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Introduction

Let G be a finite group. A section of G is a group of the form H/K, where K � H � G.
Given a positive integer n, write Sn for the symmetric group on a set of order n. The
group G is Sn-free if G has no section isomorphic to Sn.

One of the striking results in finite group theory from the decade before the classifica-
tion of the finite simple groups was the classification of the S4-free finite simple groups.
The first result in this direction was Thompson’s proof (cf. [17]) that the Suzuki groups
Sz(22m+1) are the only non-abelian finite simple groups of order prime to 3. This problem
was a natural first place for Thompson to test how well the methods he had developed
in the N -group paper extend to groups with non-solvable local subgroups, since the only
non-abelian composition factors in locals of a minimal counter-example to his theorem
are Suzuki groups.

Next, in [9], Glauberman proved a triple factorization theorem for constrained S4-free
groups, and used this result to show that each S4-free group has a non-trivial strongly
closed abelian 2-subgroup. As a corollary to this result and Goldschmidt’s Theorem
in [10] classifying finite groups with such a subgroup, Glauberman classified the S4-free
and S3-free non-abelian finite simple groups. Later, in [16], Stellmacher showed that in
a constrained S4-free group G there is a non-trivial characteristic subgroup of a Sylow
2-subgroup of G normal in G; this theorem can be used to give an alternate treatment
of S4-free groups.

Attempts to extend the Glauberman triple factorization to more general 2-constrained
groups have to date been unsuccessful. On the other hand, other extensions of Thomp-
son factorization (such as the so-called amalgam method) have proved effective; see, for
example, [5].
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In this paper we give yet another treatment of S4-free groups, this time from the
point of view of 2-fusion. Actually, we consider 2-fusion systems rather than groups,
and prove that all saturated S3-free 2-fusion systems are constrained. Then we derive
our theorems about groups from this theorem about fusion systems and Goldschmidt’s
Theorem. Indeed, from our point of view, the main object of the paper is to put in place
machinery to study fusion systems of even characteristic, building on earlier results in [3].
Given this machinery, the proof of the theorem on S3-free fusion systems takes only a few
paragraphs, making possible a very elegant treatment of S4-free groups. We regard this
work as a test case to evaluate the efficacy of our machinery to, first, analyse 2-fusion
systems of even characteristic and, second, to use the theorems on fusion systems to
prove results about finite groups.

One of the main tools in our approach is the use of the extensions of Thompson fac-
torization mentioned above. But it also seems to be true that local analysis is sometimes
easier in the category of saturated fusion systems than in the category of groups; deriving
the S4-Free Group Theorem from a result on fusion systems provides an example of this
phenomenon.

It should be pointed out that, in [13], Onofrei and Stancu use Stellmacher’s Theorem on
S4-free groups to prove a stronger result on S3-free fusion systems than our main theorem.
The virtue of our approach is that, once the general machinery on fusion systems is in
place, a simple proof of the weaker theorem on fusion systems is possible, which, given
Goldschmidt’s Theorem, immediately leads to the theorems on groups. That is to say,
we are using results on fusion systems to prove theorems about groups, rather than vice
versa.

Fusion systems were defined and first studied by L. Puig, although Puig calls these
objects Frobenius categories rather than fusion systems; see in particular [14,15]. Our
introduction to the subject was from [8], and we adopt the notation and terminology
found there.

The reader is directed to [1] for notation and terminology involving finite groups, and
to [8, § 1 and Appendix A] or to [6] for notation and terminology involving fusion systems.
Section 1 of this paper also contains some background on fusion systems.

Let F be a saturated fusion system on a finite 2-group S. We say that F is S3-free
if, for each subgroup U of S, the group AutF (U) is S3-free. Our result on S3-free fusion
systems is as follows.

Theorem 1. Let F be a saturated S3-free fusion system on a finite 2-group S. Then
F is constrained.

The result on fusion systems, together with Goldschmidt’s Theorem, leads almost
immediately to the following corollaries for groups.

Corollary 2. Assume that G is a finite S4-free non-abelian finite simple group. Then
G is a Goldschmidt group.

A finite simple group G is a Goldschmidt group if either G is a group of Lie type of Lie
rank 1 in characteristic 2 or G has abelian Sylow 2-subgroups. The groups of the first
type are the groups L2(2n), Sz(2n) and U3(2n), n > 1. The non-abelian simple groups
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with abelian Sylow 2-subgroups (other than the groups L2(2n)) are the groups L2(q),
q ≡ ±3 mod 4, 2G2(32m+1), m � 1 and J1.

Corollary 3. Assume that G is a finite S3-free non-abelian finite simple group. Then
G is Sz(22m+1) or L2(32m+1), with m � 1.

Corollary 4. Assume that G is a finite non-abelian simple group of order prime to 3.
Then G ∼= Sz(22m+1) for some m � 1.

Section 1 contains a brief discussion of fusion systems. In §§ 2–4 we put in place machin-
ery for studying saturated fusions systems F on finite 2-groups S with F of even char-
acteristic (as defined in § 1). Then in § 5, we use this machinery to prove a version of
Stellmacher’s qrc-Lemma for fusion systems, together with a few supporting lemmas
which make the qrc-Lemma more effective. Section 6 contains some lemmas on repre-
sentations of finite groups over fields of even characteristic that are needed to apply the
qrc-Lemma. Finally, the main theorem and its corollaries are proved in § 7.

1. Fusion systems

In this section p is a prime, S is a finite p-group and F is a saturated fusion system on S.
The definition of a fusion system appears in [8, Definition 1.1] and [6, Definition

I.2.1]. The definition of a saturated fusion system appears in [8, Definition 1.2] and [6,
Definition I.2.2]. Roughly speaking, a fusion system on S is a category whose objects are
the subgroups of S, and such that the set homF (P, Q) of morphisms between subgroups
P and Q of S is a set of injective group homomorphisms from P into Q satisfying some
weak axioms. If G is a finite group and S ∈ Sylp(G), then FS(G) is the fusion system
on F such that homFS(G)(P, Q) consists of the conjugation maps cg : x �→ xg for g ∈ G

with P g � Q. Again, roughly speaking, F is saturated if it satisfies some axioms that
are easily verified for FS(G) using Sylow’s Theorem.

