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A linear stability analysis of two-layer moist
convection with a saturation interface
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The linear convective instability of a mixture of dry air, water vapour and liquid water,
with a stable unsaturated layer residing on an unstable saturated layer, is studied. It
may serve as a prototype model for understanding the instability that causes mixing
at the top of stratocumulus cloud or fog. Such a cloud-clear air interface is modelled
as an infinitely thin saturation interface where radiative and evaporative cooling take
place. The interface position is determined by the Clausius–Clapeyron equation, and
can undulate with the evolution of moisture and temperature. In the small-amplitude
regime two physical mechanisms are revealed. First, the interface undulation leads to the
undulation of the cooling source, which destabilizes the system by superposing a vertical
dipole heating anomaly on the convective cell. Second, the evolution of the moisture
field induces non-uniform evaporation at the interface, which stabilizes the system by
introducing a stronger evaporative cooling in the ascending region and vice versa in the
descending region. These two mechanisms are competing, and their relative contribution
to the instability is quantified by theoretically estimating their relative contribution to
buoyancy flux tendency. When there is only evaporative cooling, the two mechanisms
break even, and the marginal stability curve remains the same as the classic two-layer
Rayleigh–Bénard convection with a fixed cooling source.

Key words: moist convection, atmospheric flows, buoyancy-driven instability

1. Introduction

A thermally unstable layer lying over a solid surface and below a stable layer renders
a two-layer convection set-up that is frequently seen in geophysical flow. For a mixture
of dry air and water such as the atmosphere, a special case is when the lower layer is
saturated to water vapour (cloudy), with liquid water suspending in the air as droplets.
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The macroscopic cloud-clear air interface is a thin saturation interface. It is susceptible
to evaporative cooling due to the molecular diffusion and turbulent mixing between
the unsaturated and saturated parcels, as well as longwave radiative cooling due to the
divergence of radiative fluxes caused by the abrupt change of the longwave absorption
coefficient (Mellado 2017). The cooling at the interface drives turbulence, which entrains
the upper-layer dry air into the cloud layer. This is an important factor that leads to the
breakup of stratocumulus and fog (Lilly 1968). The fog is simply the cloud that touches the
sea or land surface (Emanuel 1994). The breakup is not only important for aviation which
requires an accurate prediction of visibility, but also for understanding the cloud-radiation
feedback that impacts the climate (Cotton, Bryan & van den Heever 2011; Schneider,
Kaul & Pressel 2019). Despite its importance, the cloud-top entrainment is still poorly
understood. A primary difficulty is that the mixing between the cloud and dry air is
nonlinear – a denser mixture, or a buoyancy reversal, could be produced (Lilly 1968;
Randall 1980). When the buoyancy reversal is strong enough, it can drive more turbulence
and cause further entrainment, leading to runaway instability (Shy & Breidenthal 1990).
Such a buoyancy reversal can be enhanced by cloud-top radiative cooling (Lilly 1968;
Sayler & Breidenthal 1998; de Lozar & Mellado 2013). Other factors such as vertical shear
(Schulz & Mellado 2018) and droplet settling (Schulz & Mellado 2019) further complicate
the problem.

The cloud-top mixing has been studied with the idealized parcel model (Randall 1980),
direct numerical simulation (Siems et al. 1990; Siems & Bretherton 1992; Mellado et al.
2009; Mellado González 2010; de Lozar & Mellado 2015; Schulz & Mellado 2018, 2019)
and the laboratory water tank which uses the nonlinear dependence of density on chemical
concentrations to mimic evaporative cooling (Turner & Yang 1963; Shy & Breidenthal
1990). Randall (1980) proposed a necessary condition for self-sustaining entrainment
with parcel argument: the above-cloud parcel, after being cooled to saturation by isobaric
mixing with the in-cloud air, must be less buoyant than the in-cloud air. Shy & Breidenthal
(1990) used the tank experiment to show that an even denser mixture is needed, because
the eddy produced by the mixture needs to do work against the stable stratification to
sustain the entrainment. Siems et al. (1990) further studied the role of large eddies with
numerical simulation. They considered the evaporative production of a thin very dense
layer at the interface of a uniformly dense lower layer and a uniformly light upper layer.
Two processes are found to enhance entrainment. First, in the laminar regime, the strong
diffusive evaporation at the updraft plume’s front (‘flame front’) generates cold air. There,
the deformation field enhances diffusion by squeezing the contour surfaces of the ‘dry air
mixing fraction’ (a linear function of enthalpy or total water content). The dense interfacial
air is gravitationally unstable, so it tilts the interface, and then slips from the interfacial
ridge where the ‘flame front’ resides to the interfacial valley, producing a concentrated
downdraft. Second, in the turbulent regime, the vortex ring associated with the updraft
plume can engulf the dry air into the cloud and induce mixing. Mellado et al. (2009)
used an analytical three-layer Rayleigh–Taylor instability model to quantify the interface
undulation in the first process, with the densest middle layer existing at the beginning.

However, how does the dense layer form? And how does it couple with the in-cloud
overturning eddy? The in-cloud overturning eddy is cooperatively driven by the cloud-top
and in-cloud instability, so the extra evaporation at the ‘flame front’ must have an influence
on it. Because the diffusional evaporation is non-uniform at the interface due to the
overturning eddy, a non-diffusive Rayleigh–Taylor type model is not enough to answer
this question. A Rayleigh–Bénard convection model with its upper boundary serving as the
undulating interface, and with the heat flux there depending on fluid motion, was suggested
by Mellado et al. (2009).
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Saturation interface instability

Enlightened by this, we build a two-layer Rayleigh–Bénard convective instability model
that, for the first time, couples the moist thermodynamics, as well as the interface and the
in-cloud cell. To facilitate the linear stability analysis, the idealized set-up of Siems et al.
(1990) is modified by changing the basic state from a local staircase buoyancy reversal
at the interface to a global piecewise linear buoyancy distribution across the domain. In
other words, the cloud-top buoyancy reversal layer is extended to the whole domain, and
the in-cloud unstable stratification is simply part of it. The lower rigid lid, which does
not exist for the real cloud-top mixing layer, artificially set a length scale for the largest
overturning eddy (Siems et al. 1990). It may also qualitatively represent the cloud bottom,
or the surface of a fog layer, but not in a strict sense due to their multiscale and turbulent
nature. We refer the reader to a series of works on the ‘mesoscale entrainment instability’
that use a parameterized entrainment rate to model this larger-scale scenario (Fielder 1984;
Breidenthal & Baker 1985; Yano 2021). In addition, we use a Dirac-delta function to
represent radiative cooling at the infinitely thin interface and study how it cooperates with
evaporative cooling in this linear stability problem.

Technically, this instability model is an update of the classic two-layer Rayleigh–Bénard
convection, which is the simplest model for studying penetrative convection (Gribov &
Gurevich 1957). The basic state is the balance between diffusion and a fixed horizontally
uniform thin cooling source (or heating source such as a light beam if the system is
upside down), which yields a piecewise linear vertical profile of buoyancy (Whitehead
& Chen 1970). Ogura & Kondo (1970) used linear stability analysis to show that a
stronger upper-layer stratification suppresses convection. It will be shown that the inclusion
of phase change and radiative cooling only changes the matching condition in the
stability analysis. The result is a more confined lower-layer convective cell and a stronger
upper-layer secondary cell.

The moist convection with a saturation interface can be compared with another more
intensely investigated phenomenon: convection of two-phase-one-component flow, such
as a liquid–gas system (Busse & Schubert 1971; Hsieh 1972; McFadden et al. 2007;
Konovalov, Lyubimov & Lyubimova 2017). Latent heat is absorbed or released at the
fluctuating interface which is also not a material surface. There are two main differences.

(i) The interface of a two-phase-one-component flow is completely determined by
pressure and temperature via the Clausius–Clapeyron equation. The moist air
problem, on the other hand, is a two-phase-two-component flow, whose saturation
interface depends mainly on temperature and water content, and hardly on the
pressure anomaly.

(ii) The phase transition rate at the liquid–gas interface is proportional to mass flux
which is zero at the diffusive-equilibrium basic state. The moist air problem is more
complicated because it involves liquid droplets. In a very idealized case which will
be discussed, its evaporation rate at the interface only depends on the liquid water
diffusive flux which is non-zero at the basic state (Bretherton 1987).

Though the physics is quite different, some of the methodology in analysing the
two-phase problem is employed in this model, as will be mentioned in the context.

The paper is organized in the following way. Section 2 introduces the physical model.
Section 3 introduces the linear stability analysis. Section 4 introduces the neutral stability
curve, eigenfunction of the neutral mode and discusses the instability mechanism. Section
5 uses nonlinear numerical simulation to benchmark the linear stability analysis and briefly
explores the finite-amplitude regime. Section 6 concludes the paper.
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2. The physical model

2.1. The governing equations
A two-layer set-up with idealized radiation and moist processes is built. It is modified from
the fully nonlinear model of Siems et al. (1990) and Mellado et al. (2009) by adding a
Dirac-delta function radiative cooling, as well as changing the basic state buoyancy profile
from a local staircase reversal to a global piecewise linear one. The governing equations
are expressed with explicit temperature and water species, rather than the mixing fraction
formulation. The following four processes are omitted.

(i) The background vertical shear which enhances the interfacial mixing (Schulz &
Mellado 2018).

(ii) The droplet settling which reduces the interfacial evaporation by removing droplets
near the cloud top (Bretherton, Blossey & Uchida 2007; Schulz & Mellado 2019).

(iii) The lightening effect of water vapour and the loading of liquid water on buoyancy
(Austin 1995).

(iv) The adiabatic expansion and compression of a parcel in vertical motion which is
only significant for a sufficiently deep domain, such as the whole stratocumulus
layer (Siems et al. 1990).

The symbol of all the dimensional variables (but not dimensional parameters) will
include a ‘*’. The basic state saturation interface is at z∗ = 0, the lower boundary is a
rigid lid at z∗ = −H and the upper layer is infinitely deep. Figure 1 shows a schematic
diagram of the set-up. The flow is assumed to be Boussinesq. The continuity equation,
momentum equation, Clausius-Clapeyron equation, water vapour diagnostic equation,
total water equation and thermodynamic equation are

∇∗ · u∗ = 0, (2.1)

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = − 1

ρ0
∇∗p∗ + g

T0
T∗k + ν∇∗2u∗, (2.2)

q∗
vs(T

∗) = qvs0 + λ̃(T∗ − T0), (2.3)

q∗
v = min

{
q∗
vs, q∗

t
}
, (2.4)

∂q∗
t

∂t∗
+ u∗ · ∇∗q∗

t = κ∇∗2q∗
t with q∗

t = q∗
v + q∗

l , (2.5)

∂T∗

∂t∗
+ u∗ · ∇∗T∗ − κ∇∗2T∗ =

[
Q∗

rad + Lvκ

cp
∇∗q∗

l |z∗=z∗−
s

· nδ
(
z∗ − z∗

s
)]

×δ
(
z∗ − z∗

s
)
, (2.6)

where u∗ = u∗i + v∗j + w∗k is the three-dimensional velocity vector, i, j and k are the
three unit vectors of Cartesian coordinate, x∗ = x∗i + y∗j + z∗k is the position vector,
∇∗ = i∂/∂x∗ + j∂/∂y∗ + k∂/∂z∗ is the gradient operator, t∗ is time and min{} is the
minimum operator.

