AN ATTEMPT TO COMPARE THE RADIO ASTRONOMICAL SYSTEM OF COORDINATES OF QUASARS WITH FK4

I. I. Kumkova
Pulkovo Observatory
USSR

Abstract

A method of comparison of the FK4 system to a system based on extragalactic sources is tested on actual data for 140 sources observed by radio-interferometric and whose optical counterparts have positions referred to FK4. The difference of coordinates is analyzed in spherical harmonics series. The computation show that the method gives satisfactory results. However, the precision of the data prevents from any interpretation in terms of systematic errors of the FK4.

Positional observations of compact extragalactic radio sources by radio interferometers have achieved high accuracy. There exist more than two hundred sources with 0!02-0!05 coordinate accuracy and their number increases continuously ($1,2,3$). This permits the hope that a high accuracy inertial coordinate system depending upon a large number of extragalactic radio sources will be established in the future.

The investigation of using such a system for improvement of a fundamental system is also of interest. One of the possible ways is to compare precise positions of radio sources derived from radio interferometric observations with corresponding optical data. The evaluation of this method was described by Gubanov and Kumkova (1978). In the present paper, the suggested technique is applied to real data. So, for this purpose, 140 identified radio sources, mostly quasars, which have known precise radio and optical positions were chosen. A list of above sources is given in Table I. Unfortunately radio measurements deal mainly with objects on the north hemisphere which is caused by the location of radio antennae.

TABLE I

$0106+013$	$0953+254$	$2005+403$	$0836+711$	$1705+456$	$1143-245$
$0123+257$	$0954+253$	$2134+004$	$0859+470$	$1730-130$	$1335-127$
$0133+476$	$0955+328$	$2200+420$	$0859-140$	$1738+447$	$1349-439$
$0134+329$	$0959-443$	$2201+315$	$0952+179$	$1743+173$	$145-375$
$0229+132$	$1148-001$	$2251+158$	$0954+658$	$1749+096$	$1519-273$
$0235+164$	$1155+251$	$0056-002$	$0954+554$	$1928+738$	$1555+001$
$0237-233$	$1215+303$	$0115+027$	$1034-293$	$1933-400$	$1629+680$
$0300+471$	$1219+285$	$0122-004$	$1055+018$	$1954+513$	$1636+680$
$0316+413$	$1226+023$	$0153+744$	$1104-445$	$2021+614$	$1749+700$
$0332-403$	$1253-055$	$0202+319$	$1127-145$	$2134+141$	$1823+568$
$0333+321$	$1313-334$	$0212+735$	$1144-379$	$2227-399$	$1849+670$
$0338-214$	$1328+307$	$0237-027$	$1245-197$	$2230+114$	$1909+309$
$0420-015$	$1328+254$	$0336-019$	$1252+119$	$2345-168$	$2008-158$
$0518+165$	$1404+286$	$0430+052$	$1430-178$	$2352+495$	$2223-052$
$0642+449$	$1442+101$	$0438-436$	$1430+052$	$0016+731$	$2254+074$
$0735+178$	$1458+718$	$0440-004$	$1510-089$	$0200+045$	
$0736+017$	$1502+106$	$0454+844$	$1517+204$	$0224+671$	
$0738+318$	$1514+197$	$0454-234$	$1611+343$	$0402-362$	
$0827+243$	$1641+399$	$0537-441$	$1616+063$	$0422-380$	
$0831+557$	$1645+174$	$0538+498$	$1634+628$	$0531+194$	
$0839+187$	$1716+686$	$0552+398$	$1637+626$	$0607-157$	
$0851+202$	$1739+522$	$0605-085$	$1638+398$	$0613+820$	
$0912+297$	$1741-038$	$0749+096$	$1642+690$	$0636+680$	
$0923+392$	$1807+698$	$0814+425$	$1656+571$	$0829+187$	10
$0945+408$	$1821+107$	$0828+494$	$1656+571$	$1030+415$	

Radio coordinates of the sources are considered to have accuracy of about $0!$ '1 ($2,3,5,6$). It is suggested that the list of radio sources may be considered as a catalogue with its system. The base of this assumption is a uniform technique of observations and reductions of data. Corresponding optical coordinates have inherent accuracy $0!1-0!3(7,8,9,10,11,12)$. Photographic coordinate of northern objects were determined with reference to stars of AGK 3 by means of intermediate stars. The system of AGK3 is FK4 system. For the southern objects, the catalogues SAO and Perth-70 were used, their systems being FK4 too, but to a less extent. Thus, the comparison of radio and optical coordinates of the sources under consideration may be regarded as the comparison of FK4 with the radio system.