The reader is referred to [8, § 1 and Appendix A] or [6, Part I] for notation, terminology
and basic results about fusion systems. However, we also record some of this notation
and terminology in this section, as well as introducing some new notation.

Let P � S, and let PF = {Pφ : φ ∈ homF (P, S)} be the set of F-conjugates of P .
Recall that P is fully normalized, centric if, for all Q ∈ PF , |NS(P )| � |NS(Q)|, CS(Q) �
Q, respectively. Write Ff for the set of non-trivial fully normalized subgroups of S.

Let S = {Fi : i ∈ I} be a set of subcategories Fi of F . Define the subsystem of F
generated by S to be the smallest fusion system contained in F and containing each
member of S. Write 〈S〉 for this subsystem. Thus, 〈S〉 is the intersection of all fusion
subsystems of F containing each member of S.

Recall that, for P ∈ Ff , NF (P ), CF (P ) is the fusion system T on T = NS(P ), CS(P )
such that, for Q � T , homT (Q, T ) consists of those φ ∈ homF (Q, T ) such that φ extends
to φ̂ ∈ homF (PQ, T ) normalizing and centralizing P , respectively. By a result of Puig
(appearing as [8, Proposition A.6] or [6, Theorem II.2.1]), T is a saturated fusion system
on T .

We say P is normal in F if F = NF (P ). There is a largest subgroup Op(F) of S

normal in F .
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Furthermore, F is constrained if F has a normal centric subgroup. If F is constrained,
then, by [7, Proposition C] (or [6, Theorem III.5.10]), there is a finite group G with S ∈
Sylp(G), F ∗(G) = Op(G) and F = FS(G). Moreover, G is unique up to an isomorphism
extending the identity map on S, and we refer to any such group as a model for F . In
particular, if U ∈ Ff with NF (U) constrained, then there exists a model for NF (U),
which we denote by G(U).

The system F is of characteristic p-type if, for each 1 �= U ∈ Ff , NF (U) is constrained.
When p = 2, F is of even characteristic if NF (U) is constrained for each 1 �= U � S.
Finally, F is a local CK-system if, for each U ∈ Ff , AutF (U) is a K-group; here, a finite
group H is a K-group if each simple section of H is on the list K of ‘known’ simple groups
appearing in the statement of the theorem classifying the finite simple groups.

Lemma 1.1. Let F be a saturated constrained fusion system on a finite p-group S,
and G a model for F . Assume E is a saturated subsystem of F on S. Then there exists
a unique overgroup H of S in G with E = FS(H). Indeed for any normal subgroup Q of
G with CG(Q) � Q, H = {g ∈ G : cg|Q ∈ AutE(Q)}.

Proof. Pick Q � G with CG(Q) � Q; for example, we could choose Q = Op(G). Set
H = {g ∈ G : cg|Q ∈ AutE(Q)}. We claim that FS(H) � E . Let g ∈ H and P � S

with P g � S. As g ∈ H, c∗
g = φ∗ for some φ ∈ AutE(Q). As P g � S, P � Nφ = {x ∈

S : cxφ∗ ∈ AutS(Q)}. Therefore, as E is saturated, φ extends to ϕ ∈ homE(P, S). As
E � FS(G), ϕ = ch for some h ∈ G. Now ch−1g = (ch)−1cg = ϕ−1cg is the identity on
Q, so as CG(Q) = Z(Q), g = hz for some z ∈ Z(Q). Then cg = chcz ∈ homE(P, S), so
homFS(H)(P, S) ⊆ homE(P, S), proving the claim. �

Conversely, let ψ ∈ homE(P, S). As Q � G, it follows from [4, Theorem 14.1] that
Q � E . Therefore, as E is saturated, ψ extends to Ψ ∈ homE(PQ, S). Next, Ψ = cy for
some y ∈ G and y ∈ H, so E � FS(H). Hence, E = FS(H).

Finally, suppose K � G is a model for E . Then AutK(Q) = AutE(Q) = AutH(Q), so
K/Z(Q) = H/Z(Q), and hence K = H, establishing the uniqueness of H.

Lemma 1.2. Let F be a saturated fusion system on a finite p-group S, and set
Q = Op(F). Then

(i) if Q � Z(F), F/Q is saturated and Op(F/Q) = 1,

(ii) CF (Q) is a saturated fusion system on CS(Q), and if CF (Q) is constrained, then
F is constrained.

Proof. Assume Q � Z(F). The fusion system F/Q on S/Q is defined in [2, § 8] and,
by [2, 8.10], F/Q is saturated and, writing P for the preimage of Op(F/Q) in S, P � F .
Thus, P � Q = Op(F), so Op(F/Q) = P/Q = 1, establishing (i).

Set C = CF (Q). Recall that C is a saturated system on T = CS(Q). By [4, 10.2.1],
C � F . Then, by [4, 7.4 and 7.10], Z = Op(C) � F , so Z � Q. Therefore, Z = Q ∩ T =
Z(Q). Assume that C is constrained. Then CT (Z) � Q. But CT (Z) = T , so T � Q.
Thus, CS(Q) � Q, so F is constrained, completing the proof of (ii). �
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2. An equivalence relation and ordering

In this section we assume the following.

Hypothesis 2.1. p is a prime, and F is a saturated fusion system on a finite p-group
S. Write U for the set of non-trivial normal subgroups of S, and assume for each U ∈ U
that NF (U) is constrained.

Notation 2.2. If G is a group and H � G, we write OG(H) for the set of overgroups
of H in G. Let ι be the identity map on S. Write H for the set of pairs (H, U) such that
U ∈ U and H ∈ OG(U)(S). Denote by S(H) the set of non-trivial H-invariant subgroups
of S. Write C for the set of constrained, saturated fusion subsystems of F on S.

