that is, i ∼k j if and only if vi and vj have a common ancestor at most k generations back.
Let AN,n(k) denote the set of equivalence classes with respect to ‘∼k’, which is a stochastic
process taking values in the partitions of {1, . . . , n}. Let E := {1, . . . , n}, and let DE[0, ∞)

denote the space of càdlàg functions from [0, ∞) to E with the Skorokhod topology.

Theorem 1. Assume that Eµ[η1] < ∞. Let β := 1/Eµ[η1]. As N → ∞, the process
(AN,n(
Nt/β2�))t≥0 converges weakly in DE[0, ∞) to Kingman’s n-coalescent.

Two individuals v, w ∈ VN have a common ancestor if and only if A(v) ∩ A(w) �= ∅. If
this is the case, and if v and w belong to the same generation, we denote by τ the time to the
MRCA:

τ := inf{n ≥ 0 : A(v) ∩ A(w) ∩ ({−n} × {1, . . . , N}) �= ∅}.
Clearly, the law of τ is the same for all v, w with iv = iw.

Theorem 1 implies that if µ has finite expectation, two randomly sampled individuals have
a common ancestor with probability 1, and the expected time to this ancestor is of order N . If
the expectation does not exist, this changes completely. Let us now assume that µ ∈ �α , which
means that the tails of µ follow a power law. Our second result distinguishes three regimes.

Theorem 2. (Existence and expectation of the time to the MRCA.) Let µ ∈ �α , and let
v, w ∈ VN, v �= w.

(a) If α ∈ (0, 1
2 ) then P

µ
N(A(v) ∩ A(w) �= ∅) < 1 for all N ∈ N.

(b) If α ∈ ( 1
2 , 1) then P

µ
N(A(v) ∩ A(w) �= ∅) = 1 and E

µ
N [τ ] = ∞ for all N ∈ N.

(c) Ifα > 1 then P
µ
N(A(v)∩A(w) �= ∅) = 1 for allN ∈ N, and limN→∞ E

µ
N [τ ]/N = 1/β2,

with β = 1/Eµ[η1].
In other words, for α > 1

2 , two individuals almost surely share a common ancestor, but the
expected time to the MRCA is finite for α > 1 and infinite if α ∈ ( 1

2 , 1). Hence, in real-world
populations observed over realistic time scales, for α ∈ ( 1

2 , 1) (or even for α ∈ (1, 2) where
the mean, but not the variance, of µ exists), the assumption that a population is in equilibrium
has to be treated with care.
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Remark 1. In the boundary case α = 1, the choice of the slowly varying function L becomes
relevant. If we choose L = constant then it is easy to see from the proof that E

µ
N [τ ] = ∞. The

case α = 1
2 also depends on L and requires further investigation.

2.2. Forward-in-time process

Having obtained a good idea about the ancestral process, we would now like to study the
forward picture. For this, it is useful to construct the whole bi-infinite genealogy of the whole
population at once, which can be done as a spanning forest of a suitable vertex set. We consider
graphs—in fact, trees—with vertex set VN = Z

N and a set of bonds EN which will be a
(random) subset of BN := {(v, w) : v, w ∈ VN } where the edges are directed. For v ∈ VN , we
write, as before, v = (iv, kv) with iv ∈ Z and 1 ≤ kv ≤ N . We consider the set of directed
spanning forests of VN , which we can write down as follows. Let

TN := {G = (VN, EN) : EN ⊂ BN such that, for all v ∈ VN,

there exists w ∈ VN, iw < iv, with e = (w, v) ∈ EN }.
This means that we consider trees where each vertex v has exactly one outgoing (to the past)
edge, which we denote by ev . This unique outgoing edge, or, equivalently, the unique ancestor
of v, is determined as follows. Let {ηv}v∈VN

be a countable family of independent µ-distributed
random variables, and let {Uv}v∈VN

denote independent uniform random variables with values
in {1, . . . , N} independent of the ηv . This infinite product measure induces a law on TN if we
define

ev := ((iv − ηv, Uv), v).

We denote this probability measure by P̂
µ
N . In words, the ancestor of v is found by sampling

the generation according to µ, and then choosing the individual uniformly. We see that

P̂
µ
N(ev = (w, v) ∈ EN) = 1

N
µ(iv − iw).

Comparing this to our previous construction of the ancestral process, we realise that P
µ
N can

be considered as being the restriction of P̂
µ
N to situations regarding the ancestry of a sample,

and, hence, with a slight abuse of notation, we will identify the two measures, dropping the
notation P̂

µ
N . A tree G ∈ TN is interpreted as the ancestral tree of the whole bi-infinite

population.

Remark 2. Note that, for µ ∈ �α , it follows from Theorem 2 that G ∈ TN has only one
connected component almost surely if α > 1

2 , since two individuals belong to the same
connected component if and only if their ancestral lines meet. If α < 1

2 then G has infinitely
many connected components almost surely, since in that case any two individuals belong to
two disjoint components with positive probability by Theorem 2(a).