As shown (4), the simultaneous determination of mutual orientation and of systematic errors of these systems does not give a satisfactory result and, therefore, the calculations of the parameters have been made independently. The mutual orientation was determined according to the formulae:
$\Delta \alpha \operatorname{Cos} \delta=\Delta w \operatorname{Cos} \delta+\Delta i \operatorname{Sin} \delta \operatorname{Cos}(w-\alpha)-\Delta \Omega[\operatorname{Cos} \delta \operatorname{Cosi}+\operatorname{Sin} \delta \operatorname{Sini} \operatorname{Sin}(w-\alpha)](1)$

$$
\Delta \delta=\Delta i \operatorname{Sin}(w-\alpha)+\Delta \Omega \operatorname{Sini} \operatorname{Cos}(w-\alpha)
$$

```
where \alpha,\delta - equatorial coordinates of radio sources;
            i,\Omega,w - Eulerian angles of mutual orientation of the
                coordinate systems;
            i - angle of mutual inclination of the main planes of
                the systems;
            \Omega - longitude of ascending node in radio coordinate
                        system;
```

$$
\begin{aligned}
\omega- & \text { right ascension of ascending node in radio system; } \\
\Delta \alpha, \alpha \delta- & \text { differences of radio and photographic positions } \\
& \text { which include inherent measuring errors in photo- } \\
& \text { graphic reference process, possible discrepancy of } \\
& \text { radio and optical emission centroids, star } \\
& \text { coordinate errors in fundamental catalogue. }
\end{aligned}
$$

As we are comparing equatorial coordinates, we have to consider the case $i=0$; then equations of errors (1) take from:

$$
\begin{gather*}
\Delta \alpha \operatorname{Cos} \delta=\Delta i \operatorname{Sin} \delta \operatorname{Cos}(w-\alpha)+(\Delta w-\Delta \Omega) \operatorname{Cos} \delta \\
\Delta \delta=\Delta i \operatorname{Sin}(w-\alpha) \tag{2}
\end{gather*}
$$

The systematic errors are expanded in normalized spherical functions:

$$
\begin{align*}
\Delta \alpha \operatorname{Cos} \delta & =\sum_{m} \sum_{0} \sum_{k} \sum_{0}\left(A_{m k} \operatorname{Cosk\alpha }+C_{m k} \operatorname{Sink} \alpha\right) P_{m k}(\operatorname{Sin} \delta) \\
\Delta \delta & =\sum_{m} \sum_{0} \quad \sum_{\mathrm{E}} \sum_{\mathrm{o}}\left(\mathrm{C}_{\mathrm{mk}} \operatorname{Cosk} \alpha+\mathrm{d}_{\mathrm{mk}} \operatorname{Sink} \alpha\right) \mathrm{P}_{\mathrm{mk}}(\operatorname{Sin} \delta) \tag{3}
\end{align*}
$$

Two lists were chosen from the initial list of 140 objects for computation of the corrections to the orientation parameters. The first one consisted of 55 objects (which are contained in Table I) with differences of radio and optical coordinates less 0.'6. The calculations were fulfilled for the initial list and two variants. The results of the calculations of corrections Δi, $(\Delta \omega-\Delta \Omega)$ in the case $i=0, \omega=0$ are presented in Table 2 . Analysis of the results of Table 2 shows that the evaluations of the same corrections are satisfactorily close and values of the correction Δi derived from right ascensions and from declinations essentially differ. The above results shows us that the systematic part of the differences $\Delta \alpha \operatorname{Cos} \delta, \Delta \delta$ are stable and differ from each other. As it was shown earlier, the correction Δi_{α} correlates with member of expansions (3) A_{20}, the correction ($\Delta \omega-\Delta \Omega$) correlates with A_{00}, A_{20}, B_{21} and $\Delta i \delta$ correlates with A_{11}. Thus the corrections presented in Table 2 are linear combinations of the corrections themselves and of the mentioned members of the expansions. The correlations between $\Delta \mathbf{i}_{\alpha}$ and $(\Delta \omega-\Delta \Omega)_{\alpha}$ do not exceed 0.07 in all cases.