Lemma 2.3. For i = 1, 2, let Ui ∈ U and set Gi = G(Ui). Then

(i) ι extends to an isomorphism ι1,2 : NG1(U2) → NG2(U1),

(ii) ι1,2 is determined up to conjugacy by an element of Z(S), so, for each H ∈
ONG1 (U2)(S), the image Hι1,2 of H in G2 is independent of the choice of ι1,2.

Proof. Observe that, for i = 1, 2, U3−i � S = NS(Ui), so (i) follows from [3, 2.2.4].
Furthermore, by [6, II.4.3], if µ and ν are two isomorphisms extending ι, then ν = czµ

for some z ∈ Z(S). Thus, Hν = Hczµ = Hµ as z ∈ S � H, so H = Hcz. Thus, (ii)
holds. �

Lemma 2.4. Let I = {1, 2, 3}, and for i ∈ I let Ui ∈ Ui and set Gi = G(Ui). For
σ ∈ Sym(I), set G1σ,2σ,3σ = NG1σ

(U2σ) ∩ NG1σ
(U3σ). Then

(i) G1,2,3ι1,2 = G2,1,3,

(ii) G1,2,3ι1,2ι2,3 = G3,1,2,

(iii) (ι1,2ι2,3)|G1,2,3 = (czι1,3)|G1,2,3 for some z ∈ Z(S),

(iv) for each H ∈ OG1,2,3(S), Hι1,2ι2,3 = Hι1,3.

Proof. Set X = G1,2,3. As ι1,2 extends ι, Xι1,2 � G2,1,3. By symmetry, G2,1,3ι2,1 � X,
so (1) follows. Then by two applications of (i), Xι1,2ι2,3 = G2,1,3ι2,3 = G3,1,2, establish-
ing (ii).

Set ξ = ι1,2ι2,3. By (i) and (ii), ξι−1
1,3 is an automorphism of G1,2,3 extending ι, so (iii)

follows from [6, II.4.3]. Then (iii) implies (iv), as in the proof of Lemma 2.3 (ii). �

Definition 2.5. Define a relation ≡ on H by (H1, U1) ≡ (H2, U2) if U2 ∈ S(H1)
and H1ι1,2 = H2. By Lemma 2.3 (ii), this definition is independent of the choice of ι1,2.
We find in the next lemma that ≡ is an equivalence relation on H. Write H for the set
of equivalence classes of ≡, and write [(H, U)] for the equivalence class of (H, U) ∈ H.
Sometimes we write H for [(H, U)], since the group H is determined up to an isomorphism
extending ι, and, by Lemma 2.6 (iii), the class [H, U ] is independent of the choice of
U ∈ S(H).
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Lemma 2.6.

(i) The relation ≡ is an equivalence relation.

(ii) If (H1, U1) ≡ (H2, U2) then S(H1) = S(H2).

(iii) (H1, U1) ≡ (H2, U2) if and only if FS(H1) = FS(H2).

(iv) The map H �→ FS(H) is a bijection between H and C.

Proof. Suppose that (H1, U1) ≡ (H2, U2). Then H1ι1,2 = H2, so, as ι1,2 extends ι,
(ii) follows and FS(H1) = FS(H2).

Assume next that FS(H1) = FS(H2) = E , and set U3 = Op(E). Then U3 ∈ S(Hi), so
(Hi, Ui) ≡ (Hiιi,3, U3), and hence, replacing Hi by Hiιi,3, we may assume that U1 = U2 =
U3. Next, AutH1(U3) = AutE(U3) = AutH2(U3), so H1 and H2 are each the preimages
in G(U3) of AutE(U3). This completes the proof of (iii).

Finally, (iii) implies (i), and says that ϕ : H �→ FS(H) is a well-defined injection of
H into C. Suppose D ∈ C. Then U = Op(D) ∈ U , and D � NF (U), so D has a model
H � G(U) by Lemma 1.1. Then D = FS(H) = Hϕ, so ϕ : H → C is a surjection,
completing the proof of (iv) and the lemma. �

Definition 2.7. Define a relation � on H by [(H1, U1)] � [(H2, U2)] if U2 ∈ S(H1)
and H1ι1,2 � H2. By Lemma 2.3 (ii), this definition is independent of the choice of ι1,2.
Furthermore, the proof of part (i) of the next lemma shows that U2 ∈ S(H1) and
H1ι1,2 � H2 if and only if FS(H1) � FS(H2); hence, by Lemma 2.6 (iii), the definition of
the relation � is independent of the choice of representatives for the equivalence classes.

Lemma 2.8.

(i) For Hi ∈ H, i = 1, 2, H1 � H2 if and only if FS(H1) � FS(H2).

(ii) The relation � is a partial ordering of H.

(iii) The map H �→ FS(H) is an isomorphism of the poset H with C partially ordered
by inclusion.

Proof. Assume [(H1, U1)] � [(H2, U2)]. Then U2 ∈ S(H1) and H1ι1,2 � H2. Hence,
by Lemma 2.6 (iii), FS(H1) = FS(H1ι1,2) � FS(H2).

Next suppose instead that FS(H1) � FS(H2). As U2 � H2, we also have U2 � FS(H1),
so U2 ∈ S(H1). By Lemma 2.6 (iii), FS(H1ι1,2) = FS(H1) � FS(H2). Hence,

AutH1ι1,2(U2) = AutFS(H1)(U2) � AutFS(H2)(U2) = AutH2(U2),

so the preimage H1ι1,2 in G(U2) of AutH1ι1,2(U2) is contained in the preimage H2 of
AutH2(U2). This establishes (i).

Observe that part (i) and Lemma 2.6 (iii) imply part (ii), while (i), (ii) and
Lemma 2.6 (iv) imply (iii). �
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Definition 2.9. For [(Hi, Ui)] ∈ H, i = 1, 2, define [(H1, U1)] ∩ [(H2, U2)] (or just
H1 ∩ H2) to be [(NH1(U2)ι1,2 ∩ H2, U2)].