Having obtained a construction of the genealogy of the population for all times, we can now,
for example, introduce genetic types. We take the simplest situation of just two types. Let
individual v ∈ VN have type Xv ∈ {a, A}, and assume a neutral Wright–Fisher reproduction,
that is, types are inherited from the parent. This means that in the above construction, individuals
belonging to the same component of the tree have the same type. In particular, in the case α > 1

2
everyone in the population has the same type. This is clear since constructing the whole tree at
once means that we are talking about a population in equilibrium, meaning that fixation of one
of the two types has already occurred. However, in the case α < 1

2 the tree has infinitely many
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components almost surely, and, therefore, both types can persist for all times. We can assign to
each component independently type a with probability p ∈ [0, 1] and type A otherwise. For
each p ∈ [0, 1], this procedure defines a probability measure on {a, A}VN .

Definition 1. Let λp
N denote the probability measure on {a, A}VN which, given G ∈ TN , assigns

each connected component of G independently type a with probability p, and type A otherwise.

Remark 3. It can be shown, following [4], that in a certain sense the measures λ
p
N are the

only relevant probability measures on {a, A}VN consistent with the dynamics of our population
model. We make this precise in Appendix A. For now, we just assume that the type distribution
of our population is given by λ

p
N .

We can now introduce the frequency process. Let v := (i, k) ∈ VN , that is, i denotes the
generation of the individual, and k its label among the N individuals of generation i. Let

YN(i) := 1

N

N∑
k=1

1{Xi,k=a}.

Our construction allows us to easily compute some correlations for the frequency process of
the seed bank model. Recall qn from the last section.

Theorem 3. Let λ = λ
p
N .

(a) Eλ[YN(i)] = p for all i ∈ Z.

(b) If µ ∈ �α with α > 1
2 , covλ(YN(0), YN(i)) = p(1 − p) for all i ∈ Z and all N ∈ N.

(c) If µ ∈ �α with α ∈ (0, 1
2 ), we have limN→∞ covλ(YN(0), YN(i)) = 0,

C(i) := lim
N→∞ corrλ(YN(0), YN(i)) ∈ (0, 1) for all i ∈ Z,

and, as i → ∞, for some constant c and some slowly varying function L,

C(i) ∼ (1 − α)2p(1 − p)

�(2 − α)2�(2α)(
∑∞

n=0 q2
n + 1)

i2α−1L(i),

where ‘∼’ means that the ratio of the two sides tends to 1, and the sum occurring in the
denominator is finite.

Remark 4. If α > 1
2 , we have corrλ(YN(0), YN(i)) = 1. This is clear since in this case

all individuals have the same type, and Eλ[YN(i)] = p, varλ(YN(i)) = p(1 − p), and
corrλ(YN(0), YN(i)) = 1.

3. Proofs

3.1. Proof of Theorem 1

The proof of Theorem 1 follows ideas from [6], which we combine with a coupling argument
relying on renewal theory. In certain steps we have to take particular care of the unboundedness
of the support of the measure µ; these steps are carried out with particular care in Lemmas 1
and 2. Recall that in Theorem 1 we assumed that the expectation of the renewal process exists,
i.e. Eµ[η1] < ∞, which in the case µ ∈ �α holds for α > 1. For the case α = 1, finiteness of
the expectation depends on the choice of the slowly varying function L.
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We first introduce an ‘urn process’ similar to that introduced in [6] for measures µ with
potentially unbounded support. The point is that our ancestral process AN can then be realised
as a simple function of this urn process.

Keep N fixed. For 1 ≤ n ≤ N , let

Sn :=
{
(x1, x2, . . .), xi ∈ N0,

∞∑
i=1

xi = n

}
.

For n ∈ N, we construct a discrete-time Markov chain {Xn(k)}k∈N0 with values in Sn that we will
refer to as the n-sample process. Let Xn(0) = (Xn

1 (0), Xn
2 (0), . . . ) be such that |Xn(0)| = n.

We think of Xn
i (0) ∈ {0, . . . , n} as the number of balls currently placed in urn number i. Later,

urns will correspond to generations, balls to individuals. The transition from time k to time
k + 1 is made by relocating the Xn

1 (k) balls in the first urn in a way that is consistent with the
ancestral process of our seed bank model, and shift the other urns including their contained
balls one step to the left. Let σ : R

N → R
N : (x1, x2, . . .) �→ (x2, x3, . . .) denote the one-step

shift operator, and, for l ∈ N, let R(l) be an Sl-valued random variable which is multinomially
distributed with infinitely many parameters:

R(l) ∼ Mult(l; µ(1), µ(2), . . .);
that is, R(i) is a random vector of infinite length, and Ri(l) counts the number of outcomes that
take value i in l independent trials distributed according to µ. Define

Xn(k + 1) = σ(Xn(k)) + R(Xn
1 (k)), k = 0, 1, . . . .