The variable p∗ is perturbation pressure, T∗ is temperature, q∗
vs is the saturation vapour

content (the mass of saturated vapour in 1 kg of air), q∗
t is the total water content (the

total water mass in 1 kg of air) which is the sum of vapour content q∗
v and liquid water

content q∗
l . The constants ρ0 is the reference density, ν is the kinematic viscosity, κ is the

diffusivity shared by T∗ and all water species, Lv is the evaporation latent heat and cp is
the isobaric specific heat. For applications to stratocumulus, ν and κ should be viewed
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Saturation interface instability

z∗ = ∞

z∗ = 0

T ∗

qt
∗

zs
∗qνs0

z∗ = –H

H

H

(a) (b)

T0

�T

–γT�T

�qt

z∗ = ∞

z∗ = 0

T ∗

qt

zs

z∗ = –1

1

1
0 0

1

–γT�T

1

1 – λλ

Figure 1. A schematic diagram of the two-layer set-up with (a) the dimensional values and (b) the
non-dimensional values. The solid red lines denote temperature profiles, and the solid blue lines denote total
water content profiles. The dashed black line denotes the basic state saturation interface. The light blue shadow
denotes the saturated region. The deep blue shadow denotes the vertical profile of the liquid water content ql
whose basic state non-dimensional value is 1 − λ at z = −1 and 0 at z = 0.

as eddy viscosity and diffusivity, respectively. The saturated water vapour content q∗
vs is

linearized to T∗ (Randall 1980; Spyksma, Bartello & Yau 2006), with λ̃ as the slope,
T0 and qvs0 as the reference temperature and saturated water vapour content. They are the
radiative-diffusive equilibrium value at z∗ = 0. The constant Q∗

rad is the longwave radiative
cooling strength (strictly speaking, the radiative flux density expressed in temperature) that
depends on the Stefan–Boltzmann law. It is the small penetration depth limit of the simple
radiation transfer model of de Lozar & Mellado (2013). The validity of this radiative
representation is discussed in Appendix A. The vector n is the unit vector perpendicular
to the saturation interface and points from the saturated region to the unsaturated region.
The superscript ‘−’ in z∗−

s means a tiny distance below z∗
s , and vice versa for ‘+’ which

will appear later.
The adjustment to thermodynamic equilibrium is assumed to be instantaneous, so the

supersaturation (Chandrakar et al. 2020) is not allowed, as shown in (2.4). The assumption
of identical diffusivity for T∗, q∗

v , q∗
l and q∗

t was proposed by Bretherton (1987), and has
been used in many cloud-top mixing simulations (Siems et al. 1990; Mellado et al. 2009;
Mellado González 2010; de Lozar & Mellado 2015; Schulz & Mellado 2018). It leads to a
drastic simplification: evaporative cooling is determined by the liquid water diffusive flux
at the interface. An equivalent argument is shown in (8) of de Lozar & Mellado (2015)
in their mixing fraction formulation. If the diffusivity of temperature and water species
are different, diffusion will cause a phase change inside the saturated region. In the real
atmosphere the dispersion of droplets is much more complicated than Fickian diffusion
(Bois & Kubicki 2003).

2.2. Boundary condition
The boundary condition is identical to the simulation of Siems et al. (1990) and Mellado
et al. (2009), except for an infinitely deep upper layer (rather than an upper lid). The lower
boundary is a free-slip rigid lid with fixed temperature T∗ and total water content q∗

t ,

∂u∗

∂z∗

∣∣∣∣
z∗=−H

= ∂v∗

∂z∗

∣∣∣∣
z∗=−H

= w∗|z∗=−H = 0,

T∗|z∗=−H = T0 + �T, q∗
t |z∗=−H = qvs0 + �qt,

⎫⎪⎬
⎪⎭ (2.7)
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where �T and �qt are the temperature and water content drop across the saturated layer,
respectively, and are both positive. In the real atmosphere the downward penetration depth
of the mixture produced at the cloud top is limited by its moisture content. The adiabatic
compression can make it dry out and then quickly gain buoyancy in the dry adiabatic
process, even before reaching the cloud bottom (Siems et al. 1990). This effect, which
is not explicitly considered in this model, can be implicitly carried by the lower lid. At
z∗ → ∞, the velocity vanishes, and T∗ and q∗

t asymptotically approach a reference linear
profile,

u∗|z∗→∞ = v∗|z∗→∞ = w∗|z∗→∞ = 0,

T∗|z∗→∞ = T0 − ΓT∞z, q∗
t |z∗→∞ = qvs0 − Γq∞z,

}
(2.8)

where ΓT∞ (negative) and Γq∞ = �qt/H (positive) are the lapse rate of T∗ and q∗
t at

z∗ → ∞. Strictly speaking, the upper-layer thickness should be smaller than qvs0/Γq∞ to
make q∗

t positive. In the real atmosphere Γq∞ is changing with height, and is small outside
of the cloud-top mixing layer (Mellado 2017). In this model, switching the water lapse
rate to a small value above the convective penetration depth Hp should not influence the
result. Thus, we only require q∗

t to be still positive at z∗ = Hp. Considering that Hp is the
neutrally buoyant level of a parcel which ascends adiabatically from the lower boundary,
we get Hp ∼ −�T/ΓT∞. This poses a physical constraint on our model: Hp � qvs0/Γq∞
or −�T/ΓT∞ � qvs0/Γq∞. Furthermore, as qvs0 only influences the basic state and does
not enter the linear stability analysis, we can always choose a qvs0 to satisfy this physical
constraint.

2.3. The non-dimensional group
The basic state is in radiative-diffusive equilibrium, without any motion. The basic state
variables are denoted with an overline. The Dirac-delta function cooling at the saturation
interface makes the basic state temperature profile T∗ piecewise linear, which decreases
with height in the lower saturated layer and increases with height in the upper unsaturated
layer. The basic state water content q∗

t decreases linearly with height. These basic state
profiles will be used to non-dimensionalize the equations.

The governing equation of q∗
t is obtained from (2.5). Further using the boundary

condition in (2.7) and (2.8), we get

− κ
d2q∗

t

dz∗2 = 0 ⇒ q∗
t (z) = qvs0 − Γq∞z∗. (2.9)

The governing equation of T∗ and its solution are obtained with (2.3), (2.4), (2.6) and
(2.9),

−κ
d2T∗

dz∗2 =
(

Q∗
rad + Lvκ

cp

dq∗
l

dz∗ |z∗=0−

)
δ(z∗)

⇒ T∗(z∗) =
{

T0 − ΓT∞z∗, 0 ≤ z∗ < ∞,

T0 − ΓTsz∗, −H < z∗ ≤ 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.10)
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Saturation interface instability

where ΓTs = �T/H (positive) is the T∗ lapse rate in the saturated layer. The parameters
ΓTs and ΓT∞ are linked with the radiative and evaporative cooling rate at the interface:

ΓTs = ΓT∞ − 1
κ

[
Q∗

rad − Lvκ

cp
Γq∞

(
1 − λ̃�T

�qt

)]
. (2.11)

We choose �T and �qt as the temperature and water content scale, the saturated layer
depth H as the length scale and H2/ν as the time scale. The dimensionless variables
(without ‘*’) obey

x∗ = xH, z∗
s = zsH, t∗ = tH2/ν,

u∗ = uν/H, p∗ = pρ0ν
2/H2, T∗ − T0 = T�T,

q∗
t − qvs0 = qt�qt, q∗

l − qvs0 = ql�qt, q∗
v − qvs0 = qv�qt, q∗

vs − qvs0 = qvs�qt.

⎫⎪⎪⎬
⎪⎪⎭

(2.12)

The problem is controlled by five non-dimensional parameters:

Ra = g(�T/T0)H3

νκ
, Pr = ν

κ
,

M = Lv�qt

cp�T
, Qrad = Q∗

rad
�Tν/H

and λ = λ̃�T
�qt

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.13)

Rayleigh number Ra measures the relative strength of the destabilizing effect of unstable
stratification and the stabilizing effect of viscosity and temperature diffusivity. Prandtl
number Pr is the ratio of viscosity to temperature and water diffusivity. The Qrad measures
the contribution of radiative cooling.

Now, we consider λ and M that involve the moisture effect. It is worth noting that
their ranges are constrained. The parameter λ represents the Clausius–Clapeyron equation
which influences the interface height zs, as well as the partition between qv and ql
in the saturated layer which is purely diagnostic under the thermodynamic equilibrium
assumption. There must be λ < 1 to guarantee the lower layer is saturated, and λ > 0 to
guarantee the monotonicity of saturated vapour pressure on T . The parameter M is the
ratio of latent to dry enthalpy change across the saturated layer. It can be represented
as M = (Lv/cp)λ̃λ

−1. The parameter (Lv/cp)λ̃ ranges from 1 to 2 in the 280–290 K
temperature range at 900 hPa level which represents the stratocumulus (Randall 1980).
This, together with 0 < λ < 1, indicates M � 1.

Before linearizing the problem, the basic state non-dimensional profiles T̄ , qt, qvs and
ql are derived from their dimensional expression. The cooling strength at the interface can
be further depicted with a parameter γT which measures the temperature gradient ratio of
the upper and lower layers:

γT ≡ (dT∗/dz∗)u

(dT∗/dz∗)s
= ΓT∞

ΓTs
. (2.14)

Here ()u and ()s denote the unsaturated (upper) and saturated (lower) layer property,
respectively. The parameter γT is negative in our case where temperature decreases with
height in the lower layer and increases with height in the upper layer. Using (2.3), (2.9),
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(2.10), (2.12) and (2.14), we get

T̄(z) =
{−γTz, 0 ≤ z < ∞,

−z, −1 < z ≤ 0,
ql =
{

0, 0 ≤ z < ∞,

(1 − λ) T̄, −1 < z ≤ 0,

qt = −z, qvs = λT̄.

⎫⎪⎬
⎪⎭ (2.15)

The parameter γT can be linked to the radiative cooling rate Qrad and the basic
state evaporative cooling rate Qevap by substituting (2.11) into (2.14), and using the
non-dimensional treatment in (2.12) and (2.13):

Qevap + Qrad = −1 − γT

Pr
with Qevap = −M(1 − λ)

Pr
. (2.16)

2.4. The linearized governing equation
The disturbance non-dimensional temperature and water content is obtained by subtracting
their basic state values from their total values, i.e.