Define FS(H1) ∧ FS(H2) to be the subfusion system of F on S generated by the
maps in AutNH1 (U2)(P ) ∩ AutNH2 (U1)(P ), as P varies over the subgroups of S containing
CS(P ). By the next lemma and Lemma 2.6 (iii), the definition of [(H1, U1)] ∩ [(H2, U2)]
is independent of the choice of representatives of the classes.

Lemma 2.10. For [(Hi, Ui)] ∈ H, i = 1, 2, FS(NH1(U2)ι1,2 ∩H2) = FS(H1)∧FS(H2).

Proof. Set Fi = FS(Hi), E = F1 ∧ F2, and D = FS(NH1(U2)ι1,2 ∩ H2). Let P � S

with CS(P ) � P and α ∈ AutD(P ). Then α = ch|P for some h ∈ NH1(U2)ι1,2 ∩ NH2(P ).
By Lemma 2.6 (ii), h acts on U1 and U2, so α ∈ AutNH2 (U1)(P ) and

α ∈ AutNH1ι1,2 (U2)(P ) = AutFS(NH1 (U2)ι1,2)(P ) = AutFS(NH1 (U2))(P ) = AutNH1 (U2)(P ),

by Lemma 2.6 (iii). Therefore,

AutD(P ) � AutNH1 (U2)(P ) ∩ AutNH2 (U1)(P ).

Furthermore, as D is saturated, Alperin’s Fusion Theorem (cf. [8, A.10] or [6, II.3.5])
says that D is generated by the subcategories AutD(P ), as P varies over the subgroups
of S containing CS(P ). Therefore, D � E .

Conversely, assume β ∈ AutNH1 (U2)(P ) ∩ AutNH2 (U1)(P ). Then, as above, β = chi |P
for some h1 ∈ NH1(U2)ι1,2 and h2 ∈ NH2(U1), so h1h

−1
2 ∈ CG(U2)(P ) = Z(P ), as

F ∗(NG(U2)(P )) = Op(NG(U2)(P )) and CS(P ) � P . Thus, h1 = czh2 for some z ∈ Z(P ),
so h1 ∈ NH1(U2)ι1,2 ∩ NH2(U1). Therefore, β ∈ AutD(P ), so E � D. �

Lemma 2.11. Let Hi ∈ H, 1 � i � n, for some n � 2. Then

(i) H1 ∩ H2 = H2 ∩ H1 is the greatest lower bound for H1 and H2 in the poset H,

(ii) there exists a greatest lower bound H1 ∩ · · · ∩ Hn for {H1, . . . , Hn} in H,

(iii) (H1 ∩ H2) ∩ H3 = H1 ∩ H2 ∩ H3 = H1 ∩ (H2 ∩ H3),

(iv) for E ,D ∈ C, E ∧ D is the greatest lower bound for E and D in C.

Proof. Set Fi = FS(Hi). By definition, F1∧F2 � Fi for i = 1, 2, so by Lemmas 2.8 (i)
and 2.10, H1 ∩ H2 � Hi. Suppose H3 � Hi for i = 1, 2. Then, by Lemma 2.8 (i),
FS(H3) � FS(Hi), so, using Alperin’s Fusion Theorem (cf. [8, A.10] or [6, II.3.5]),
FS(H3) � F1 ∧F2. Then, by Lemmas 2.8 (i) and 2.10, H3 � H1 ∩H2. Therefore, H1 ∩H2

is the greatest lower bound for H1 and H2 in H. By symmetry, H2∩H1 is also the greatest
lower bound, so H1 ∩ H2 = H2 ∩ H1, establishing (i). Then (i) and elementary lattice
theory imply (ii) and (iii). Finally, Lemma 2.8 (iii) and (i) imply (iv). �

Lemma 2.12. Let Hi = [(Hi, Ui)] ∈ H, for i = 1, 2, and assume that U3 ∈ S(H1) ∩
S(H2). Set G3 = G(U3). Then we have the following.
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(i) Hi � [(G3, U3)] for i = 1, 2.

(ii) Set H3 = 〈H1ι1,3, H2ι2,3〉. Then FS(H3) is the smallest member FS(H1) ∨ FS(H2)
of C containing FS(Hi) for i = 1, 2.

(iii) H1 ∨ H2 = [(H3, U3)] is the least upper bound for H1 and H2 in H.

(iv) If E ,D ∈ C have a common non-trivial normal subgroup, then E ∨ D is the least
upper bound for E and D in C.

(v) If [(K, U)] ∈ H and Ki ∈ OK(S) for 1 � i � n with K = 〈K1, . . . , Kn〉, then
[(K, U)] is the least upper bound K1 ∨ · · · ∨ Kn for [(K1, U)], . . . , [(Kn, U)] in the
poset H. In particular, if H ∈ H with [(Ki, U)] � H for each 1 � i � n, then
[(K, U)] � H.

Proof. By hypothesis, U3 ∈ S(Hi) for i = 1, 2, so (i) follows. By construction,
Hi � H3 for i = 1, 2, so Fi = FS(Hi) � F3 = FS(H3) by Lemma 2.8 (i). Thus, F3 is an
upper bound for F1 and F2 in C.

Suppose that F4 is an upper bound for F1 and F2 in C. By Lemma 2.8 (iii), F4 =
FS(H4) for some H4 ∈ H, and Hiιi,4 � H4. Thus, H5 = 〈H1ι1,4, H2ι2,4〉 � H4 and,
by Lemma 2.8 (iii), Fi � FS(H5) = F5 � F4. As U3 ∈ S(Hi), also U3 ∈ S(H5)
by Lemma 2.6 (ii). By Lemma 2.4 (iv), Hiιi,4ι4,3 = Hiιi,3, so H5ι4,3 = H3, and hence
F3 = F5 by Lemma 2.6 (iii). Thus, F3 = F5 � F4, completing the proof of (ii). Then,
applying the isomorphism of Lemma 2.8 (iii), (ii) implies (iii) and (iv).