By definition, Xn = {Xn(k)}k∈N0 is a Markov chain with a (countably infinite) state space Sn

(see Figure 1). It provides a construction of n independent renewal processes with interarrival
law µ, if one keeps track of the balls. For our purpose, it suffices to note that Xn

1 (k) gives,
for each k, the number of renewal processes that have a renewal after k steps, which is equal
in law to the number of original individuals in our seed bank model that have an ancestor
in generation −k. Now recall our ancestral process {AN,n(k)} from Section 2, which was
constructed using coalescing renewal processes. In terms of the Xn-process it can be described

1 2 3 4 5 1i+

1 2 4 1i+3

2 4 i3

5

µ(3)µ(1) µ( )i

X ( )kn

1

X ( )kn 1+

Figure 1: Transition from Xn(k) (top) to Xn(k + 1) (bottom). All the balls in urn number 1 are relocated
independently according to µ.

https://doi.org/10.1239/jap/1378401233 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401233


748 J. BLATH ET AL.

µ(3)µ(1)

µ( )i

µ( )i

µ(3)

1 2 3 4 5 1i+

Figure 2: The possible types of coalescence events in the XN,n-process: a coalescent event in urn 2
induced by a ball landing in an occupied place, a coalescent event in urn 4 due to two balls landing in the

same empty place, and no coalescence in urn i + 1 although it holds several balls.

as follows. Think for the moment of each of the urns as being subdivided into N sections. We
start with n balls and run the Xn-process. At each relocation step, each ball which is relocated
to urn i + 1 is put with equal probability into one of the N sections in urn i + 1. All balls that
end up in the same section within an urn are merged into a single ball (see Figure 2).

Since this results in a decrease in the total number of balls, say from n to n′ < n, after
a merger event, we continue to run according to a Markov process with law L(Xn′

) with n′
balls, and so on. Denote by {XN,n(k)}k∈N the well-defined process obtained by this procedure.
Define by ZN,n the process obtained from XN,n by not merging the balls the moment they fall
into the same urn and same section, but keeping them both at first, and only merging them at the
moment they again reach urn 1, which happens automatically since we shift the configuration
at each step. The number of balls present at time k in this process is equal in law to the
block-counting process of our ancestral process started with n sampled individuals:

|ZN,n(k)| d= |AN,n(k)|.
Unlike AN , the process XN,n = {XN,n(k)}k∈N is a Markov chain in discrete time with

countable state space
⋃n

i=1Si . Of course, it is also possible to define an exchangeable partition-
valued process as a function of XN,n, where balls correspond to blocks (we refrain from a formal
definition in order to keep the notational effort reasonable).

An important step is to observe that, for each n, the corresponding urn process Xn has a
unique invariant distribution. Indeed, let

βi := µ{i, i + 1, . . .}
Eµ[η] .

This fraction is well defined since we assumed that Eµ[η] < ∞. Denote by νn := Mult(n, β1,

β2, . . .) the multinomial distribution with success probabilities βi . We claim that this is the
stationary distribution for the n-sample process Xn. From classical renewal theory, we know
that ν1 is the stationary distribution in the case n = 1 (see [9]). For n independent renewal
processes, we have the following result (cf. [6]).

Lemma 1. If Eµ[η] < ∞ then νn is the stationary distribution for Xn, and Xn is positive
recurrent for all n ∈ N.

Proof. We reduce the proof to the finite case discussed in [6]. For each j ∈ N, we define

µj ({i}) := 1∑j
l=1 µ({l})

1{i≤j}µ({i}), i ∈ N.
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This defines a probability measure µj with support {1, . . . , j}. Clearly, limj→∞ µj (i) = µ(i)

for all i, and limj→∞ Eµj
[η] = Eµ[η] by monotone convergence.

Let Yn,j = (Y n,j (k))k∈N0 be the Markov chain constructed in the same way as Xn, but with
relocation measure µj instead of µ, that is, Yn,j (k + 1) = σ(Y n,j (k)) + Rj (Y

n,j
1 (k)), where

Rj (l) ∼ Mult(l; µj (1), . . . , µj (j)), and with Yn,j (0) = Xn(0). Now define

β
j
i := µj {i, i + 1, . . .}

Eµj
[η] .

Clearly, limj→∞ β
j
i = βi for all i ∈ N. Let νn

j := Mult(n; β
j
1 , β

j
2 , . . .) denote the multinomial

distributions on Sn with success probabilities β
j
i . By Lemma 1 of [6] we know that νn

j is the
stationary distribution for Yn,j . Fix x, y ∈ Sn. By construction,

P(Xn(1) = y | Xn(0) = x) = P(R(x1) = y − σ(x))

= lim
j→∞ P(Rj (x1) = y − σ(x))

= lim
j→∞ P(Y n,j (1) = y | Yn,j (0) = x).

For x ∈ Sn, let jx := max{j : xj �= 0}. Note that P(Xn(1) = y | Xn(0) = x) = 0 for all x such
that jx > jy + 1. We write Pνn for the distribution of (Xn(k))k∈N with initial distribution νn.
Then, for every y ∈ Sn,

Pνn(Xn(1) = y) =
∑

x∈Sn, jx≤jy+1

νn(x)P(Xn(1) = y | Xn(0) = x)

= lim
j→∞

∑
x∈Sn, jx≤jy+1

νn
j (x)P(Y n(1) = y | Yn,j (0) = x)

= lim
j→∞ νn

j (y)

= νn(y).

So Mult(n; β1, β2, . . .) is a stationary distribution for Xn. By irreducibility, it is unique, and
Xn is positive recurrent.

Recall the dynamics of the process XN,n = (XN,n(k))k∈N0 from above. We first compute
the probability of a coalescence given that we are in a fixed configuration. Define the events

Bl,k := {exactly l mergers at time k in XN,n}
and

B≥l,k := {at least l mergers at time k in XN,n}
for 1 ≤ l ≤ n and k ∈ N.