T ′ = T − T̄, q′
t = qt − qt, q′

l = ql − ql, q′
v = qv − qv, q′

vs = qvs − qvs.
(2.17a–e)

The non-dimensional gradient operator is defined as ∇ = i∂/∂x + j∂/∂y + k∂/∂z.
With (2.12), (2.13), (2.15) and (2.17a–e), the dimensional equations (2.1)–(2.6) are
non-dimensionalized and linearized,

∇ · u = 0, (2.18)

∂u
∂t

= −∇p + Ra
Pr

T ′k + ∇2u, (2.19)

q′
t|z=0 + zs

dqt

dz

∣∣∣∣
z=0

= λ
(

T ′|z=0− + zs
dT̄
dz

∣∣∣∣
z=0−

)
= λ
(

T ′|z=0+ + zs
dT̄
dz

∣∣∣∣
z=0+

)
,

(2.20)

q′
l = [1 − H(z)]

(
q′

t − λT ′) , (2.21)

∂q′
t

∂t
− w = 1

Pr
∇2q′

t, (2.22)

∂T ′

∂t
= 1 − γT

Pr
zs

dδ(z)
dz

+ M
Pr

(
∂q′

t

∂z

∣∣∣∣
z=0

− λ ∂T ′

∂z

∣∣∣∣
z=0−

)
δ(z) + 1

Pr
∇2T ′

+w
[
1 − (1 − γT)H(z)

]
, (2.23)

where H(z) is the Heaviside function. The variables q′
t, q′

vs, q′
l, T ′, u and zs all have small

amplitude. The non-dimensional boundary conditions are obtained from (2.7) and (2.8),

∂u
∂z

= ∂v

∂z
= w = q′

t = q′
l = T ′ = 0, z = −1,

u = v = w = q′
t = q′

l = T ′ = 0, z → ∞.

⎫⎬
⎭ (2.24)

Three remarks on the governing equations are made below.
First, the dδ(z)/dz term on the right-hand side of (2.23) indicates that there is a

discontinuity of the small-amplitude T ′ at z = 0, which is strictly proved later in (3.6).
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Saturation interface instability

z = 0

(a) (b)

z = –1
T T

z = 0

z = –1
T T

Figure 2. A schematic diagram of (a) the effect of the undulating interface and (b) the effect of non-uniform
evaporation at the interface. The solid blue line denotes the perturbed saturation interface. The dashed black line
denotes the basic state saturation interface. The vertical blue arrows denote the vertical motion at the interface.
The blue patch denotes the cooling anomaly and the red patch denotes the warming anomaly. The circulating red
arrows in (a,b) denote the baroclinic torque produced by the interface undulation and non-uniform evaporation,
respectively. The solid red lines denote the basic state temperature profiles (T̄), and the dotted red lines denote
the temperature profiles changed by the interface undulation or the non-uniform evaporation alone.

Physically, it is because the shift of the cooling source produces a small amplitude yet
systematic deviation of the temperature profile from the basic state, as illustrated in
figure 2(a). The finite-amplitude T ′ is continuous everywhere, with a sharp transition
within z ∈ (−zs, zs). The thickness of the T ′ transition region reduces to the thickness
of the saturation interface at the small-amplitude limit, which is infinitely thin.

Second, (2.21) is derived by first transforming (2.4) to ql = [1 − H(z − zs)](qt − qvs),
and then decomposing it into the basic state and perturbation variables

ql + q′
l = [1 − H(z − zs)] (qt + q′

t − qvs − q′
vs)

≈ [1 − H(z) + zsδ(z)] (qt + q′
t − λT̄ − λT ′)

≈ [1 − H(z)] (qt − λT̄) + [1 − H(z)] (q′
t − λT ′) + zsδ(z)(qt − λT̄), (2.25)

where we have used qvs = λT̄ in (2.15) and q′
vs = λT ′, as well as the Taylor expansion

of the Heaviside function H(z − zs) ≈ H(z) − zsδ(z). Because qt − λT̄ = 0 at z = 0, the
third term on the right-hand side of (2.25) vanishes. Because ql = [1 − H(z)](qt − λT̄) as
is indicated by (2.15), the perturbation part of (2.25) becomes (2.21).

Third, (2.23) is derived by first linearizing ∇ql|z=z−s · n to ∂ql/∂z|z=z−s , and then using
Taylor expansion of the Dirac-delta function δ(z − zs) ≈ δ(z) − zs dδ(z)/dz to linearize
the interfacial cooling term around z = 0. The derivative and Taylor expansion of a
Dirac-delta function is defined by considering it as a generalized function (a distribution).
See appendix C.4 of the book of Pope (2000) for a reference. The Taylor expansion of
the Heaviside function also exists, because it is the integral of the Taylor expansion of a
Dirac-delta function. The detail of the expansion of the Dirac-delta function term in the
non-dimensional version of (2.6) is as follows:(

Qrad + M
Pr

∇ql|z=z−s · n
)

δ(z − zs)

≈
[

Qrad + M(1 − λ)
Pr

dqt

dz
+ M

Pr
∂q′

l
∂z

∣∣∣∣
z=0−

](
δ(z) − zs

dδ(z)
dz

)

≈
[

Qrad + M(1 − λ)
Pr

dqt

dz

]
δ(z) −

[
Qrad + M(1 − λ)

Pr
dqt

dz

]
dδ(z)

dz
zs
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H. Fu

+ M
Pr

(
∂q′

t

∂z

∣∣∣∣
z=0

− λ ∂T ′

∂z

∣∣∣∣
z=0−

)
δ(z)

≈ −1 − γT

Pr
δ(z)︸ ︷︷ ︸

basic state

+ 1 − γT

Pr
dδ(z)

dz
zs︸ ︷︷ ︸

interface undulation

+ M
Pr

(
∂q′

t

∂z

∣∣∣∣
z=0

− λ ∂T ′

∂z

∣∣∣∣
z=0−

)
δ(z)︸ ︷︷ ︸

non-uniform evaporation

. (2.26)

Here we have used (2.16) and (2.21). The quantities ∂q′
l/∂z|z=0− , ∂q′

t/∂z|z=0, ∂T ′/∂z|z=0−
and zs all have small amplitude, so the product between them vanish in the linear analysis.
On the right-hand side of (2.26), the first term denotes the basic state part, the second
term denotes the interface undulation which produces a vertical dipole heating pattern,
and the third term denotes the horizontally non-uniform evaporation which produces a
monopole heating pattern. The basic state part leads to a piecewise linear T̄ and, therefore,
a piecewise constant dT̄/dz, which corresponds to the −w dT̄/dz = w[1 − (1 − γT)H(z)]
term in (2.23).

3. Linear stability analysis

The standard practice for treating a two-layer convection problem like this is to manipulate
all the equations into a single high-order equation of w for each layer respectively, and
then find the proper matching condition (Ogura & Kondo 1970). It is going to be shown
that the moisture and radiative effects, which are the novel contributions of this work, are
interfacial processes that only require a special configuration of the matching condition.

We call the case with the full non-uniform evaporation and interface undulation the
‘free TRBC’ (TRBC stands for two-layer Rayleigh–Bénard convection). For comparison,
the classic TRBC where the cooling source is horizontally uniform and not undulating
(Ogura & Kondo 1970) is called the ‘fixed TRBC’. Whenever we compare these two
cases, the basic state temperature profile and, therefore, γT is identical. The physics of the
fixed TRBC reported by Whitehead & Chen (1970) is briefly introduced here. The main
body of the convective cell is constrained in the lower layer where there is a warm (cold)
anomaly in the ascending (descending) region, so the vertical buoyancy flux is positive
and kinetic energy is produced. In the upper layer the weak ascending (descending) flow
generates a cold (warm) anomaly, so the vertical buoyancy flux is negative and the kinetic
energy of the cell produced in the lower layer is partly diminished. The newly added
radiation and evaporation should influence the instability with the buoyancy anomaly they
induce. Whether such additional buoyancy anomalies favour the original cell or not should
determine whether the new factors are stabilizing or destabilizing.

3.1. The eigenvalue problem
As the non-uniform evaporation and interface undulation take the form of a Dirac-delta
function and its derivative in (2.23), their influence is concentrated near the saturation
interface. Thus, compared with the fixed TRBC, the moisture effect only influences the
matching condition. The procedure in this subsection is a standard practice that follows
Ogura & Kondo (1970), except the matching conditions of T̂ and DT̂ which are novel.

The normal mode solution is

{u, v, w, p, T ′, q′
t, q′

l, zs} = {û(z), v̂(z), ŵ(z), p̂(z), T̂(z), q̂t(z), q̂l(z), ẑs}
× exp
[
i(kxx + kyy)

]
exp (σ t) , (3.1)
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Saturation interface instability

where kx is the x-direction wavenumber, ky is the y-direction wavenumber, σ ≡ σr + iσi
is the complex growth factor, where σr denotes the growth rate and σi denotes the
oscillation frequency. The z-dependent variables with a ‘hat’ denote the eigenfunctions. By
substituting (3.1) into (2.18), (2.19) and (2.23), a sixth-order ordinary differential equation
(ODE) of ŵ is obtained:

(
Prσ + K2 − D2

) (
σ + K2 − D2

)
(K2 − D2)ŵ =

{
γTRaK2ŵ, 0 < z < ∞,

RaK2ŵ, −1 < z < 0,
(3.2)

where K2 ≡ k2
x + k2

y , D ≡ d/dz. The derivative of the eigenfunctions will use notation D
rather than d/dz. At z = −1, the non-penetrative and free-slip velocity boundary condition,
as well as the Dirichlet temperature boundary condition T ′|z=−1 = 0 that are adapted from
(2.7) to yield

ŵ = D2ŵ = D4ŵ = 0, z = −1. (3.3)

As (3.2) have constant coefficients, obey the homogeneous lower boundary condition
shown in (3.3) and the natural boundary condition at z → ∞, we have

ŵ(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6∑
m=4

ame−pmz , 0 < z < ∞,

3∑
m=1

amsinh[pm(z + 1)] , −1 < z < 0.

(3.4)

Here am, m = 1, 2, 3, 4, 5, 6 are the amplitude coefficients, pm are the eigenvalues.
Substituting (3.4) into (3.2), and viewing σ , Ra and K2 as coefficients, a complex cubic
equation of p2

m is obtained and analytically solved using the method of Lebedev (1991). As
the sign of pm is not constrained by the cubic equation, we choose the pm with a positive
real part.

The six coefficients am need to be determined by six matching conditions at z = 0.
The first four are the continuity of vertical velocity w, horizontal velocity u and v, the
non-dimensional tangential stress components (∂u/∂z + ∂w/∂x) and (∂v/∂z + ∂w/∂y),
and pressure p. Using the normal mode form of (2.18) and (2.19), a few lines of algebra
yield

Dnŵ|z=0− = Dnŵ|z=0+, n = 0, 1, 2, 3. (3.5)

The remaining two conditions are about the disturbance temperature T ′ and heat flux
Pr−1∂T ′/∂z. Unlike the fixed TRBC where T̂ and DT̂ are continuous at z = 0, §§ 3.2 and
3.3 will show that it is not the case for the free TRBC due to the interface undulation and
the non-uniform evaporation there. The full solution procedure of the eigenvalue problem
is shown in Appendix B.

3.2. The effect of undulating interface
The first term on the right-hand side of (2.23) denotes the interface undulation. First,
we study how the small-amplitude interface displacement ẑs produces a jump of T̂ at
z = 0. Let ε be a small positive constant. The following double integral is performed on
(2.23), within a small slot encompassing the interface. All terms vanish except the vertical
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diffusion term which has the highest order, and the dδ(z)/dz term which changes most
abruptly:

1 − γT

Pr
ẑs

∫ ε

−ε

∫ z′

−ε

dδ(z)
dz

dz dz′ ∼ − 1
Pr

∫ ε

−ε

∫ z′

−ε

D2T̂ dz dz′

⇒ 1 − γT

Pr
ẑs + 1

Pr

(
T̂|z=0+ − T̂|z=0−

)
= 0. (3.6)

Another more straightforward way to derive (3.6) is to use the interfacial temperature
continuity T|z=z+s = T|z=z−s and perform Taylor expansion of T near z = 0, as has been
employed by Hsieh (1972) in studying liquid–gas flow. The parameter Pr appears on both
terms of the second line of (3.6) and can be eliminated.