TABLE 2

Corrections	For 55 objects	For 115 objects	For 140 objects		
Δi_{α}	$-0: 03 \pm 0: 04$	$-0: 07 \pm 0: 05$	$-0: 06 \pm 0: 06$		
$(\Delta \omega-\Delta \Omega)_{a}$	$-0.03 \pm$	2	$-0: 05 \pm$	2	$-0: 03 \pm$
$\Delta i \delta$	$+0: 04 \pm$	3	$+0: 3 \pm$	3	$+0: 01 \pm$

The evaluation of systematic errors by formulae (3) has been made for α and δ separately because their expansions are identical. Sixteen members of expansions (3) were calculated, which corresponds to $m, k \leq 3$. The calculations were fulfilled for three lists of objects as it was done during the calculations of the orientation. The values of factors of expansions (3) $A_{m k}, B_{m k}$ for $\Delta \alpha \operatorname{Cos} \delta$ and for $\Delta \delta$ for variant of 115 objects are given in Table 3. In the same Table 3, the rms errors of coefficients are presented. The system of coefficients is not complete, the factor A_{20} includes, in fact, A_{00} because these members do not separate for this case of distribution of the objects on the sphere. The systematic differences $\Delta \alpha \operatorname{Cos} \delta$ in terms of 0 . 001 and $\Delta \delta$ in terms of 0.101 computed in accordance with data of the Table 3 are given in Tables 4 and 5, respectively. The values for $\delta<-45^{\circ}$ and $\delta>60^{\circ}$ are not presented for the lack of sources in these areas. The system of conditional equations for 55 objects is difficult to solve because of high correlations between the members of expansions (3). The results for the list of 140 objects are practically in accordance with the results presented in Tables 4 and 5, but the corresponding errors are larger. In addition, the list of 115 objects was subdivided in an arbitrary way in two lists of equal volume. The systematic errors have been computed for both lists and calculations and gave the same results for both variants. It proves the nonrandom nature of the results of the Tables 4 and 5. Though the final purpose of these calculations is to estimate the systematic errors of FK4, the quality of initial data does not yet allow us to interpret the results in this way. The data of the Tables 4 and 5 should be regarded as systematic differences of the two coordinates systems, viz., radio and optical.

TABLE 3

The results obtained for the chosen list show obviously that the improvement of the fundamental system of star coordinates by means of precise positional radio observations may be obtained satisfactorily, if highly accurate uniform catalogue of not less than 200 extragalactic radio sources uniformly distributed on whole sphere and surely identified optically will be established by radio interferometric observations in future.

REFERENCES

Arque, A. N., et al.: 1978, IAU Col. N 48, Vienne, 155. Bridle, A. H., Goodson, R. E.: 1977, I. Roy. Astron. Soc. Can 71, N 3, 240.
Clark, I. A., et al.: 1978, Astron. J. 81, 599.
Couper, H. A.: 1972, Astrophys. Lett. 1 $\overline{0}, 121$.
de Vegt, C., Gehlich, E. D.: 1978, Astron. Astrophys. 67, 65.
E1smore, B.: 1978, IAU Col. N 48, Vienne, 93.
Gubanov, V. S., Kumkova, I. I.: 1978, IAU Co1. N 48, Vienne, 135.
Johnston, K. J.: 1978, IAU Col. N 48, Vienne 175.

Wade, C. M.: 1974, IAU Co1. N 61, 133.
Wade, C. M., Johnston, K. J.: 1977, Astron. J. 82, 791.
Walter, H. A., West, R. S.: 1979, ESO Messenger, 18.