Lemma 2. Fix N ∈ N, n < N , and µ such that Eµ[η] < ∞. With the notation of the last
section,

P(B1,k+1 | XN,n(k) = (x1, x2, . . .)) = 1

N

∞∑
i=1

(
x1xi+1µ(i) +

(
x1

2

)
µ(i)2

)
+ O(N−2),
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and there exists 0 < c(n) < ∞, depending on XN,n only via n, such that

P(B≥2,k+1 | XN,n(k) = (x1, x2, . . .)) ≤ c(n)

N2 .

Proof. We start by computing the probability of a coalescence in a fixed urn i ∈ N given
XN,n(k) = (X

N,n
1 (k), X

N,n
2 (k), . . .) and R(X

N,n
1 (k)) = (R1(X

N,n
1 (k)), R2(X

N,n
1 (k)), . . .).

The probability of having exactly one coalescence occurring in urn i (note that from k to k + 1
we shift all urns by 1) is

1

N
X

N,n
i+1 (k)Ri(X

N,n
1 (k)) + 1

N

(
Ri(X

N,n
1 (k))

2

)
− p(i),

where p(i) = p(i, XN,n(k), R(X
n,N
1 (k))) is the probability that more than one coalescence

happens in urn i. Here, the first term is the probability that we see at least one coalescence due
to one of the relocated balls falling into an already occupied section of urn i, and the second
term is the probability of seeing at least one coalescence due to two relocated balls falling into
the same section of urn i. Observe that p(i) is O(N−2). More precisely, writing

Mi := X
N,n
i+1 (k)Ri(X

N,n
1 (k)) +

(
Ri(X

N,n
1 (k))

2

)
,

it is easy to see that, because each ball being moved to urn i has a probability of at most n/N

to merge at all,

p(i) ≤ n4

N2 ,

and, therefore, since, given XN,n(k) and R(X
N,n
1 (k)), there are at most n occupied urns,

∞∑
i=1

p(i) ≤ n5

N2 .

Furthermore, given XN,n(k) and R(X
N,n
1 (k)), the probability of having at least two mergers at

step k + 1, which occur in two different urns i and j , is

1

N2 MiMj .

Moreover, for fixed XN,n(k) and R(X
N,n
1 (k)), we have the trivial bound

∑∞
j=1 Mj ≤ 2n3. This

implies that
1

N2

∞∑
i=1

∑
{j : j �=i}

MiMj ≤ 4n6

N2 .

Thus, the probability of seeing exactly one coalescence in step k + 1, given XN,n(k) and
R(X

N,n
1 (k)), is

∞∑
i=1

(
1

N
Mi − p(i)

)
− 1

N2

∞∑
i,j=1
j �=i

MiMj = 1

N

∞∑
i=1

Mi + O(N−2).
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Computing R(X
N,n
1 (k)) given XN,n(k) using the multinomial distribution, we obtain

P(B1,k+1 | XN,n(k) = x)

=
∑
r∈Sn

P(B1,k+1 | XN,n(k) = x, R(x) = r)P(R(x) = r | XN,n(k) = x)

= 1

N

∑
r∈Sn

[ ∞∑
i=1

(
xi+1ri +

(
ri

2

))
+ O(N−2)

]
P(R(x) = r | XN,n(k) = x)

= 1

N

∞∑
i=1

(
xi+1x1µ(i) +

(
x1

2

)
µ(i)2

)
+ O(N−2),

where we have used the fact that
∑
r∈Sn

O(N−2)P(R(X
N,n
1 ) = r | XN,n(k) = x) = O(N−2),

since the O(N−2) term is bounded uniformly in r ∈ Sn by some c(n)/N2, and we average with
respect to a probability measure. This proves the first claim. We have seen that

P(B≥2,k+1 | XN,n(k), R(X
N,n
1 (k))) =

∞∑
i=1

p(i) + 1

N2

∞∑
i,j=1
j �=i

MiMj ≤ c(n)

N2 .

This proves the second part.

We now have the ingredients to prove convergence to Kingman’s coalescent.

Proof of Theorem 1. Fix n ∈ N. We will first study the process started in the stationary
distribution ν. Then we will extend the result to arbitrary initial distributions using an adaptation
of Doeblin’s coupling method. To prove convergence in the stationary case, we just need to prove
that the intercoalescence times for binary mergers are distributed asymptotically exponential
with rate β2

1

(
n
2

)
, and that multiple coalescences are negligible. Starting from the stationary

distribution, the probability of seeing a coalescence in the next step given that we have currently
n balls is obtained as in [6], using Lemma 2, i.e.

P(B1,k+1 | XN,n(k) ∼ νn) = Eνn [P(B1,k+1 | XN,n(k))]

= β2
1

N

(
n

2

)(
2

∞∑
i=1

βi+1

β1
µ(i) +

∞∑
i=1

µ(i)2
)

+ O(N−2)

= β2
1

N

(
n

2

)
+ O(N−2), (1)

where we have computed the expectations with respect to the multinomial distribution νn and
used 2

∑∞
i=1βi+1µ(i)/β1 + ∑∞

i=1µ(i)2 = 1.
We claim now that, for the process ZN,n, which, as we recall, describes our ancestral process,

we have

lim
N→∞ P(no coalescence in ZN,n before time Nt) = exp

[
−β2

1

(
n

2

)
t

]
. (2)
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Note that this does not follow immediately from (1), since after an unsuccessful attempt at
coalescence, the process is slightly out of the stationary distribution. We see that (1) implies
that while we are in the stationary distribution, the probability for a coalescence in the next
step is β2