Then, we consider the Clausius–Clapeyron equation that determines zs. At the saturation
interface, there is qvs = qt. The normal mode form of (2.20) yields

q̂t|z=0 + dqt

dz
ẑs = λ
(

T̂|z=0− + dT̄
dz

∣∣∣∣
z=0−

ẑs

)
= λ
(

T̂|z=0+ + dT̄
dz

∣∣∣∣
z=0+

ẑs

)

⇒ ẑs = q̂t|z=0 − λT̂|z=0−

1 − λ = q̂t|z=0 − λT̂|z=0+

1 − λγT
. (3.7)

Fielder (1984) has derived an expression similar to (3.7) to find the cloud bottom
undulation magnitude, where he considered the matching between a well-mixed sub-cloud
layer and a well-mixed cloud layer.

The normal mode form of (2.18) and (2.19) are manipulated to represent T̂ with ŵ:

T̂ = Pr
RaK2

(
D2 − K2 − σ

) (
D2 − K2

)
ŵ. (3.8)

Substituting (3.7) and (3.8) into (3.6), we obtain the matching condition of T̂:

T̂|z=0+
1 − λ

1 − λγT
− T̂|z=0− = Pr

RaK2

(
D2 − K2 − σ

) (
D2 − K2

)
×
(

ŵ|z=0+
1 − λ

1 − λγT
− ŵ|z=0−

)
= − 1 − γT

1 − λγT︸ ︷︷ ︸
ηT

q̂t|z=0, (3.9)

where ηT is a negative constant. The ŵ|z=0+ and ŵ|z=0− on the second line of the
right-hand side denote the derivative value of ŵ at z = 0+ and z = 0−.

The quantity q̂t|z=0 is obtained by solving q′
t as an advective-diffusive tracer driven by

w. The normal mode form of (2.22) is a second-order ODE of q̂t:

D2q̂t −
(

K2 + σPr
)

q̂t = −ŵPr with q̂t|z=−1 = q̂t|z→∞ = 0. (3.10)

It is solved with the method of variation of parameter in Appendix C. For σ = 0, (3.10)
can be viewed as the normal mode form of a Poisson equation with −ŵPr as the source
term. Thus, when ŵ is a real function (no phase tilt with height), q̂t is real and has the
same sign as ŵ. In other words, there is always positive q′

t|z=0 at the updraft region for a
neutral mode due to vertical advection.

The physical influence of the undulating interface is briefly analysed here, and
illustrated in figure 2(a). The updraft at the saturation interface pushes the air at the
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Saturation interface instability

interface upward. These parcels are the coldest air in the vertical air column. The
temperature field adjusts to the rising dome through diffusion, so the result is a cold
anomaly at the upper layer and a warm anomaly at the lower layer, and vice versa in
a valley produced by a downdraft. This produces a vertical dipole buoyancy anomaly,
which corresponds to two undulation-induced torques which are in the opposite sign.
A qualitatively similar yet more singular pattern can be produced by the interface
undulation in a three-layer Rayleigh–Taylor instability model (Mellado et al. 2009). We
note that the torque below the interface is in the same direction as the lower-layer
convective cell (also a torque), which is generated by the unstable stratification. Because
the main body of the convective cell is below the interface, the cell receives a more positive
influence from the interfacial torque right below the interface than the negative influence
from the torque right above the interface. Thus, the interface undulation is a destabilizing
factor. A stricter explanation based on energetics is given in § 4.5.

3.3. The effect of non-uniform evaporation at the interface
The second term on the right-hand side of (2.23) denotes the non-uniform liquid water
diffusion and, therefore, evaporative cooling at the interface. It induces a jump of
perturbation heat flux and, therefore, DT̂ at z = 0. This term is the key to reproduce
the deformation-induced anomalous evaporative cooling at a ‘flame front’ (the interfacial
ridge lifted by the updraft) described by Siems et al. (1990) and Mellado et al.
(2009). The author is unaware of any previous work that addresses the influence of the
deformation-induced anomalous evaporation on the interfacial instability.

Equation (2.23) indicates that the matching condition for heat flux in normal mode form
is

DT̂ |z=0+ − DT̂|z=0− = −M
(

Dq̂t|z=0 − λDT̂|z=0−
)

. (3.11)

Substituting (3.8) into (3.11), we get the matching condition represented with ŵ:

Pr
RaK2

(
D2 − K2 − σ

) (
D2 − K2

)
D
[
ŵ|z=0+ − (1 + λM)ŵ|z=0−

]
= −MDq̂t|z=0. (3.12)

As in § 3.2, the ŵ|z=0+ and ŵ|z=0− on the left-hand side denote the value of the derivatives
of ŵ at z = 0+ and z = 0−. The expression of Dq̂t|z=0 is documented in Appendix C.

In § 4 the eigenfunctions of the neutral mode show that in most cases there is always
∂q′

l/∂z|z=0− < 0 at the updraft region (w|z=0 > 0), primarily due to the squeezing of the
qt contour surfaces near the interface. The detailed physical understanding and constraint
are to be discussed in § 4.4. Figure 2(b) illustrates the physical influence of non-uniform
evaporation. There is more evaporative cooling in the updraft region than in the downdraft
region, so the baroclinic torque produced by the non-uniform evaporation is opposite
to the torque produced by the lower-level unstable stratification. Thus, the non-uniform
evaporation is stabilizing. It is worth noting that M only influences the instability via
(3.11), not directly relevant to the interface undulation. Thus, a larger M directly means
a stronger non-uniform evaporation.
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4. The physical mechanism

4.1. The investigation strategy
Three reference tests of the linear stability problem are performed.

(i) The Ref-F test which is a fixed TRBC test that uses γT = −2.5 and Pr = 1. The
matching condition uses T̂|z=0+ = T̂|z=0− and DT̂|z=0+ = DT̂|z=0− .

(ii) The Ref-E test with purely evaporative cooling that uses M = 6.364, λ = 0.45, γT =
−2.5 and Pr = 1 (corresponding to Qrad/Qevap = 0).

(iii) The Ref-ER test with both evaporative and radiative cooling that uses M = 3, λ =
0.45, γT = −2.5 and Pr = 1 (corresponding to Qrad/Qevap = 1.12).

Sensitivity tests are performed around Ref-ER, with an emphasis on studying the
sensitivity to Qrad/Qevap by changing λ and γT . The Ref-E test can be regarded as a
special sensitivity test of the Ref-ER test with a larger M, which directly means a stronger
non-uniform interfacial evaporation. Though this parameter set does not correspond to
a specific state of real stratocumulus which is turbulent, it is an idealized state where
the convective instability in the saturated layer, interfacial instability and upper-layer
stratification all play a role. Only the marginal stability curve is studied in this section
to understand the physical mechanism. Thus, Ra is to be solved, rather than prescribed. In
§ 5 the weakly supercritical (linearly unstable) regime is briefly explored with nonlinear
numerical simulation. The neutral mode might represent the large eddy component of a
turbulent flow, with the small-scale eddies parameterized as the diffusivity (Zhou, Simon
& Chow 2014; Thuburn & Efstathiou 2020). We leave the careful investigation of the
relevance to the turbulent stratocumulus for future works.

The critical (marginally stable) Ra is defined as Rac. The problem is horizontally
isotropic, so there is no need to split the horizontal total wavenumber K into kx and ky. On
a marginal curve, the minimum Rac is defined as Racm and the corresponding K is Kcm.
For the single layer Rayleigh–Bénard convection at Pr = 1, the existence of minimum
Rac can be heuristically understood as the competition between the destabilizing effect of
the inviscid unstable gravity wave component, and the stabilizing effect of the diffusive
and viscous component (Thuburn & Efstathiou 2020). The supposed growth rate of the
unstable gravity wave increases mildly with K and asymptotically approaches (Ra/Pr)1/2,
which is the modulus of the non-dimensional imaginary Brunt–Väisälä frequency. The
damping rate of diffusion increases as K2. Thus, Racm must be achieved at a finite
K = Kcm. It will be shown that in this problem, a smaller Racm is mostly accompanied with
a smaller Kcm, similar to the fixed TRBC problem (Ogura & Kondo 1970). Qualitatively
speaking, a smaller Racm means a smaller imaginary Brunt–Väisälä frequency, so less
diffusion and therefore a lower Kcm is needed to balance it.

By calculating the growth rate of various Ra in the parameter space around the reference
test, we have not found any growing or neutral oscillatory mode (σr ≥ 0, σi /= 0). Thus,
we let the solver (introduced in Appendix B) only search across stationary modes (σi = 0)
in all the tests. Whitehead (1968) has shown that an unstable or neutral oscillatory mode
does not exist for the fixed TRBC problem (the principle of exchange of stability), but a
rigorous proof is hard for our free TRBC problem. For the stationary mode, we arbitrarily
set the phase by letting ŵ be a real function with positive value in the lower layer. With this
setting, the normal mode form of (2.18)–(2.23) show that all the eigenfunctions in (3.1) are
real functions except û(z) and v̂(z). These real-value eigenfunctions are proportional to the
physical space variables at an updraft column.
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Figure 3. The marginal stability curve. (a) The solid red line is the Ref-F test, the dashed blue line is the Ref-E
test, the solid black line is the Ref-ER test and the dashed green line is the Ref-ER test with the additional
non-uniform radiative cooling at the interface (discussed in Appendix A). (b) The solid blue line and solid
red line denote the λ = 0 and λ = 1 tests respectively for the reference γT = −2.5. The dashed blue line and
dashed red line denote the corresponding tests for a double γT . In the code, we use λ = 10−10 to approximate
λ = 0 and λ = 1 − 10−10 to approximate λ = 1, to avoid dividing by zero. (c) The solid blue line and dashed
red line denote changing Pr to 0.5 and 2 times of their reference value (Pr = 1), respectively. All tests in (b)
and (c) are free TRBC tests with radiative cooling.

In Appendix D we introduce the novel finding that the purely evaporative cooling
case yields an identical marginal stability curve (for the neutral mode) and growth rate
(for the growing mode) to the corresponding fixed TRBC case (using the same γT and
Pr but for T̂|z=0+ = T̂|z=0− and DT̂|z=0+ = DT̂|z=0−). In § 4.5 it is explained as the
cancellation between the effect of the interface undulation and non-uniform evaporation
with an argument of energetics.

4.2. The lowest Rac neutral mode of the two reference tests
Figure 3(a) shows the marginal stability curve of the Ref-F test, Ref-E test and Ref-ER
test. The curve of the Ref-E test completely overlaps with that of the Ref-F test, which is
strictly proved in Appendix D. The Ref-ER test has a lower Racm and a smaller Kcm. We
explain this more unstable behaviour as a smaller M (larger Qrad/Qevap) which makes the
stabilizing effect of the non-uniform evaporation weaker than the destabilizing effect of
the interface undulation.

