Dear Editor,
Sharp bounds for winning probabilities in the competitive rank selection problem

1. Introduction

In this problem two players A and B observe sequentially n uniquely rankable options. All arrival orders of ranks are supposed to be equally likely (probability $=1 / n!$ each) and A and B have to select one option each. The decision must be based on relative ranks only (no-information game) and A has the priority of choice.

Let $p(n, k)$ be the probability that player A will choose a better rank than player B, given that neither A nor B has stopped (selected an option) before step k. We call $p(n, k)$ the winning probability of A at step k in a n-options game.

Note that $p(n, n)$ is not defined, because if A has not yet stopped on $\{1,2, \cdots, n-1\}$ then A must select option n and thus B must have stopped earlier.

Enns and Ferenstein [2], who studied this problem as 'the horse game', pointed out already that the $p(n, k)$ are not monotone. Therefore the proof of the existence of $\lim _{n \rightarrow \infty} p(n, k(n))$ is not easy (this question will be studied in a more technical paper; see also Enns et al. [3]). The corresponding question for the full information game has been completed by Chen et al. [1].

Another interesting question is: what is the range of $p(n, k)$ for different n and k ? Numerical evidence (already obtained by Enns and Ferenstein) suggest that $1 / 2$ is a lower bound and $3 / 4$ is an upper bound. We now present an elementary probabilistic proof that these values are indeed the sharp uniform bounds. (We formulate our results in terms of $q(n, k)=1-p(n, k)$.)

2. Results

Theorem 2.1. Let $q(n, k)=1-p(n, k)$. Then $1 / 4 \leq q(n, k) \leq 1 / 2$ for all $n, 1 \leq k \leq n-1$.
Proof. The step $k=n-1$ is special in the sense that if A does not stop then B must stop. Therefore A must stop at option number $n-1$ if $P(A$ wins at step $n-1)>1 / 2$ and may stop if $P(A$ wins at step $n-1)=1 / 2$ (but must refuse otherwise). Therefore it is easy to see that $q(n, n-1) \downarrow 1 / 4$ as $n \rightarrow \infty$. Thus $q(n, k) \geq 1 / 4$ for $k=n-1$, i.e. for $k+1=n$.

Our proof is based on backwards induction. Suppose that

$$
\begin{equation*}
q(n, m) \geq 1 / 4, \quad k+1 \leq m \leq n . \tag{1}
\end{equation*}
$$

We now show that $q(n, k) \geq 1 / 4$. Let

$$
\begin{aligned}
A_{k} & =\{A \text { accepts option number } k\} \\
W(A) & =\{A \text { wins the game }\}
\end{aligned}
$$

and let B_{k} and $W(B)$ denote the corresponding events for B. Since A_{k} and B_{k} are mutually exclusive we have $P\left(A_{k} \cup B_{k}\right)=P\left(A_{k}\right)+P\left(B_{k}\right)$. Also, clearly, $P(W(B))=1-P(W(A))$.

Thus we can write

$$
\begin{align*}
q(n, k) & =P\left(A_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) \\
& +P\left(B_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) \tag{2}\\
& +P\left(\bar{A}_{k} \cap \bar{B}_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right)
\end{align*}
$$

where $C_{j}=A_{j} \cup B_{j}$ and where \bar{E} denotes the complement of E.
We look first at the last term. If both A and B refuse k then both players pass on to step $k+1$. In this case B will win, under optimal play, with probability $q(n, k+1)$, i.e. by the induction hypothesis (1), with probability $1 / 4$ at least. Therefore

$$
\begin{equation*}
P\left(\bar{A}_{k} \cap \bar{B}_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) \geq \frac{1}{4} P\left(\bar{A}_{k} \cap \bar{B}_{k} \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) . \tag{3}
\end{equation*}
$$

Secondly, if A does not accept k, then B has the choice of either stopping at step k or else passing on to step $k+1$. Optimal behaviour forces B to accept k only if this yields a winning probability strictly greater than $q(n, k+1)$, i.e. only if

$$
\begin{equation*}
P\left(W(B) \mid B_{k} \cap \bigcap_{j=1}^{k-1} \bar{C}_{j}\right)>q(n, k+1) \geq 1 / 4 \tag{4}
\end{equation*}
$$

and to refuse k if the reverse strict equality $<$ holds. Thus the second term of (2) yields

$$
\begin{align*}
P\left(B_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) & \geq q(n, k+1) P\left(B_{k} \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) \\
& \geq \frac{1}{4} P\left(B_{k} \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) . \tag{5}
\end{align*}
$$

Now, since $A_{k} \cup B_{k} \cup\left(\bar{A}_{k} \cap \bar{B}_{k}\right)$ is the certain event and since (3) and (5) holds, it suffices from (2) to show that

$$
\begin{equation*}
P\left(A_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) \geq \frac{1}{4} P\left(A_{k} \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right) . \tag{6}
\end{equation*}
$$

We note first that, as in the case $k=n-1, A$ would act suboptimally if A accepted k unless

$$
\binom{k}{r} /\binom{n}{r} \geq \frac{1}{2}
$$

and that $p(n, k) \geq 1 / 2$ for all $1 \leq k \leq n-1$.