1N−1
(
n
2

) + O(N−2). This is equivalent to saying that, for large N , we consider
(
n
2

)
independent geometric clocks with parameter 1/N , and each time a clock rings, a fixed pair
of balls coalesces with probability β2

1 . These geometric clocks give exactly the number of
jumps any pair of balls needs to perform before they jump into the same small section, but
not necessarily the same urn. Therefore, they give the number of attempts to coalesce, which
are only successful if both balls are in urn 1. If the process is slightly out of the stationary
distribution, the probability of two given balls being in urn 1 is not exactly β2

1 anymore. But,
since Eµ[η] < ∞, by classical renewal theory (see, e.g. [9, Theorem 3.1]), for

ν̃n := P(XN,n(1) | XN,n(0) ∼ νn, no coalescence in step 1),

we obtain

‖P(Xn(k) ∈ · | Xn(0) ∼ ν̃n) − P(Xn(k) ∈ · | Xn(0) ∼ νn)‖TV → 0 as k → ∞,

which implies that, as k → ∞,

Pνn(two fixed balls in urn 1 at time k | no coalescence at time 1) = β2
1 + o(1).

Therefore, as N → ∞, if τ(N) is a geometric random variable with parameter
(
n
2

)
N−1

independent of the lengths of the jumps, we obtain

Pνn(two fixed balls in urn 1 at time τ(N) | no coalescence at time 1) = β2
1 + o(1).

By the memorylessness of the geometric distribution, and the fact that the choice of the section
and the jump lengths of the urn process are independent, we obtain

lim
N→∞ Pνn(no coalescence in ZN,n before time Nt)

= lim
N→∞

(
1 − β2

1 + o(1)

N

(
n

2

)
+ O(N−2)

)Nt

,

which proves (2). Moreover, we have seen in Lemma 2 that multiple coalescences are negligible.
For the coupling argument, we now consider a process X̃N,n which runs as follows. Start with

n balls in the stationary distribution νn, and let it evolve according to the n-sample dynamics.
After each coalescence event, sample a new starting configuration according to νn′

, where n′ is
the number of balls present after the coalescence, and run the process according to the n′-sample
dynamics. Assume now that XN,n starts in a given initial distribution. Define

T (N) := inf{t > 0 : XN,n(t) = X̃N,n(t)}.
We couple XN,n and X̃N,n as follows. Colour the balls of XN,n red and the balls of X̃N,n blue.
Label both the red and the blue balls 1, . . . , n. Recall that the dynamics of our urn process
just consist in moving balls from urn 1 independently from each other to a new urn according
to µ, and merging balls in the same urn with probability N−1 per pair. Run the red and the
blue processes independently. Let us first assume that no coalescences occur in either of the
processes.
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Now if at some time k the red ball number i and the blue ball number i happen to be in the
same urn (but not necessarily in the same section), we couple them and let them move together
from this time onwards. Denote by σi the time of this coupling. Note that σi is finite almost
surely, since it is the coupling time of two renewal processes. Then we continue running our
processes until all the balls have coupled. Let Tcoup := max{σi, 1 ≤ i ≤ n}. Note that this
time is independent of N . Since n is fixed, and the different balls move independently, we have
P(Tcoup < ∞) = 1 no matter which initial distributions we choose (see [9, Chapter II]), and,
hence,

lim
t→∞ P(Tcoup ≥ t) = 0.

Speeding up time by N , the coupling happens much faster than the coalescence. Let T
(N)
coal be

the time of the first coalescence in either the red or the blue process. At each time step, the
probability of having a coalescence in the next step is bounded from above by the crude uniform
estimate n2/N . Hence,

lim
N→∞ P(T

(N)
coal ≥ √

N) ≥ lim
N→∞

(
1 − n2

N

)√
N

= 1.

Since
lim

N→∞ P(Tcoup ≤ √
N) = 1,

we get
lim

N→∞ P(T
(N)
coal ≥ Tcoup) ≥ lim

N→∞ P(T
(N)

coal ≥ √
N, Tcoup ≤ √

N) = 1.

This implies that

lim
N→∞ P(T (N) �= Tcoup) = lim

N→∞ P(T
(N)

coal < Tcoup) = 0,

from which we see that

lim
N→∞ P(T (N) ≥ Nt) = lim

N→∞ P(Tcoup ≥ Nt) = 0.

Hence we can restart our process X̃N,n after each coalescence event, and the two processes will
couple with probability 1 before the next coalescence takes place, and indeed on the coalescent
time scale (time sped up by N ) the coupling happens instantaneously. Using (2), for the
intercoalescence times of the process started in an arbitrary but fixed initial configuration, we
thus obtain

lim
N→∞ P(no coalescence in ZN,n before Nt) = exp

[
−β2

1

(
n

2

)
t

]
. (3)

This implies as before by standard arguments (see [3]) that |ZN,n(Nt)| converges weakly
as N → ∞ to the block-counting process of Kingman’s coalescent. Since |ZN,n(Nt)| d=
|AN,n(Nt)|, and the fact that we obviously have exchangeability of the ball configurations, we
even obtain the convergence to Kingman’s n-coalescent in the obvious sense. This completes
the proof of Theorem 1.