The eigenfunctions and the reconstructed flow field in figure 4 show that, for all tests,
there is a primary cell confined within the saturated layer. The Ref-E and Ref-ER tests
have a less penetrative primary cell but a more prominent secondary upper cell than the
Ref-F test, due to the baroclinic torque produced by the interface undulation. Though
the Ref-E test and the Ref-F test have the same Racm = 381.82 and Kcm = 1.90, their
eigenfunctions and therefore flow patterns are different. For the Ref-E and Ref-ER tests,
the interface z = zs is raised at the updraft branch. Whether it is flatter than the qt contour
lines is hard to see from this figure due to a ‘technical issue’ in the plotting: too large an
amplitude violates the small-amplitude assumption, and too small an amplitude is hard to
observe. This point will be carefully discussed in § 4.3 and the interface will be shown
to be no steeper. As there is Dq̂l|z=0− < 0 in figure 4 for the Ref-E and Ref-ER tests, the
perturbation liquid water gradient is negative at the updraft. This corresponds to a larger
ql gradient at the updraft ridge of the interface, which produces more evaporation and
explains the stabilizing effect of the non-uniform evaporation.
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Figure 4. (a) The vertical profile of eigenfunction ŵ (black line), T̂ (red line) and q̂t (blue line) for the Ref-F
test. The magnitude is chosen by letting the maximum value of ŵ be unit. The eigenfunctions T̂ and q̂t are
further multiplied by 2K2

cm/Pr to make their magnitude close to unit, because (2.22) and (2.23) are close
to advection–diffusion equations. (b) The reconstructed 2-D x-z flow field, with kx = Kcm. The magnitude
of ŵ is set as max{|ŵ|} = 2. The velocity vector is shown as the arrows. The qt (as a passive tracer in the
fixed TRBC) is shown as the contour lines, with each line corresponding to an increment of 0.4. The domain
width ‘4’ is arbitrary and does not mean a wavelength. (c) The same as (a), but for the Ref-E test, and with
an additional q̂l profile (green line) which is also multiplied by 2K2

cm/Pr. (d) The same as (b), but for the
Ref-E test, and the additional dashed white line denotes the interface zs. Plots (e, f ) are the same as (c,d),
but for the Ref-ER test where both evaporative and radiative cooling are present. Results are shown for
(a) Ref-F Racm = 381.82 Kcm = 1.90; (b) Ref-F qt; (c) Ref-E Racm = 381.82 Kcm = 1.90; (d) Ref-E qt;
(e) Ref-ER Racm = 263.46 Kcm = 1.58; ( f ) Ref-ER qt.
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4.3. The dynamics of interface undulation
In the absence of radiative cooling (Qrad/Qevap = 0) the interface has constant T = 0
and qt = 0 (ẑs = q̂t|z=0 for any λ), a property due to the synchronous evolution of qt and
enthalpy h = (cpT∗ + Lvq∗

v − cpT0 − Lvqvs0)/(cp�T) = T + Mqv . This was pointed out
in an equivalent thermodynamic framework by Mellado et al. (2009), and is derived with
our thermodynamic framework in Appendix D. As q̂t|z=0 must be positive at the updraft,
as has been discussed in § 3.2, the saturation interface should rise at the updraft due to the
moisture increment.

What is the physical mechanism for T to be fixed in the Qrad/Qevap = 0 case? We
explain it as a competition: for an updraft, the warming tendency due to the change
of interface height is balanced by the cooling tendency due to the extra evaporative
cooling at the interface. The warming tendency can be understood with an idealized
purely diffusive problem of T , with the interface cooling rate fixed. Suppose zs moves
upward at an updraft due to interface undulation. As the upper level is infinitely thick, the
vertical thermal diffusion strongly adjusts the upper level temperature profile to the new
diffusive-equilibrium profile, which makes T|z=zs rise. The full adjustment is impossible
due to the damping by horizontal diffusion.

What if radiative cooling is considered? Equation (2.16) shows that the Qrad/Qevap is
larger for a smaller M, larger λ or larger −γT . The suppression of the instability by a
larger M has been discussed at the end of § 3.3, so we focus on λ and γT . We hypothesize
that the addition of radiative cooling leads to a stronger interface undulation relative
to the non-uniform evaporation, so the anomalous cooling at the updraft ridge of the
interface is weaker compared with the warming tendency. Thus, the interfacial temperature
T|z=zs should rise more above the basic state value T = 0, and the Clausius–Clapeyron
equation indicates that the saturation interface should fall behind the qt = 0 contour line
(ẑs/q̂t|z=0 < 1). The hypothesis is confirmed in figure 5(a), which shows that ẑs/q̂t|z=0
decreases as λ or −γT increases. In particular, there is ẑs = q̂t|z=0 for the λ = 0 case,
because the Clausius–Clapeyron equation (3.7) is independent of temperature when λ = 0.
The ẑs = q̂t|z=0 is a property shared by the Qrad/Qevap = 0 (yet λ /= 0) case. The analysis
leads to an inference: even though radiative cooling enhances interface undulation, the
decrease of ẑs/q̂t|z=0 means that it is self-limiting.

In fact, a quantitative lower bound of ẑs/q̂t|z=0 can be found. Note that ẑs can be
expressed with either T̂z=0− or T̂z=0+ in (3.7). As long as ẑs is positive (the interface rises
at the updraft), both the movement of the interfacial cooling source and the direct vertical
advection of the basic state temperature make T̂z=0− � 0 and T̂z=0+ � 0. Substituting this
argument into (3.7), and combining it with the physical argument ẑs � q̂t|z=0, we obtain a
range estimation of ẑs:

q̂t|z=0

1 − λγT
� ẑs � q̂t|z=0. (4.1)

The lower bound is plotted as the dashed lines in figure 5(a). Though this constraint is
loose, the lower bound does grasp the decrease of ẑs with λ, as well as a faster decrease for
a higher −γT (with fixed M and Pr).

4.4. The liquid water gradient near the interface
Equation (2.23) shows that the sign of ∂q′

l/∂z near the interface depends on ∂q′
t/∂z and

∂T ′/∂z. As the basic state qt and T in the lower layer are both decreasing with height, there
is a positive qt and T anomaly at the updraft region. The flow is horizontally divergent as
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Figure 5. (a) The change of ẑs/q̂t|z=0 with λ for two γT values, with other parameters identical to the Ref-ER
test. The solid blue line denotes the test using the reference value γT = −2.5, and the solid red line denotes the
double γT test. The dashed blue and dashed red lines denote (1 − λγT )−1 for the normal and double γT test,
respectively, which are the theoretical estimates of the lower bound (abbreviated as LB). (b) The dependence
of Dq̂l|z=0−/Dq̂t|z=0 on Qrad/Qevap (solid blue line), performed by changing γT while fixing λ and M to the
Ref-ER test value. The dashed blue line is (1 − λ) which is an estimated lower bound of Dq̂l|z=0−/Dq̂t|z=0.

the updraft intersects the interface, so the qt contour surfaces are squeezed and there is a
negative ∂q′

t/∂z, as has been discussed in § 3.3. The rising of the interface cooling source
also induces a warming anomaly right below the interface (e.g. figure 2a), which locates
above the peak warming anomaly induced by the upward advection of the unstable basic
state. Thus, the negative DT̂|z=0− should rise towards zero, as can be seen by comparing
figures 4(c) and 4(e).

This can be partly quantified. We start from the Qrad/Qevap = 0 case introduced in
Appendix D, where (D7) shows q̂t = T̂ for z < 0. This indicates

Dq̂l|z=0− = (1 − λ) Dq̂t|z=0 for Qrad/Qevap = 0. (4.2)

When radiative cooling is incorporated and gradually raised by increasing −γT , the
T̂ jump at z = 0 should increase according to (3.6). Thus, we expect that as −γT
increases, Dq̂l|z=0−will approach Dq̂t|z=0. This argument and (4.2) lead to a constraint
of Dq̂l|z=0−/Dq̂t|z=0:

1 − λ � Dq̂l|z=0−

Dq̂t|z=0
� 1. (4.3)

For a −γT as large as 20 (very strong interfacial undulation), DT̂|z=0− only marginally
exceeds 0 and Dq̂l|z=0−/Dq̂t|z=0 marginally exceeds 1. We have not figured out the
mechanism of this asymptotic behaviour. Equation (4.3) is verified in figure 5(b) which
shows that Dq̂l|z=0−/Dq̂t|z=0 does increase mildly with increasing Qrad/Qevap (performed
by changing γT and fixing λ), with (1 − λ) as its lower bound. This indicates a coupling
of the two effects: a stronger interface undulation tends to enhance the non-uniform
evaporation to some extent. Unfortunately, (4.3) is not accurate enough to include γT .

With (4.1) and (4.3) in hand, we try to answer whether λ is a destabilizing factor or
not. First, we look at the marginal curve of different λ for fixed γT . Figure 3(b) shows
that for the reference value γT = −2.5, a larger λ significantly destabilizes the system. For
double γT , however, a larger λ weakly stabilizes the system. This indicates that a larger
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−γT (stronger upper-layer stratification) gradually shifts λ from a destabilizing factor to a
stabilizing one. Physically, this is due to two competing factors. For given −γT , a larger
λ suppresses ẑs and therefore weakens the interface undulation as shown in (4.1), but it
also weakens the non-uniform evaporation as shown in (4.3) due to a smaller magnitude
of liquid water gradient. The dependence of the relative strength of the two factors on γT
is not quantitatively constrained at present.

4.5. The relative importance of interface undulation and non-uniform evaporation
The relative strength of the destabilizing effect of the undulating interface and the
stabilizing effect of non-uniform evaporation is quantified by comparing their relative
contribution to the tendency of the vertical buoyancy flux wT ′. Here the overline on
perturbation quantities denotes horizontal average in a wavelength. Multiplying w to
(2.23), multiplying T ′ to the w component of (2.19), and then summing them up and
performing a horizontal wavelength average, we get

∂wT ′

∂t
= w
(

∂T
∂t

)
IU

+ w
(

∂T
∂t

)
NE

+ etc., (4.4)

w
(

∂T
∂t

)
IU

≡ ŵ
1 − γT

Pr
ẑs

dδ(z)
dz

, w
(

∂T
∂t

)
NE

≡ ŵ
M
Pr

Dq̂l|z=0−δ(z), (4.5a,b)

where ‘IU’ denotes the contribution from interface undulation and ‘NE’ denotes that
from non-uniform evaporation. Other terms on the right-hand side of the buoyancy flux
tendency equation (4.4), which do not involve the interfacial process, are not shown. The
relative importance of the two mechanisms can be roughly estimated as the ratio of the
vertical integral of w(∂T/∂t)IU to w(∂T/∂t)NE. As their contributions are opposite in sign,
their ratio with a minus sign is defined as a positive quantity Φ,

Φ ≡ −

∫ ∞

−1
w
(

∂T
∂t

)
IU

dz

∫ ∞

−1
w
(

∂T
∂t

)
NE

dz

= −

∫ ∞

−1
ŵ

1 − γT

Pr
ẑs

dδ(z)
dz

dz∫ ∞

−1
ŵ

M
Pr

Dq̂l|z=0−δ(z) dz
=

1 − γT

Pr
ẑsDŵ|z=0

M
Pr

ŵ|z=0Dq̂l|z=0−
. (4.6)

To make the undulating interface render a positive buoyancy flux tendency and favour the
convective cell, the interface must locate at the upper part of the convective cell (Dŵ|z=0 <

0), so that the ŵ at the heating (lower) part of the interfacial dipole is larger than that at
the cooling (upper) part, as shown in (4.6) and illustrated in figure 2(a).