Indeed A can use any strategy B can use (at least) and optimal play must therefore yield a winning probability of $1 / 2$ at least. On the other hand, A must accept if

$$
\binom{k}{r} /\binom{n}{r}>\frac{1}{2}
$$

because otherwise B would accept and win with this probability, which again would contradict A 's optimal behaviour. Therefore A accepts k under optimal play only if the relative rank r of k satisfies the inequality (see also [2])

$$
\binom{k}{r} /\binom{n}{r} \geq \frac{1}{2}
$$

A wins in this case with this probability

$$
\binom{k}{r} /\binom{n}{r} .
$$

Consequently, since all relative ranks are equally likely (Rényi [4]), and since $P(W(A))=1-P(W(B))$,

$$
P\left(A_{k} \cap W(B) \mid \bigcap_{j=1}^{k-1} \bar{C}_{j}\right)=\frac{1}{k} \sum_{r=1}^{s}\left(1-\binom{k}{r} /\binom{n}{r}\right),
$$

where

$$
s=\sup \left\{r \in \mathbb{N}:\binom{k}{r} /\binom{n}{r} \geq \frac{1}{2}\right\} .
$$

If $s=0$ then $A_{k}=\varnothing$, by definition, and nothing remains to be shown. Therefore let $s \geq 1$.
We now show that

$$
b(n, k, r)=\binom{k}{r} /\binom{n}{r}
$$

is, for all $1 \leq k<n$ and $1 \leq r \leq k$, a convex function of r. Note that

$$
b(n, k, r)=\frac{k(k-1) \cdots(k-r+1)}{n(n-1) \cdots(n-r+1)}
$$

so that

$$
b(n, k, r+1)=b(n, k, r) \frac{k-r}{n-r}
$$

To prove convexity it suffices to show that

$$
b(n, k, r+2)+b(n, k, r) \geq 2 b(n, k, r+1)
$$

But since $1 \leq r \leq k<n$ we can write $k=c n, r=d n$ for some $0<d \leq c<1$. The validity of the preceding inequality follows then, after straightforward simplifications, from

$$
\operatorname{sign}\left\{\frac{(n+1-c n)(1-c)}{n(1-d)^{2}+1-d}\right\}>0
$$

Therefore the $b(n, k, r)$ are (strictly) convex in $1 \leq r \leq k$ for all $n \geq k$.

Now let

$$
\begin{aligned}
a(s) & :=\sum_{r=1}^{s} b(n, k, r), \\
b(s) & :=\sum_{r=1}^{s}(1-b(n, k, r))=s-a(s) .
\end{aligned}
$$

By Rényi's theorem on relative ranks the k th observation has relative rank $r \leq k$ with probability $1 / k$ (independently of preceding observations). Conditioned on the event that neither A nor B have stopped before $k, a(s) / k$ is thus the probability that A stops on k and wins and $b(s) / k$ the probability that A stops and B wins.

Therefore, to show inequality (6), it suffices to show that

$$
\begin{equation*}
\frac{b(s)}{a(s)+b(s)}=\frac{b(s)}{s} \geq \frac{1}{4} \tag{7}
\end{equation*}
$$

or equivalently, that $b(s) \geq s / 4$.
Now,

$$
\begin{align*}
b(s) & =s-\sum_{r=1}^{s} b(n, k, r) \\
& \geq s-\sum_{r=1}^{s} \frac{b(n, k, 1)+b(n, k, s+1)}{2} \tag{8}\\
& \geq s-\sum_{r=1}^{s} \frac{1+\frac{1}{2}}{2}=\frac{1}{4} s, \tag{9}
\end{align*}
$$

where the inequality (8) follows from the convexity of the $b(n, k, r)$ and (9) from the inequality $b(n, k, s+1)<\frac{1}{2} \leq b(n, k, s) \leq b(n, k, 1) \leq 1$. This proves (7) which implies (6), and thus the proof is complete.

Corollary 2.1. The bounds $1 / 4 \leq q(n, k) \leq 1 / 2$ are sharp.
Proof. Since $q(n, n-1) \downarrow 1 / 4$ as $n \rightarrow \infty$ the lower bound is sharp. Since $p(n, k) \geq 1 / 2$ for all $1 \leq k \leq n-1$ we have $q(n, k) \leq 1 / 2$ for all $1 \leq k \leq n-1$, and so $1 / 2$ is an upper bound. This bound is sharp too since $p(2,1)=q(2,1)=1 / 2$.

References

[1] Chen, R. W., Rosenberg, B. and Shepp, L. A. (1997). A secretary problem with two decision makers. J. Appl. Prob. 34, 1068-1074.
[2] Enns, E. G. and Ferenstein, E. (1985). The horse game. J. Operat. Res. Soc. Japan 28, 51-62.
[3] Enns, E. G., Ferenstein, E. and Sheahan, J. N. (1986). A curious recursion arising in game theory. Utilitas Math. 30, 219-228.
[4] Rényi, A. (1962). Théorie des éléments saillants d'une suite d'observations. Proc. Coll. Comb. Methods in Probability Theory, Aarhus Universitet, pp. 104-115.

Yours sincerely,
F. Thomas Bruss

Département de Mathématiques, Université Libre de Bruxelles, CP 210, Boulevard du Triomphe,

B-1050 Bruxelles, Belgium.
Email address: tbruss@ulb.ac.be
Guy Louchard
Département d'Informatique, Université Libre de Bruxelles, CP 212, Boulevard du Triomphe, B-1050 Bruxelles, Belgium