Remark 5. It appears remarkable that Eµ[η] < ∞ is sufficient for this result. If Eµ[η2] = ∞,
and Y denotes the label of the urn that a ball is placed in, then Eνn [Y ] = ∞ and, by [8],
E[Tcoup] = ∞. However, due to the time rescaling, the fact that P(Tcoup < ∞) = 1 is enough
for our purpose.
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Remark 6. In order to show convergence to Kingman’s coalescent, we could also follow the
approach of [6], which uses Möhle’s lemma [10] to show convergence of finite-dimensional
distributions. Note however that in our case the state space of the Markov chain is infinite;
hence, the transition matrices are infinite. Indeed, denoting the transition matrix of XN,n by

N = {
N(x, y)}x,y∈⋃∞

j=1 Sj
, we can decompose 
N as 
N = A + N−1B + O(N−2),

where A is given by the transitions of the Xn-processes without coalescence, and B contains
adjustments that need to be made to the Xn-process in the case of a single coalescence event
(compare [6]). The higher-order coalescences are O(N−2) by Lemma 2. To apply Möhle’s
lemma, it is sufficient to show that P := limm→∞ Am and G := PBP exist. We first take
care of the part without coalescence. Let A be defined by A(x, y) := ∑n

j=11{x,y∈Sn}An(x, y),

where (An(x, y))(x,y)∈Sn denotes the transition matrix of Xn. Then Lemma 1 yields

lim
k→∞ Ak

n(x, y) = νn(y)

for all x, y ∈ Sn. Thus, we obtain limm→∞ Am = P , where P = (P (x, y))x,y∈S with
P(x, y) = ∑n

j=11{x,y∈Sj }νj (y). We can now define B as the matrix of the single coalescence
events as in [6]. That is, if x ∈ Si and y ∈ Si−1, then B(x, y) is the probability that the
balls from configuration x are relocated according to the matrix Ai , and that exactly one pair
of them coalesces, so that we end up with configuration y. If x ∈ Si then B(x, y) = 0 if
y /∈ Si ∪ Si−1. If x and y are in Si , then B(x, y) gives the correction for the Xn-process
in the case of a coalescence; therefore, B(x, y) ≥ −A(x, y) in this case. Hence, B has the
same block form as in [6]; however, the single blocks are of infinite size. Furthermore, ‖B‖ =
maxx∈⋃n

i=1 Si

∑
y |B(x, y)| ≤ 2. Since P is a projection, G = PBP is a bounded operator, and,

therefore, etG, t ∈ R, exists as a convergent series. Now the computations proceed exactly
as in the case of bounded support; hence, we obtain the convergence to Kingman’s coalescent
following the proof of [6].

Remark 7. Note that Möhle’s result allows the following heuristic interpretation of our limiting
process XN,n as N → ∞. First, the process, for each number of ‘active’ balls n′ ≤ n, mixes
rapidly and essentially instantaneously enters its stationary distribution on the configuration
with n′ balls. Note that as long as there is no coalescence event, any future evolution does not
affect either the block counting process AN,n, or the corresponding partition-valued process,
where each ‘active’ ball denotes a block in a partition of {1, . . . , n} consisting of all labels
of balls that have merged into this active ball. Now, in each ‘infinitesimal time step’, our
limiting process picks an entirely new state from its stationary distribution, independent of its
‘previous’ state (this is the effect of the projection operator P ). In a way it can be regarded as a
‘white noise’ process on the space of stationary samples. While this process obviously has no
càdlàg modification, both the block counting process and the partition-valued process remain
constant until there is a new merger, and are thus well defined (recalling that such mergers, that
is, transitions from n′ active balls to n′ − 1 active balls, happen at a finite positive rate in the
limit).

3.2. Proof of Theorem 2

Recall from Section 2 that the time to the MRCA is related to the coupling time of two
versions of the renewal process. Recall that

qn = P
µ
N(A(v) ∩ ({−n} × {1, . . . , N}) �= ∅).

We will need some bounds on the qn that can be obtained via Tauberian theorems.
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Lemma 3. Let µ ∈ �α .

(a) Let α ∈ (0, 1). Then

i∑
n=0

qn ∼ 1 − α

�(2 − α)�(1 + α)
iαL(i)−1 as i → ∞.

(b) The sum
∞∑

n=0

q2
n

is finite if α ∈ (0, 1
2 ) and infinite if α > 1

2 .

(c) Let α ∈ (0, 1
2 ). Then

∞∑
n=0

qnqn−i ∼ (1 − α)2

�(2 − α)2�(2α)
i2α−1L(i) as i → ∞.

Proof. The proof of this lemma can be found in [4, Lemma 5.1].