Substituting the estimate of ẑs (4.1) and that of Dq̂l|z=0− (4.3) into (4.6), we get

1
M

1 − γT

1 − λγT

q̂t|z=0Dŵ|z=0

ŵ|z=0Dq̂t|z=0
� Φ � 1

M
1 − γT

1 − λ
q̂t|z=0Dŵ|z=0

ŵ|z=0Dq̂t|z=0
. (4.7)

Figure 4 shows that the eigenfunctions of ŵ and q̂t have a similar shape, so there is
(q̂t|z=0Dŵ|z=0)/(ŵ|z=0Dq̂t|z=0) ∼ 1. With this, we use (2.16) to rewrite (4.7), and get(

1 + Qrad

Qevap

)
1 − λ

1 − λγT
� Φ � 1 + Qrad

Qevap
. (4.8)
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The inequalities (4.7) and (4.8) indicate the following.

(i) The destabilizing effect of the undulating interface can be stronger than the
stabilizing effect of non-uniform evaporation only when the radiative cooling is
present.

(ii) The upper bound of the net destabilizing effect is roughly proportional to the ratio of
the basic state interfacial radiative cooling rate to the diffusion-induced evaporative
cooling rate. It confirms that raising Qrad/Qevap by decreasing M (fixing λ and γT )
makes the system more unstable.

(iii) The energetics argument is unable to depict the change of the instability behaviour
on λ for different γT (e.g.by calculating ∂2Φ/(∂λ∂γT)), which is discussed in § 4.4.
This is due to a lack of the way to include γT into the inequality (4.3).

Another invariant property is that changing Pr alone does not influence the marginal
curve and the eigenfunctions at all. The former is illustrated in figure 3(c). Both properties
are evident by checking the sixth-order ODE in (3.2) and the matching conditions in (B1),
or the heuristic comparison in (4.7). To explain this, first we note that Pr itself does not
influence the neutral mode of the fixed TRBC where ν and κ are equivalent dissipating
factors. Second, we note that Pr does not influence the moist process. This originates from
the assumption of identical thermal and water diffusivity, which makes the interfacial
moist processes detached from Pr. For Ra > Rac, Pr still has an influence on the growth
rate, because the time evolution of the q̂t (3.10) involves Pr.

5. Nonlinear numerical simulation

In this section fully nonlinear numerical simulations of the non-dimensional version of
(2.1)–(2.6) are used to validate the linear stability analysis, and demonstrate the flow
pattern in the weakly nonlinear regime.

The simulation code is built by the author using a standard two-dimensional Fourier
spectral method (Durran 2010). The governing equation is in vorticity-stream function
formulation, coupled to an equation of qt and an equation of enthalpy h = T + Mqv . The
h equation is

∂h
∂t

+ u · ∇h = κ∇2h + Qradδ(z − zs), (5.1)

whose only source term is radiative cooling. In the code Qradδ(z − zs) is regularized to
Qrad/(π

1/2lrad) exp[−(z − zs)
2/l2rad], where lrad = 0.05 is a fixed regularization length

scale. Using (2.4), the temperature T is diagnosed from qt and h with a maximum operator,
which is equivalent to the ‘dry and moist buoyancy’ formulation of Bretherton (1987):

T = max
{

h
1 + λM , h − qtM

}
. (5.2)

The position where the two quantities equal each other is zs. This formulation avoids
the direct treatment of evaporative cooling, so it is convenient for numerical simulation.
Imposing a material derivative on (5.2) and then expressing the maximum operator
with Heaviside function yields the non-dimensional version of (2.6), which has explicit
evaporative cooling and is therefore more suitable for theoretical analysis. A note of the
derivation is deposited in the supplemental material available at https://doi.org/10.1017/
jfm.2021.784. In the code, the α − softmax function is used as a smoothed maximum
operator: Sα(φ1, φ2) = (φ1eαφ1 + φ2eαφ2)/(eαφ1 + eαφ2) (Lange et al. 2014), where φ1
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Figure 6. (a) The time series of the standard deviation of w, denoted as std(w), for K = 1.0 (blue line),
K = 1.5 (red line), K = 2.0 (yellow line), K = 2.5 (purple line), K = 3.0 (green line) tests of the nonlinear
numerical simulation, for the Growth-E tests. The two dashed black lines denote t1 = 1.0 and t2 = 1.2 at which
the std(w) is sampled to calculate the growth rate σ = {ln[std(w)|t2 ] − ln[std(w)|t1 ]}/(t2 − t1). (b) The same
as (a), but for the Growth-ER tests. (c) The growth rate against wavenumber K. The theoretical calculation for
the Growth-E tests is shown as the solid blue line, and that diagnosed from the nonlinear numerical simulation
is shown as the blue ‘+.’ Those corresponding to the Growth-ER tests are shown as the solid red line and red
‘+.’ The Growth-E test at K = 1 has a negative growth rate (very close to zero) and does not appear in this
σ > 0 plotting.

and φ2 are arbitrary input variables. The variable zs, which must be accurately determined
to calculate the radiative cooling term, is set by vertically interpolating φ1 and φ2 on a very
fine mesh, and then using the unmodified maximum operator to find the zero-crossing
point of φ1 − φ2. We choose α = 20, which leads to a saturation interface thickness of
about α−1 = 0.05 for O(φ1 − φ2) ∼ 1. The second-order Adams–Bashforth scheme is
used in time stepping. Zero padding is used to accurately calculate the product terms of all
resolved waves in the physical space. No hyperdiffusion is used.

The infinite upper boundary in the linear stability analysis is replaced by a rigid lid in
the simulation, which is located at a distance l above the basic state interface z = 0. The
length l must be much larger than the convective penetration depth Hp = −γ −1

T to make
the upper lid a good approximation of the infinite boundary. As a modification from (2.8),
the upper lid has free-slip velocity, fixed h and qt,

h|z=l = −γT l − Ml, qt|z=l = −l. (5.3a,b)

The parameter set is identical to the reference test shown in § 4.1, except that we use a
supercritical Ra = 600 to study the unstable mode. The domain depth in the z-direction
is 1 + l, with l = 3. The domain width in the x-direction is different from test to test. The
vertical grid point number is 256, equivalent to a vertical grid interval of �z = 0.0156.
This guarantees at least three grid points in the radiative cooling slot whose thickness is
lrad, and also three points in the saturation interface whose thickness is α−1. The horizontal
grid point number is 4 for the ten small-amplitude growth rate benchmark tests, and 64
for the two flow pattern tests which extend to the finite-amplitude regime. The time step
is �t = 0.041(�z)2. The initial condition is the analytical solution of radiative-diffusive
equilibrium (running for 0.1 time units with the advection term off), plus a smoothed noise
on h.

Among the ten low-horizontal resolution simulations that aim to benchmark the
growth rate, the first five runs, named Growth-E tests, are for the purely evaporative
cooling case. They have the same parameter as the Ref-E test except for the given Ra.
The horizontal domain width takes Lx = 2π/K, where K = 1.0, 1.5, 2.0, 2.5 and 3.0.
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Figure 7. (a) The theoretical eigenfunctions for the Growth-E parameter test with K = 2.0. (b) The normalized
vertical profiles at the maximum w column of the high-resolution numerical simulation that uses the Growth-E
parameter. The profiles are calculated by subtracting the horizontal average, which are very close to the
piecewise linear T̄ in the small-amplitude regime. The labels and the normalization procedure are identical
to those in figure 4. The simulation data uses the t = 1.4 snapshot. Plots (c,d) are the same as (a,b), but for
the Growth-ER parameter test. The q̂l anomaly near z = 0 in (b,d) is due to the smoothing treatment of (5.2)
in the numerical model. Results are shown for (a) evap, theory; (b) evap, simulation; (c) evap + rad, theory;
(d) evap + rad, simulation.

The second five runs, named Growth-ER tests, are for the mixed evaporative-radiative
cooling tests which use the same array of K. The parameters are the same as the Ref-ER
test except for the given Ra. The time series of the standard deviation of w are used as
the norm for calculating the growth rate, as shown in figure 6(a,b). An exponentially
growing range of the stationary mode is clear for each run, though there is some initial
oscillation which is probably due to the decaying oscillatory mode. The growth rate
of all simulations match well with the theoretical prediction of the horizontally longest
wave, as shown in figure 6(c). The Growth-ER tests grow faster than the Growth-E
tests, which is not surprising given that the Ref-ER test has a lower Racm than the
Ref-E test.

Two high-resolution tests with 64 grid points in the x-direction are performed for the
Growth-E and Growth-ER parameters. Both tests have a domain width of Lx = 2π/K,
with K = 2.0 which is close to the most unstable wavenumber of each test (e.g.figure 6c).
Their vertical profiles at t = 1.4 match well with the respective theoretical eigenfunctions
of the Ra = 600 and K = 2.0 modes, as shown in figure 7. The result is not sensitive to
the choice of t, so long as it is in the small-amplitude regime. Figure 8 shows that in the
finite-amplitude regime of both tests, the cold air produced at the ridge of the interface

928 A13-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.784


Saturation interface instability

–1.0

–0.5

0

0.5

1.0

1.5

(a) (b)

(c) (d )

z

0

0.5

1.0

1.5

2.0

–1.0

–0.5

0

0.5

1.0

1.5

–0.4

–0.2

0

0.2

0.4

–1

x

–1.0

–0.5

0

0.5

1.0

1.5

z

0

0.5

1.0

1.5

2.0

–10 1 0 1

x

–1 –10 1 0 1

–1.0

–0.5

0

0.5

1.0

1.5

–0.4

–0.2

0

0.2

0.4

Figure 8. The T and T ′ (calculated by subtracting the horizontal average profile which is smoother
than T̄ in this finite-amplitude regime) of the Growth-E parameter test high-resolution simulation
at t = 3.2 are shown in (a,b), respectively. Plots (c,d) are the same as (a,b), but for the
Growth-ER parameter test and a time snapshot at t = 2.3. The motivation of using two different
time snapshots is to make their amplitude comparable. The white dashed line denotes the saturation
interface. Only the −1 ≤ z ≤ 2 part of the domain is shown, because the upper level has little
deviation from the basic state. Results are shown for (a) t = 3.20 evap T; (b) t = 3.20 evap T ′;
(c) t = 2.30 evap + rad T; (d) t = 2.30 evap + rad T ′.

(the ‘flame front’) falls towards the valley of the interface. This is similar to that reported
in the local staircase initial state simulations of Siems et al. (1990) and Mellado et al.
(2009), though the structure here is smoother due to the smoother basic state profile.
The radiative cooling influences the growth rate in this framework, but it does not change
the flow pattern dramatically.

In the nonlinear regime the moist process is no longer the simple balance between
the interface undulation and the non-uniform evaporation. As suggested by one of the
reviewers, a detailed comparison between the fixed TRBC and the free TRBC in the
weakly nonlinear regime can be made. For the turbulent regime, the moist convection has
the distinctive feature that the vortex ring associated with the ‘flame front’ can engulf the
upper-layer air and produce further turbulence through evaporative cooling (Siems et al.
1990). However, in the turbulent regime the strong horizontal mixing might homogenize
the horizontal cooling difference, as suggested by de Lozar & Mellado (2013). It is unclear
whether the two mechanisms here are still important for the large eddy dynamics of the
turbulent cloud.
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6. Conclusion

We present a novel two-layer convective instability problem, with the lower layer thermally
unstable and saturated to water vapour, and the upper layer stable and unsaturated. This is
a prototype model for understanding the cloud or fog top mixing. Two novel mechanisms
which compete with each other are found.