Assume the hypothesis of (v). Proceeding by induction on n, we may take n = 2. Then,
by (iii), K = K1 ∨ K2. Hence, if Ki � H for i = 1, 2, then K � H, completing the proof
of (v). �

3. Another partial ordering of H

In this section we continue to assume Hypothesis 2.1, and adopt the notation established
in § 2, such as Notation 2.2, and Definitions 2.5, 2.7 and 2.9.

Definition 3.1. Let Z = Ω1(Z(S)) and pick 1 �= E � Z. Given H1 = [(H1, U1)] ∈ H,
define

V (H1) = VE(H1) = 〈EH1〉 � S.

Observe that as F ∗(H1) = Op(H1), V (H1) � Z(Op(H1)), so indeed V (H1) � S. Also, if
(H1, U1) ≡ (H2, U2), then

V (H1) = V (H1)ι1,2 = 〈EH1〉ι1,2 = 〈Eι
H1ι1,2
1,2 〉 = 〈EH2〉 = V (H2),

so the definition of V (H1) is independent of the choice of representative for the equiva-
lence class.

In addition, U3 = V (H1) ∈ S(H1) and (H1, U1) ≡ (H1ι1,3, U3). Therefore, our con-
vention in this section will be that our canonical representative for h ∈ H will be (H, U),
where U = V (h) and H is the unique subgroup of G(U) such that (H, U) ∈ h.
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Write HE for the set of H ∈ H such that H = G(V (H)).
Define a relation � = �E on H by H1 � H2 if H1 = (NH2(U1)ι2,1 ∩ H1)CH1(U1).
For H ∈ H, let O(H) = {K ∈ H : H � K} and denote by M(H) the set of maximal

members of O(H) under the partial ordering � on H in Definition 2.7. Note that M(H) ⊆
HE . Also, S � H for each H ∈ H, so O(S) = H, and M(S) is the set of maximal members
of the poset H under the ordering �.

We find in Lemma 3.6 that the new relation � is a partial ordering of HE . On the other
hand, the set O(H) of ‘overgroups’ of H and the set M(H) of ‘maximal overgroups’ of
H are defined with respect to the old partial ordering � on H from Definition 2.7. If
F = FS(G) is the fusion system of some group G, then the ordering � corresponds to
the inclusion relation on 2-local subgroups of G containing S, while � corresponds to
the relation � on such subgroups appearing in [5, Definition A.5.2]. Lemma 3.8 records
some useful relationships between the two partial orders.

Lemma 3.2. Let Hi ∈ H, for i = 1, 2. Then H1 � H2 if and only if

AutFS(H1)∧FS(H2)(V (H1)) = AutFS(H1)(V (H1)).

Proof. Let V = V (H1), and recall from Definition 3.1 that, by convention, V = U1.
Set H = NH2(U1)ι2,1 ∩H1 and, for i = 1, 2, set Fi = FS(Hi). By Lemma 2.10, F1 ∧F2 =
FS(H), so AutH(V ) = AutF1∧F2(V ). Therefore, as AutH1(V ) = AutF1(V ), it follows
that

AutF1∧F2(V ) = AutF1(V ) ⇐⇒ AutH(V ) = AutH1(V )

⇐⇒ H1 = HCH1(V )

⇐⇒ H1 � H2.

�

Lemma 3.3. Suppose Hi ∈ H, for i = 1, 2, with H2 ∈ HE . Then

(i) NH2(U1)ι2,1 ∩ H1 = NH1(U2),

(ii) H1 � H2 if and only if H1 = NH1(U2)CH1(U1).

Proof. As H2 ∈ HE , H2 = G(U2), so NH2(U1)ι2,1 = NG(U1)(U2) by Lemma 2.3 (i).
Thus, (i) follows, and (i) implies (ii). �

Lemma 3.4. If Hi ∈ H, for i = 1, 2, with H1 � H2, then

(i) U1 = V (H1) � V (H2) = U2,

(ii) CH2(U2) � CH2(U1),

(iii) if H2 ∈ HE , then CH2(U1)ι2,1 ∩ H1 = NH1(U2) ∩ CH1(U1), so CH2(U2)ι2,1 ∩ H1 �
CH1(U1).
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Proof. As H1 � H2, H1 = (NH2(U1)ι2,1 ∩ H1)CH1(U1). Thus,

U1 = 〈EH1〉
= 〈ENH2 (U1)ι2,1∩H1〉 � 〈ENH2 (U1)ι2,1〉
= 〈ENH2 (U1)〉ι2,1

= 〈ENH2 (U1)〉 � 〈EH2〉
= U2,

establishing (i). Then (i) implies (ii).
Assume H2 ∈ HE . By Lemma 3.3 (i), NH2(U1)ι2,1 ∩ H1 = NH1(U2), so, as ι2,1 extends

ι, the first statement in (iii) follows. The second statement of (iii) follows from the first
statement and (ii). �

Lemma 3.5. Assume Hi ∈ HE for i = 1, 2. Then the following are equivalent:

(i) H1 = H2;

(ii) V (H1) = V (H2);

(iii) H1 � H2 � H1.

Proof. Trivially, (i) implies (iii). As Hi ∈ HE , Hi = G(Ui), so (ii) implies (i). Finally,
by Lemma 3.4 (i), (iii) implies (ii). �

Lemma 3.6. � is a partial ordering of HE .

Proof. Trivially, � is reflexive. By Lemma 3.5, � is antisymmetric. Assume that
H1 � H2 � H3. By Lemma 3.3 (ii), H2 = NH2(U3)CH2(U2), and by Lemma 3.4 (iii),
CH2(U2) � NH2(U1). Then

NH2(U1) = NH2(U1) ∩ NH2(U3)CH2(U2) = (NH2(U1) ∩ NH2(U3))CH2(U2),

so, by Lemma 2.3 (i),

NH1(U2) = NH2(U1)ι2,1 = (NH2(U1) ∩ NH2(U3))ι2,1CH2(U2)ι2,1 � NH1(U3)CH1(U1),

and hence H1 � H3, so that � is transitive. �

Lemma 3.7. Let Hi ∈ H for i = 1, 2. Then

(i) If H1 � H2, H1 � H2,

(ii) If Hi � H3−i for i = 1 and 2, V (H1) = V (H2).