Proof of Theorem 2. We first prove part (c), which corresponds to the case where we have
convergence to Kingman’s coalescent. Without loss of generality, assume that iv = iw = 0.
Denote by (Rn) and (R′

n) the sequences of renewal times of the renewal processes corresponding
to v and w, respectively, that is, Rn = 1{n∈{S0,S1,... }}. In other words, Rn = 1 if and only if v

has an ancestor in generation −n, and qn = P(Rn = 1). Let

T := inf{n : Rn = R′
n = 1}

denote the coupling time of the two renewal processes. Since each time v and w have an
ancestor in the same generation, these ancestors are the same with probability N , we get

E[τ ] = NE[T ].
But, if α > 1, we have Eµ[η1] < ∞, and, therefore, by Proposition 2 of [8], E[T ] < ∞.
The result now follows from Theorem 1 and the fact that the expected time to the MRCA of n

individuals in Kingman’s coalescent with time change β2 is given by

E[TMRCA] = 1

β2

n∑
k=2

1(
k
2

) = 2

β2

(
1 − 1

n

)
;

hence, for n = 2, we get 1/β2.
(b) For independent samples R and R′, the expected number of generations where both

individuals have an ancestor is given by

E

[ ∞∑
n=0

RnR
′
n

]
=

∞∑
n=0

E[Rn]E[R′
n] =

∞∑
n=0

q2
n,

which is infinite if α > 1
2 due to Lemma 3(b). Each of these times, the ancestors are the same

with probability 1/N ; therefore, with probability 1, A(v) and A(w) eventually meet. However,
the expected time until this event is bounded from below by the expectation of the step size:

E
N
µ [τ ] ≥ E[η] = ∞

if α < 1.
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(a) In this case, E[∑∞
n=0RnR

′
n] = ∑∞

n=0q
2
n < ∞, and, therefore,

P

( ∞∑
n=0

RnR
′
n = ∞

)
= 0,

which implies that the probability that A(v) and A(w) never meet is positive.

3.3. Proof of Theorem 3

We prove now Theorem 3. We define Yv := 1{Xv=a}.

Lemma 4. Let λ = λ
p
N , and assume that µ ∈ �α .

(a) If α > 1
2 ,

covλ(Yv, Yw) = p(1 − p).

(b) If α ∈ (0, 1
2 ), v �= w,

covλ(Yv, Yw) = p(1 − p)

∑∞
n=0 qnqn+iv−iw

N + ∑∞
n=1 q2

n

.

Proof. We have

E
N
λ [YvYw] = λ(Xv = Xw = a) = pP

µ
N(A(v)∩A(w) �= ∅)+p2(1−P

µ
N(A(v)∩A(w) �= ∅))

and E
N
λ [Yv]EN

λ [Yw] = p2. This implies that

covλ(Yv, Yw) = p(1 − p)PN
µ (A(v) ∩ A(w) �= ∅).

If α > 1
2 then P

µ
N(A(v) ∩ A(w) �= ∅) = 1 which proves (a). Hence, we need to compute

P
µ
N(A(v) ∩ A(w) �= ∅) for α < 1

2 . To do this, let Sn and S′
n denote two independent samples

of the renewal process, with S0 = iv and S′
0 = iw. Note that this implies that, for the times of

the renewals,
P(Rn = 1) = qn+iv .

Recall that the renewal process is running forward in time, whence the ancestral lines are traced
backwards. Let Av and Aw denote two independent samples of the ancestral lines of v and w,
using the processes S and S′, respectively, without coupling the processes. Then the expected
number of intersections of Av and Aw is given by

E[|Av ∩ Aw|] = 1

N
E

[ ∞∑
n=−iw

RnR
′
n

]
= 1

N

∞∑
n=−iw

qn+iv qn+iw = 1

N

∞∑
n=0

qnqn+iv−iw .

On the other hand, conditioning on the event that the ancestral lines meet (which clearly has
positive probability), and then restarting the renewal processes in the generation of the first
common ancestor, which is the same as sampling two ancestral lines starting at (0, 0),

E[|Av ∩ Aw|] = E[|Av ∩ Aw| | AV ∩ Aw �= ∅]P(Av ∩ Aw �= ∅)

= P(A(v) ∩ A(w) �= ∅)E[|A(0,0) ∩ A(0,0)|]

= P(A(v) ∩ A(w) �= ∅)

(
q0 + 1

N

∞∑
n=1

q2
n

)
.
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Recalling that q0 = 1, this implies that

P
µ
N(A(v) ∩ A(w) �= ∅) =

∑∞
n=0 qnqn+iv−iw

N + ∑∞
n=1 q2

n

,

which proves the lemma.

Proof of Theorem 3. Part (a) is obvious and (b) follows from Lemma 4. For (c), let α ∈
(0, 1

2 ). Lemma 3 tells us that
∑∞

n=0 q2
n < ∞. From Lemma 4, it follows that, for i �= 0,

covλ(YN(0), YN(i)) = p(1 − p)

∑∞
n=0 qnqn−i

N + ∑∞
n=1 q2

n

.

For the variance, we obtain

varλ(YN(i)) = 1

N2

N∑
k,j=1

covλ(Y(i,k), Y(i,j))

= 1

N2

(
Np(1 − p) + N(N − 1)p(1 − p)

∑∞
n=0 q2

n

N + ∑∞
n=1 q2

n

)

= p(1 − p)

∑∞
n=0 q2

n + 1 − 1/N

N + ∑∞
n=1 q2

n

.

Hence,

corrλ(YN(0), YN(i)) =
∑∞

n=0 qnqn−i∑∞
n=0 q2

n + 1 − 1/N
,

which converges as N → ∞. The result now follows from Lemma 3(c).