First, the undulation of the interface is a destabilizing effect. The interface as a radiative
and evaporative cooling source induces a vertical dipole buoyancy anomaly, which is
superposed on the upper part of the lower-layer convective cell and therefore favours
further undulation.

Second, the non-uniform evaporation at the interface is a stabilizing effect. There is
stronger interfacial evaporative cooling at the updraft region due to the larger ql (liquid
water) gradient magnitude near the interface, and vice versa at the downdraft. At the
updraft, this is induced by a larger qt gradient due to the squeezing of qt contour surfaces
by the horizontally divergence flow of the lower-layer primary cell, as well as a more
complicated temperature gradient adjustment.

The competition between the destabilizing effect of undulating interface and the
stabilizing effect of non-uniform evaporation is quantified by calculating the ratio of their
contribution to the tendency of the vertical buoyancy flux. Without radiative cooling, the
two effects break even. With radiative cooling, Qrad/Qevap can roughly measure the net
destabilizing effect of radiative cooling, which enhances the interface undulation but does
not directly influence the non-uniform evaporation.

As for the flow pattern, the baroclinic torque generated near the interface makes the
primary convective cell more confined in the lower layer and favours the secondary cell
in the upper layer. The squeezed qt contour surfaces at the interfacial ridge can be viewed
as a quantification of the ‘flame front’ structure seen in the cloud-top mixing simulation
(Siems et al. 1990; Mellado et al. 2009), though the front is smoother due to the smoother
basic state profile in this theory. The subsequent aggregation of cold air in the valley of
the interface is grasped in the nonlinear simulation.

This research is far from complete. Future works may include the following.

(i) The proof of principle of exchange of stability for the case with non-zero radiative
cooling, if it exists.

(ii) Using numerical simulation to investigate the instability with initial state profiles
that lie between the local staircase buoyancy profile of Siems et al. (1990) and our
global piecewise linear one. It may better link the real cloud-top mixing problem
and this simple model. An investigation of the weakly nonlinear regime, as has been
done by Ogura & Yagihashi (1971) for the fixed TRBC, is a necessary intermediate
step to link our linear theory to the turbulent regime.

(iii) An extension to consider the influence of vapour and liquid water on buoyancy, as
well as the droplet settling. The first two factors can be readily included into the
current framework. Their coupling to droplet settling is a challenging topic.

(iv) An extension to study the instability of the cloud bottom (e.g.mammatus cloud
formation), which is a saturation interface that is susceptible to evaporative cooling
and the heating of the surface-emitted longwave radiation (Garrett et al. 2010;
Ravichandran, Meiburg & Govindarajan 2020). The coupling of the cloud bottom
to the cloud-top instability is also an important topic.

Supplementary material. The supplemental material contains the eigenvalue solver, nonlinear spectral
model, all the plotting codes and the detailed math derivation; it is available at https://doi.org/10.1017/jfm.
2021.784.

928 A13-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.784.
https://doi.org/10.1017/jfm.2021.784.
https://doi.org/10.1017/jfm.2021.784


Saturation interface instability

Acknowledgements. The author is grateful for Professor M. O’Neill at Stanford University for fruitful
discussion and proofreading. The early idea of using the delta function to represent radiative cooling at
the saturation interface came when the author was a master’s student at IAP/CAS. The establishment of
the theoretical framework started during an individual class project at Stanford University ME 451B class,
instructed by Professor S. Lele. Professor L. Thomas at Stanford University, Professor J. Mellado at the
Max-Planck Institute for Meteorology and Professor Y. Lin at the Institute of Atmospheric Physics, Chinese
Academy of Sciences, provided valuable guidance. Three anonymous reviewers provided valuable comments
that significantly improved the manuscript.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Hao Fu https://orcid.org/0000-0002-9524-0001.

Appendix A. The representation of radiative cooling

In this appendix a physical interpretation of the constant radiative cooling rate formulation
used in (2.6) is presented. The non-uniform radiative cooling at the interface due to
temperature difference is shown to be a very weak stabilizing factor.

Only longwave radiation is explicitly considered. The solar radiation causes heating
deep inside the saturated layer (Oliver, Lewellen & Williamson 1978). It is qualitatively
considered as a part of the fixed temperature boundary condition at z∗ = −H which is
a boundary heat source. The sharp longwave absorption coefficient contrast between the
cloudy and clear air makes the radiative flux diverge near the cloud top, causing radiative
cooling that is concentrated near the saturation interface z∗

s (x
∗, y∗, t∗) (Larson, Kotenberg

& Wood 2007; de Lozar & Mellado 2013). The typical longwave radiation penetration
depth at the stratocumulus top is around 15 m (de Lozar & Mellado 2013). If the longwave
radiation penetration depth in the saturated layer is much shorter than its depth, the
saturation interface can be regarded as a blackbody. If we further assume the unsaturated
layer is transparent, the radiative cooling can be represented as a Dirac-delta function
cooling concentrated at the saturation interface that obeys the Stefan–Boltzmann law,(

∂T∗

∂t∗

)
rad

≈ Q∗
radδ
(
z∗ − z∗

s
)

with Q∗
rad ≈ −σST∗4

ρ0cp
. (A1)

Here Q∗
rad is a constant radiative flux density expressed in temperature (negative, unit:

K s−1 m−2), σS ≈ 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann constant. The
motivation of using the Dirac-delta function is to make the problem more analytically
tractable. Equation (A1) is straightforward for radiative cooling in the unsaturated layer.
The radiative cooling in the saturated layer is slower due to the compensation by
condensation heating (de Lozar & Mellado 2015). However, the extra liquid water caused
by radiative cooling, which is close to the interface, is swiftly evaporated by diffusion in
this laminar problem. Thus, the net cooling is the same.

In the turbulent regime, de Lozar & Mellado (2013) set a horizontally uniform radiative
cooling, which neglects both the undulation of the radiative cooling source and the
inhomogeneity of the radiative flux density at the interface. This can be regarded as
the fixed TRBC test in the turbulent regime. They invoked the Stefan–Boltzmann law
to explain that the characteristic horizontal temperature difference at the interface of a
real cloud is too small to produce any difference in emission, and the eddy mixing is
fast enough to eliminate the tiny cooling difference. This physical judgment is verified
by de Lozar & Mellado (2015) who included both effects in their simulation and found
no significant difference. Though the scaling argument by de Lozar & Mellado (2013) is
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reasonable for the turbulent regime, it does not tell whether they should be neglected for
the small-amplitude instability problem where eddy mixing is absent and any perturbation
is small compared with the basic state.

In the main body text, the undulation of radiative source is shown to be important
at least within this model. The validity of using a constant Qrad (uniform radiative
cooling at the interface) is discussed here. For small temperature perturbation at the
interface, the non-dimensional perturbation radiative cooling Q′

rad is proportional to the
non-dimensional temperature anomaly T ′. The ratio of Q′

rad to the basic state constant
radiative cooling rate Qrad is

Q′
rad

Qrad
≈ 4�T

T0

(
T|z=zs − T̄|z=0

) ≈ 4�T
T0

(
T ′|z=0± + zs

dT̄
dz

|z=0±

)
, (A2)

where we have used the linearized form of the Stefan–Boltzmann law: σST∗4 ≈ σST4
0 [1 +

4(T∗ − T0)/T0], and the ‘±’ denote z = 0− and z = 0+ quantities. The effect of
non-uniform radiative cooling appears in the heat flux matching condition. Equation (3.11)
is replaced with

DT̂ |z=0+ − DT̂|z=0− = −M
(

Dq̂t|z=0 − λDT̂|z=0−
)

− PrQ̂rad, (A3)

where Q̂rad is defined as the normal mode amplitude of Q′
rad = Q̂rad exp[i(kxx +

kyy)] exp(σ t). After using the normal mode form of the Clausius–Clapeyron equation
(2.20) to express the interfacial temperature with water content in (A2), we get

Q̂rad = Qrad
4�T
T0

q̂t|z=0 − ẑs

λ
. (A4)

In § 4.3, T|z=zs has been shown to be larger than T̄|z=0 at the updraft (q̂t|z=0 ≥ ẑs using the
Clausius–Clapeyron equation), so the temperature is anomalously high and the radiative
cooling is anomalously strong. This is a stabilizing factor, in contrary to the radiative effect
on the undulating interface which is a destabilizing effect.

The relative contribution of the non-uniform radiative cooling and the undulating
radiative cooling source is estimated here. The correlation between the forcing term and
w is used to quantify the contribution of these two effects to buoyancy flux tendency
(opposite in sign), a method that has been introduced in § 4.5. The buoyancy flux tendency
contributed by non-uniform radiative cooling (NR) is denoted as w(∂T/∂t)NR, and that by
undulating radiative source (UR) is w(∂T/∂t)UR. The magnitude of their ratio, with an
imposed minus sign, is

−

∫ ∞

−1
w
(

∂T
∂t

)
NR

dz

∫ ∞

−1
w
(

∂T
∂t

)
UR

dz

= −

∫ ∞

−1
ŵQ̂radδ(z) dz∫ ∞

−1
ŵ(−Qrad)ẑs

dδ(z)
dz

dz

= − Q̂radŵ|z=0

QradẑsDŵ|z=0
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� 4�T/T0

ẑs

1
λ

(
q̂t|z=0 − ẑs

)
� 4�T

T0
(−γT). (A5)

Here we have used (A4) to express Q̂rad, used (4.1) to constrain ẑs, and used ŵ|z=0 �
−Dŵ|z=0 because −Dŵ|z=0 scales as the maximum ŵ in the saturated layer. Thus, a larger
temperature drop �T across the unstable layer and a larger stratification ratio magnitude
−γT make the non-uniform radiative cooling at the interface more significant.

The parameter �T = 1.5 K, T0 = 285 K and γT = −2.5 lead to −4γT�T/T0 ≈ 0.05,
which means the non-uniform radiative cooling is negligible. This is verified in figure 3(a)
where the solid black line (this effect omitted) and the dashed green line (this effect
retained) almost coincide.

Appendix B. The solution procedure of the eigenvalue problem

The interface undulation, non-uniform evaporation and non-uniform radiation (introduced
in Appendix A) are considered. Substituting the eigenfunctions in (3.4) into the matching
condition in (3.5), (3.9) and (A3), we obtain six equations which render a homogeneous
linear system with A as the coefficient matrix and the amplitude coefficients f as the
solution vector,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sinh( p1) sinh( p2) sinh( p3) 1 1 1

p1cosh( p1) p2cosh( p2) p3cosh( p3) −p4 −p5 −p6

p2
1sinh( p1) p2

2sinh( p2) p2
3sinh( p3) p2

4 p2
5 p2

6

p3
1cosh( p1) p3

2cosh( p2) p3
3cosh( p3) −p3

4 −p3
5 −p3

6

E1 E2 E3 E4 E5 E6

F1 F2 F3 F4 F5 F6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

f = [a1, a2, a3, −a4, −a5, −a6]T, (B2)

where ‘[ ]T’ means transpose. The T̂ matching condition is

Em =

⎧⎪⎪⎨
⎪⎪⎩
(
p2

m − K2 − σ
) (

p2
m − K2) sinh( pm)

Pr
RaK2 + ηT(q̂t|z=0)m, m = 1, 2, 3,

(
p2

m − K2 − σ
) (

p2
m − K2) Pr

RaK2
1 − λ

1 − λγT
− ηT(q̂t|z=0)m, m = 4, 5, 6.