Proof. Part (i) is immediate from the definitions, while part (ii) follows from
Lemma 3.4 (i). �

Lemma 3.8. Let M be maximal in M(S) with respect to �. Then we have the
following.
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(i) {M} = M(X) for each X ∈ H with X � M and M = XCM (V (M)).

(ii) Let R = CS(V (M)). Then R = Op(NM (R)), AutM (V (M)) = AutNM (R)(V (M))
and M(NM (R)) = {M}.

(iii) Let H ∈ HE . Then H is maximal in HE with respect to � if and only if H is
maximal in M(S) with respect to �.

Proof. Assume that H is maximal in either HE or M(S) with respect to �, and
set U = V (H). Suppose X ∈ H with X � H and H = XCH(U). Then U =
〈EH〉 = 〈EX〉 = V (X). Suppose M2 ∈ M(X). Then X � M2 by Lemma 3.7 (i), so
X = NX(V (M2))CX(V (X)) by Lemma 3.3 (ii). Hence,

H = XCH(U) = NX(V (M2))CX(V (X))CH(U) = NH(V (M2))CH(U),

so H � M2 by Lemma 3.3 (ii). Therefore, H = M2 by maximality of H and Lemma 3.6.
This proves (i), and shows that if H is maximal in HE with respect to �, then, for
M3 ∈ M(H), H = M3. Thus, the implication H maximal in HE with respect to �
implies H maximal in M(S) with respect to � of (iii) is also established.

Let V = V (M). By a Frattini argument, M = NM (R)CM (V ), so AutM (V ) =
AutNM (R)(V ). Now V = 〈EM 〉, so as M = NM (R)CM (V ), V = 〈ENM (R)〉. Hence, it
follows from [5, B.2.14] that O2(NM (R)) � CS(V ) = R, so R = O2(NM (R)). Then, by
(i), {M} = M(NM (R)), which completes the proof of (ii).

Let M � K with K maximal in HE with respect to �. By the first paragraph of
the proof, K ∈ M(S), so M = K as M is maximal in M(S) with respect to �. This
completes the proof of (iii). �

4. Further results on H

If G is a finite group with Sylow p-subgroup T , a minimal parabolic of G over T is an
overgroup H of T in G such that T is not normal in H, and T is contained in a unique
maximal subgroup of H.

In this section we assume the following hypothesis.

Hypothesis 4.1. Assume Hypothesis 2.1, and in addition assume F = 〈NF (U) : U ∈
U〉 and F is not constrained. For H ∈ H, let X (H) be the set of minimal parabolics of
H over S. We say that H is a uniqueness group if |M(H)| = 1.

Lemma 4.2. Op(F) = 1.

Proof. If U = Op(F) �= 1 then U ∈ U , so by Hypothesis 2.1, F = NF (U) is con-
strained, contrary to Hypothesis 4.1. �

Lemma 4.3. Let M ∈ M(S) and H ∈ H. Then

(i) there exists K ∈ H with K � M ,

(ii) either NK(S) � M or there exists X ∈ X (K) with X � M ,

(iii) H � M if and only if S(M) ∩ S(H) �= ∅.
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Proof. Assume (i) fails. Then, by Lemma 2.8 (iii), for each U ∈ U , NF (U) � FS(M).
But then by Hypothesis 4.1, F = 〈NF (U) : U ∈ U〉 � FS(M), so 1 �= Op(M) � F ,
contrary to Lemma 4.2. This establishes (i).

By McBride’s Lemma (cf. [5, B.6.3]), K = 〈NK(S),X (K)〉, so (ii) follows from
Lemma 2.12 (v).

If H � M then Op(M) ∈ S(M) ∩ S(H). Conversely, if S(M) ∩ S(H) �= ∅, then
by Lemma 2.12 (i) there exists K ∈ H with M, H � K. But then H � K = M by
maximality of M . �

Lemma 4.4. Let M ∈ M(S),and let H ∈ H. Then we have the following.

(i) Assume Y � M is a uniqueness group. Then H � M if and only if S(Y )∩ S(H) �=
∅.

(ii) Set R = CS(V (M)). Then R = O2(NM (R)).

Proof. Assume the hypothesis of (i) holds. One implication in (i) follows from
Lemma 4.3 (iii). Suppose S(Y ) ∩ S(H) �= ∅. Then, by Lemma 2.12 (i), there exists
M ′ ∈ M(S) with Y, H � M ′. Then M ′ = M , as Y is a uniqueness group, completing
the proof of (i).

By [5, B.2.14], O2(NM (R)) � CS(V ) = R, so (ii) holds. �

Lemma 4.5. Let M be maximal in M(S) with respect to �, and let H ∈ H. Set
R = CS(V (M)) and Y = NM (R). Then

(i) M(Y ) = {M} and R = O2(Y ),

(ii) H � M if and only if S(Y ) ∩ S(H) �= ∅.

Proof. Part (i) follows from Lemma 3.8 (ii). Then (i) and Lemma 4.4 (i) imply (ii). �

See [5, B.2.2] for the definition of the Thompson subgroup J(S) and the Baumann
subgroup Baum(S) of a p-group S.

Lemma 4.6. Let H ∈ H. Then the following are equivalent:

(i) J(S) centralizes V (H);

(ii) Baum(S) centralizes V (H);

(iii) H = NH(Baum(S))CH(V (H));

(iv) H � G(Baum(S)).

Proof. Set V = V (H), D = Ω1(Z(J(S))), B = Baum(S) and K = G(B). If J(S)
centralizes V , then V � D, so B = CS(D) � CS(V ). Thus, (i) implies (ii).