Appendix A. Gibbs measure characterization of the forward process

In Section 2.2 we claimed that the measures λ
p
N are in a certain sense the only measures

describing the type distribution which are consistent with the dynamics of our process. In order
to make this rigorous, we use a Gibbs measure characterization, which relies on the approach
in [4]. In order to construct the Gibbs measure, we start with prescribing the distribution of
types conditional on the (infinite) past. Let SN := {a, A}N denote the finite-dimensional state
space. Let Xv = X(iv,kv) ∈ {a, A} denote the type of individual v that is the kth individual
of generation i. We denote by C the sigma-algebra of cylinder events, and write σn for the
σ -algebra generated by cylinder sets contained in {. . . , n}. For i ∈ Z, we define the probability
kernel λN,i(· | ·) from (SZ

N, σi) to (SZ

N, C) by saying that, for any finite set B ⊂ {i + 1, . . .}N ,

xB ∈ {a, A}B , and ξ ∈ S
{...,i−1,i}
N , the conditional probability

λ
ξ
N,i(X|B = xB) := λN,i({X|B = xB} | ξ)

is obtained by first sampling G ∈ TN , tracing back the ancestral line of every v ∈ B until it first
hits {. . . , i}, and then assigning the type ξ· of this ancestor to v. This is well defined because,
under P

µ
N , the tree until it first hits {. . . , i} is independent of σi . The kernels λ

ξ
N,i , i ∈ Z, are

then used to construct the Gibbs measures. Due to the construction via product measures, it is
clear that they are consistent. If i < j then, for B ⊂ {j + 1, . . .} × {1, . . . , N},

λ
ξ1

N,i(Xv = xv, v ∈ B | Xw = ξ2
w, i + 1 ≤ iw ≤ j) = λ

ξ1∨ξ2

N,j (Xv = xv, v ∈ B).
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Here ξ1 ∨ ξ2 denotes the configuration which is equal to ξ1 on {. . . , i} and equal to ξ2 on
{i + 1, . . . , j}. So we can now define the Gibbs measures for our model.

Definition 2. A probability measure λN on SZ

N is called a µ-Gibbs measure if, for all i ∈ Z, all
finite subsets B ⊂ {i +1, . . .}× {1, . . . , N}, and all xB ∈ {a, A}B , the mapping ξ �→ λ

ξ
N,i(xB)

is a version of the conditional probability

λN(X|B = xB | σi).

In other words, to sample from the Gibbs measure conditional on the past up to generation i,
we first sample a G ∈ TN according to P

µ
N , and assigning each Xv, iv ≥ i + 1, 1 ≤ kv ≤ N ,

its type according to the ancestors. It is clear that such measures exist; in fact, λ
p
N defined in

Section 2.2 is clearly a µ-Gibbs measure for p ∈ {0, 1}, and if G ∈ TN has infinitely many
components almost surely then, for all p ∈ [0, 1], the measures λ

p
N are µ-Gibbs measures.

Recall that this is the case if µ ∈ �α with α < 1
2 . This is the situation where the Gibbs measure

characterization is interesting.
A particularly useful feature of our model is that the only relevant Gibbs measures are of the

form λ
p
N . Note that the µ-Gibbs measures form a convex set, as can be seen easily, and we can

characterise the extremal points of this set generalizing Proposition 1 of [4].

Proposition 1. Assume that µ ∈ �α .

(a) Let α ∈ (0, 1
2 ). For each fixed N and each p ∈ [0, 1], there is precisely one extremal

µ-Gibbs measure λN on SZ

N such that λN(Xi,k = a) = p for all i ∈ Z, 1 ≤ k ≤ N .

(b) Let α ∈ ( 1
2 , ∞]. The only extremal Gibbs measures are λ0

N and λ1
N . For p ∈ (0, 1), the

measures λ
p
N are given by λ

p
N = pλ0

N + (1 − p)λ1
N .

A.1. Proof of Proposition 1

The proof of Proposition 1 follows closely that of Proposition 1 of [4], and we refer the
reader to this work for details. Note that part (b) follows immediately from Theorem 2, as this
implies that all individuals have the same type almost surely. The crucial step in the proof of
part (a) of the proposition is the following lemma.

Lemma 5. Let λ be a extremal µ-Gibbs measure. Then there exist p ∈ [0, 1] such that, for all
v = (iv, kv) ∈ VN ,

lim
m→∞ λ(Xv = a | σ−m) = p λ-almost surely.

Proof. For fixed v, the existence of the limit follows from the backward martingale conver-
gence theorem (see [5, p. 233]), and the fact that it is constant follows from the tail triviality of
extremal Gibbs measures. It remains to prove that it is independent of v. For this, we couple
the ancestral lines of two individuals v1 and v2 as in [4] in as far as their i-coordinate (the
generations) is concerned, and concerning the k-coordinate, that is, the label of the individual
among the N individuals per generation, we simply couple them completely, which does not
change the law of the process. Hence, the proof of [4] goes through with only minor changes.

For the rest of the proof of Proposition 1, see [4]. The main idea is as follows. For any finite
set of individuals, there exists a (random) time T before which the ancestral lines do not meet.
This time is finite almost surely, and in view of Lemma 5, there exists p ∈ [0, 1] such that the
ancestors alive just after time T get their types independently with probability between p − ε

and p + ε. This then implies that λ = λ
p
N , which, as we recall, conditional on G ∈ TN , is

induced by the product Bernoulli measure on the components of G with success parameter p.
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