(B3)
The DT̂ matching condition is

Fm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
p2

m − K2 − σ
) (

p2
m − K2) pmcosh( pm)

Pr
RaK2 (1 + λM)

−M(Dq̂t|z=0)m − 4Pr
�T
T0

Qrad
(q̂t|z=0)m − ẑs

λ
, m = 1, 2, 3,

− (p2
m − K2 − σ

) (
p2

m − K2) pm
Pr

RaK2

+M(Dq̂t|z=0)m + 4Pr
�T
T0

Qrad
(q̂t|z=0)m − ẑs

λ
, m = 4, 5, 6.

(B4)
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Here (q̂t|z=0)m and (Dq̂t|z=0)m denote the projection of q̂t|z=0 and Dq̂t|z=0 on the mth
eigenfunction, and their expressions are shown in Appendix C. For the fixed TRBC, the
matching conditions are T̂|z=0− = T̂|z=0+ and DT̂|z=0− = DT̂|z=0+ , and the Em and Fm
(denoted as (Em)fixed and (Fm)fixed) are

(Em)fixed =

⎧⎪⎨
⎪⎩
(
p2

m − K2 − σ
) (

p2
m − K2) sinh( pm)

Pr
RaK2 , m = 1, 2, 3,(

p2
m − K2 − σ

) (
p2

m − K2) Pr
RaK2 , m = 4, 5, 6,

(B5)

(Fm)fixed =

⎧⎪⎨
⎪⎩
(
p2

m − K2 − σ
) (

p2
m − K2) pmcosh( pm)

Pr
RaK2 , m = 1, 2, 3,

− (p2
m − K2 − σ

) (
p2

m − K2) pm
Pr

RaK2 , m = 4, 5, 6.

(B6)

The solution of the eigenvalue problem corresponds to det(A) = 0 (determinant is zero).
It is numerically solved by minimizing |det(A)| on σr axis (σi = 0). The solver has been
benchmarked with the fixed TRBC marginal curves shown in figure 3 of the paper of
Ogura & Kondo (1970).

Appendix C. The solution of the advection-diffusion equation of q̂t

The general solution of q̂t can be written as

q̂t(z) = C1(z) exp(μz) + C2(z) exp(−μz), with μ =
(

K2 + σPr
)1/2

. (C1)

As ŵ is piecewise at the lower and upper layers, C1(z) and C2(z) are also piecewise:

C1 (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6∑
m=1

am [M1m (z) + K1m], −1 < z ≤ 0,

6∑
m=1

am [N1m (z) + M1m(0) + K1m], 0 ≤ z < ∞,

(C2)

C2 (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6∑
m=1

am [M2m (z) + K2m], −1 < z ≤ 0,

6∑
m=1

am [N2m (z) + M2m(0) + K2m], 0 ≤ z < ∞,

(C3)

where the functions M1m(z), M2m(z), N1m(z) and N2m(z) are

M1m (z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− Pr
4μ

exp( pm)
exp
[
( pm − μ) z

]− exp
[− ( pm − μ)

]
pm − μ

− Pr
4μ

exp(−pm)
exp
[− ( pm + μ) z

]− exp ( pm + μ)

pm + μ
, m = 1, 2, 3,

0, m = 4, 5, 6,

(C4)
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M2m (z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pr
4μ

exp( pm)
exp
[
( pm + μ) z

]− exp
[− ( pm + μ)

]
pm + μ

+ Pr
4μ

exp(−pm)
exp
[− ( pm − μ) z

]− exp ( pm − μ)

pm − μ
, m = 1, 2, 3,

0, m = 4, 5, 6,

(C5)

N1m (z) =

⎧⎪⎨
⎪⎩

0, m = 1, 2, 3,

Pr
2μ

exp
[−( pm + μ)z

]− 1
pm + μ

, m = 4, 5, 6,
(C6)

N2m (z) =

⎧⎪⎨
⎪⎩

0, m = 1, 2, 3,

− Pr
2μ

exp
[−( pm − μ)z

]− 1
pm − μ

, m = 4, 5, 6.
(C7)

The constants K1m and K2m are determined by imposing the lower and upper
boundary condition q̂t|z=−1 = 0 and q̂t|z→∞ = 0 on each of the m = 1, 2, 3, 4, 5, 6 mode
independently, and their expressions are

K1m =
⎧⎨
⎩

−M1m(0), m = 1, 2, 3,

Pr
2μ

1
pm + μ

, m = 4, 5, 6,
(C8)

K2m = −K1m exp(−2μ), m = 1, 2, 3, 4, 5, 6. (C9)

The q̂t and Dq̂t at z = 0 will be used to calculate the matching condition in (B3) and (B4).
Their projections on the mth mode are denoted as (q̂t|z=0)m and (Dq̂t|z=0)m:

(q̂t|z=0)m = K1m + K2m + M1m(0) + M2m(0), (C10)

(Dq̂t|z=0)m = μ [K1m − K2m + M1m(0) − M2m(0)] . (C11)

Appendix D. The purely evaporative cooling case

This appendix shows that without radiative cooling, the marginal stability curve fully
overlaps with the corresponding fixed TRBC problem.

The source-free advective-diffusive evolution of enthalpy h∗ and q∗
t in non-precipitating

moist Rayleigh–Bénard convection with constant diffusivity enables us to express q∗
t

with T∗ (Bretherton 1987), without invoking the direct solution of (3.10). This is an
important relation that can simplify the stability analysis, so we re-derive it below with
the thermodynamic framework of this paper. The expression of h∗ is

h∗ = cpT∗ + Lvq∗
v =
⎧⎨
⎩

cpT∗ + Lvq∗
t , zs ≤ z < ∞,

cpT∗ + Lv

[
qvs0 + λ̃ (T∗ − T0)

]
, −1 < z ≤ zs.

(D1)
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The non-dimensional enthalpy h, its basic state profile h̄ and the disturbance h′ are

h = h∗ − (cpT0 + Lvqvs0)

Lv�qt
, (D2)

h̄ = −cp�TγTz − Lv�qtz
Lv�qt

= −
(γT

M
+ 1
)

z, (D3)

h′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cp�TT ′ + Lv�qtq′
t

Lv�qt
= T ′

M
+ q′

t, 0 ≤ z < ∞,

cp�TT ′ + Lvλ̃�TT ′

Lv�qt
= T ′
(

1
M

+ λ
)

, −1 < z ≤ 0,

(D4)

where h̄ is a linear function of z in the whole depth. The linearized governing equation and
boundary condition of h′ and q′

t are

∂h′

∂t
+ w

dh̄
dz

= 1
Pr

∇2h′, with h′|z=−1 = 0, h′|z→∞ = 0,

∂q′
t

∂t
+ w

dqt

dz
= 1

Pr
∇2q′

t, with q′
t|z=−1 = 0, q′

t|z→∞ = 0.

⎫⎪⎪⎬
⎪⎪⎭ (D5)

Equation (D5) renders the relationship between h′ and q′
t as follows:

h′

q′
t
= dh̄/dz

dqt/dz
= γT

M
+ 1. (D6)

Substituting (D4) into (D6), and using (2.16), the relationship between T ′ and q′
t is

obtained:

T ′ =
{

γTq′
t, 0 < z < ∞,

q′
t, −1 < z < 0.

(D7)

At z = 0+, (D7) renders T̂|z=0+ = γT q̂t|z=0. Substituting it into (3.7), we get

ẑs = q̂t|z=0. (D8)

It indicates that the interface moves with a qt contour surface. Because there is qt = qvs =
λT at the saturation interface, the saturation interface is also a temperature contour surface.
This property, which is still valid in the nonlinear regime, has been pointed out by Mellado
et al. (2009) who used an equivalent governing equation expressed with mixing fraction
rather than T and qt.

Equation (D7) and the continuity of q′
t at z = 0 are powerful constraints, which render

the relationship between T̂|z=0− and T̂|z=0+ , as well as DT̂|z=0− and DT̂|z=0+ as follows:

T̂|z=0+ = γTT̂|z=0−, DT̂|z=0+ = γTDT̂|z=0− . (D9a,b)

With the help of (3.4) and (3.8), (D9) can replace the lower two rows of the matrix A in
(B1) with

Em =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γT
Pr

RaK2

(
p2

m − K2) (p2
m − K2 − σ

)
sinh( pm) = −Pr sinh( pm)

p2
m − K2 − Prσ

, m = 1, 2, 3,

Pr
RaK2

(
p2

m − K2) (p2
m − K2 − σ

) = −Pr
p2

m − K2 − Prσ
, m = 4, 5, 6,

(D10)
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Fm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γT
Pr

RaK2

(
p2

m − K2) (p2
m − K2 − σ

)
pmcosh( pm) = −Pr pmcosh( pm)

p2
m − K2 − Prσ

, m = 1, 2, 3,

Pr
RaK2

(
p2

m − K2) (p2
m − K2 − σ

)
pm = Pr pm

p2
m − K2 − Prσ

, m = 4, 5, 6.

(D11)

The last equality of each line of the equations has used the sixth-order ODE (3.2). The
modified matrix A with the new Em and Fm is defined as Ã, and the new amplitude vector is
f̃ . Here we show that the free TRBC in this case has the identical marginal stability curve
with the fixed TRBC. The idea is to manipulate Ã to show that for given Ra and K (and
therefore pm), det(A) = 0 and det(Ã) = 0 occur at the same time. The proof procedure is
shown below.

(i) First, we introduce a diagonal matrix B = diag{( p2
m − K2 − Prσ)}, and rewrite

Ã f̃ = 0 as ÃBB−1 f̃ = 0.
(ii) Second, we note that the fifth and sixth row of ÃB is identical to the original first and

second line of Ã. Some row transformations on ÃB can transform it to A, so ÃB and
A share the row space and have the same rank. As B is non-singular, Ã and A always
have the same rank, so det(A) = 0 and det(Ã) = 0 must occur at the same time.

This indicates f̃ = B f . It means the only difference between the fixed TRBC and the
free TRBC is the amplitude coefficients, which makes the eigenfunctions (e.g. ŵ) different.

Figure 4 shows that, compared with the Ref-F test, the primary lower cell in the Ref-E
test is more confined in the lower layer, and the secondary upper cell is stronger. This can
be understood with f̃ = B f . For the neutral mode where σ = 0, B can be viewed as a ∇2

operator which acts on the eigenfunction of the fixed TRBC. As ∇2 means coarsening, the
eigenfunction of the free TRBC should be curvier.

As the marginal curve of the free and fixed TRBC always collapse, the candidate σ for
any given Ra should be identical. Thus, the principle of exchange of stability which applies
for the fixed TRBC (Whitehead 1968) also applies for this purely evaporative case. Note
that the relation shown in this appendix also works for a growing mode.
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