Next, as B is weakly closed in S, (ii) implies (iii) by a Frattini argument.
Assume (iii). By Lemma 2.3 (i), there exists an isomorphism ξ : NG(V (K))(V ) →

NG(V )(V (K)) extending ι. We may take K = NG(V (K))(B), so NK(V ) = NG(V (K))(V )∩
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NG(V (K))(B), and hence NK(V )ξ = NG(V )(V (K)) ∩ NG(V )(B). Then NH(B) �
NK(V )ξ ∩ H, so H � K; that is (iii) implies (iv).

Finally, assume (iv) and set H∗ = H/CH(V ). Then H = (NK(V )ξ ∩ H)CH(V ) and
B � NK(V )ξ ∩ H, so B∗ � Op(H∗) = 1 as E � Z. Therefore, J(S) � B � CH(V ), so
(iv) implies (i). �

Lemma 4.7. Assume J(S) centralizes each member of {V (H) : H ∈ H}. Then

(i) M(G(Baum(S))) = {M}, where M = G(V (G(Baum(S)))),

(ii) M is the unique maximal member of M(S) under �.

Proof. Set B = Baum(S) and K = G(B). By Lemma 4.6, for each H ∈ H, H � K.
On the other hand, for M ′ ∈ M(K), Lemma 3.7 says that K � M ′ and V (K) = V (M ′).
Thus, (i) follows from Lemma 3.5. Furthermore, for M ′′ ∈ M(S), M ′′ � K � M , so if
M ′′ �= M , then M ′′ is not maximal in M(S) with respect to � by Lemma 3.6, establishing
(ii). �

5. Systems of even characteristic

In this section we assume one of the following two hypotheses.

Hypothesis 5.1. Assume Hypothesis 4.1 with p = 2.

Hypothesis 5.2. Assume Hypothesis 2.1 with p = 2. Assume (Hi, Vi) ∈ H for i = 1, 2
and set Ri = O2(Hi). Assume in addition that

(i) Φ(V1) = 1, O2(AutH1(V1)) = 1 and R1 ∈ Syl2(CH1(V1)),

(ii) H2 is a minimal parabolic over S,

(iii) S(H1) ∩ S(H2) = ∅.

Lemma 5.3. Assume Hypothesis 5.1 holds. Assume M ∈ M(S) and G(S) � M . Let
HM = {H ∈ H : H � M}, and for H ∈ HM let XM (H) = {X ∈ X (H) : X � M} and
X ∗

M (H) be the minimal members of XM (H) under inclusion. Then we have the following.

(i) HM �= ∅ and for each H ∈ HM , XM (H) �= ∅.

(ii) Let H ∈ HM and X ∈ XM (H). Set R = CS(V (M)) and Y = NM (R). If Y is a
uniqueness group, then the pair (Y, V (M)), (X, V (X)) satisfies Hypothesis 5.2.

(iii) Let H ∈ HM and X ∈ X ∗
M (H). Then NX(V (M)) is the unique maximal overgroup

of S in X.

Proof. Part (i) is a consequence of parts (i) and (ii) of Lemma 4.3.
Assume the hypothesis of (ii) with Y a uniqueness group. Then the pair (Y, V (M)),

(X, V (X)) satisfies conditions (i) and (iii) of Hypothesis 5.2 by Lemma 4.4 and, as X is
a minimal parabolic, the pair satisfies condition (ii) of Hypothesis 5.2. Thus, (ii) holds.
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Assume that X ∈ X ∗
M (H) and set V = V (M). Then S � NX(V ) < X, so NX(V ) �

YX , the unique maximal overgroup of S in X. Suppose NX(V ) �= YX . Then as M = G(V ),
YX ∈ HM , so by (i) there exists X ′ ∈ XM (YX). Then X ′ � YX < X, contrary to the
minimality of X. This establishes (iii). �

If G is a finite group and V is a faithful F2G-module then the parameters q(G, V ) and
q̂(G, V ) are defined in [5, Definitions B.1.1 and B.4.1].

Lemma 5.4 (Stellmacher qrc-Lemma for fusion systems). Assume Hypothe-
sis 5.2 holds, and set q = q(H1/CH1(V1), V1) and U = 〈V H2

1 〉. Then one of the following
holds.

(i) V1 � R2.

(ii) q � 1.

(iii) The dual of V1 is an FF-module for H1/CH1(V1).

(iv) q � 2, U is abelian and H2 has c � 2 non-central chief factors on U . If q = 2, then
c = 2 and, for each non-central H2-chief factor W on U , q(H2/CH2(W ), W ) = 1.

(v) R1 ∩ R2 � H2, U is abelian, H2 has one non-central chief factor W ,

q(H2/CH2(W ), W ) = 1,

[U, O2(H2)] � Z(R2), O2(H2) = [O2(H2), J(R1)] and J(R1) = J(S).

Proof. This follows from the qrc-Lemma for groups, which appears in [5, D.1.5]. For
example, set H1,2 = NH1(V2) ∩ NH2(V1)ι2,1, and form the amalgam α = (αi : H1,2 →
Hi : i = 1, 2), where α1 is the inclusion map, and α2 = ι1,2 : H1,2 → H2. Then we
can form the free amalgamated product G of α and identify HJ , J ⊆ {1, 2}, with the
corresponding subgroups of G to obtain [5, Hypothesis D.1.1], the hypothesis of D.1.5
in [5].

Note the second statement in (iv) appears in [5, D.1.3]; more precisely, the fact that
q(H2/CH2(W ), W ) = 1 appears in the last paragraph of the proof of that lemma. Simi-
larly, the corresponding statement in (v) appears in [5, D.1.4]. �

Lemma 5.5. Assume Hypothesis 5.2 holds, with V1 � R2. Assume in addition that
NH2(V1) is the unique maximal overgroup of S in H2 and q(H1/CH1(V1), V1) > 1. Let
Γ = Γ (H2, V1) be the set of subgroups 〈V1, V

g
1 〉 of H2 that are not 2-groups, and let

Γ∗ = Γ∗(H2, V1) be the set of minimal members of Γ .

(i) Γ �= ∅. Pick X ∈ Γ∗ and set U1 = V1 ∩ R2.

(ii) NX(V1) is the unique maximal overgroup M of V1 in X, and V1 is weakly closed in
M with respect to X. Pick g ∈ X − M and set U = U1U

g
1 , and I = U1 ∩ Ug

1 .

(iii) X = 〈V1, V
g
1 〉, I � Z(X) and U � X. Set X̄ = X/I and m = m(Ū1).
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(iv) Ū = Ū1 ⊕ Ūg
1 is elementary abelian of rank 2m, for some positive integer m.

(v) Let W1 = V1 ∩ O2(X), W = W1W
g
1 and J = V1 ∩ V g

1 . Then J � Z(X) and
W � X. Set X̃ = X/J . Then W̃ = W̃1 ⊕ W̃ g

1 is elementary abelian of rank 2k,
where k = m(W̃1) � m, and W̃1 = [W̃ , V1] = CW̃ (v) for each v ∈ V1 − W1.

(vi) Set e = m2(V1/W1). Then either e = 1 and X/W ∼= D2n for some odd integer n,
or e > 1 and X/W ∼= L2(2e) or Sz(2e).

(vii) If e � k, then we have that e = k, q̂(H1/CH1(V1), V1) � 2, X/W ∼= L2(2e) and
q(X/CX(W̃ ), W̃ ) � 1.

(viii) If e < k, then q̂(H1/CH1(V1), V1) < 2.

Proof. As V1 � R2, (i) follows from the Baer–Suzuki Theorem (cf. [1, 39.6]). Pick
X ∈ Γ∗. Applying the Baer–Suzuki Theorem again, there exists g ∈ X with 〈V1, V

g
1 〉 not

a 2-group and, by minimality of X, X = 〈V1, V
g
1 〉.

As V1 is abelian, I � Z(X). As R2 and V1 are normal in S, [V1, R2] � U1. Then, as
R2 � H2, also [V g

1 , R2] � Ug
1 . Hence, U � X, completing the proof of (iii), modulo (ii),

which shows that, for each g ∈ X − M , 〈V1, V
g
1 〉 = X.

If U1 = I, then X � CH2(R2/U2)∩CH2(U2) � R2: a contradiction. Therefore, U1 �= I,
so m = m(Ū1) is positive. Now (iv) follows.

By minimality of X,

(a) for each x ∈ X, either X = 〈V1, V
x
1 〉 or 〈V1, V

x
1 〉 is a 2-group.

Then it follows from (a) and Baer–Suzuki that

(b) if V1 � Y < X, then V1 � O2(Y ).

For V1 � Y < X, set P (Y ) = 〈V X
1 ∩ Y 〉. It follows from (b) that

(c) P (Y ) is a normal 2-subgroup of Y .

Let V1 � T ∈ Syl2(X) and M = NX(P (T )). We claim that

(d) M is the unique maximal overgroup of V1 in X.

If not, choose V1 � Y < X with Y � M and P = P (Y ∩ M) maximal subject to this
constraint. If P (T ) = P , then also P = P (Y ), so Y � NX(P (Y )) � M : a contradiction.
Thus, P < P (NP (T )(P )) and as V1 � P but V1 � O2(X), NX(P ) < X, so by maximality
of P , NX(P ) � M . Then NP (Y )(P ) � M , so NP (Y )(P ) = P , and hence P (Y ) = P . But
then Y � NX(P ) � M , for our final contradiction establishing (d).

Next,

(e) for each involution t ∈ X − M , CŪ1
(t) = 1, so m2(CŪ (t)) = m.

Namely, by (d), X = 〈V1, t〉, so X centralizes CŪ1
(t), and hence its preimage U2 in X

is normal in X. Thus, U2 � U1 ∩ Ug
1 = I, so U2 = I. Then, as m2(Ū) = 2m and

m2(CŪ (t)) � m2(Ū)/2, (e) follows.
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(f) For each v ∈ V1 − O2(X), CŪ (v) = Ū1.

Again by the Baer–Suzuki Theorem there exists x ∈ X with 〈v, vx〉 not a 2-group, so, as
V1 � P (T ) � O2(M), vx /∈ M . Hence, by (e), m2(CŪ (v)) = m2(CŪ (vx)) = m = m2(Ū1),
so, as v centralizes U1, (f) follows.

(g) M = NX(V1) and V1 is weakly closed in M with respect to X.

If V1 is weakly closed in M , then P (T ) = V1, so M = NX(V1). Thus, we may assume
that V1 is not weakly closed in M , so, as 〈V X

1 ∩ M〉 = P (T ), V1 is not weakly closed in
P (T ). Then, by Alperin’s Fusion Theorem (cf. [8, A.10]), there is an overgroup Q of V1

in P (T ) such that V1 � Q, and h ∈ NX(Q) such that V1 �= V h
1 . Suppose 1 �= [V1, V

h
1 ].

Then, replacing h by h−1 if necessary, we may assume m(V h
1 /CV h

1
(V )) � m(V1/CV (V h

1 )),
contradicting q(H1/CH1(V1), V1) > 1.

Therefore, [V1, V
h
1 ] = 1. But, by (f), CŪ (V h

1 ) = Ūh
1 , so U1 = Uh

1 . As U1 �= I, U1 is
not normal in H2, so, as U1 � S and, by hypothesis, NH2(V1) is the unique maximal
overgroup of S in H2, it follows that NH2(U1) � NH2(V1). Thus, V1 = V h

1 , contrary to
the choice of h. This completes the proof of (g).

Note that (d) and (g) prove (ii), and hence complete the proof of (iii).
As M = NX(V1), W1 = V1 ∩ O2(X) � M , so M = NX(W1) or X by (d). However, if

W1 � X, then as U1 � W1; also, U � W1 � V1, so U � V1 ∩ R2 = U1, contrary to (iv).
Thus, M = NX(W1). Then we can apply various arguments above to W1 in place of U1,
to establish (v).

Set X∗ = X/W . If W1 < U2 � V1 and x ∈ X with Ux
2 � M , then, as CW̃ (U2) = W̃1

by (v), and as CW̃1
(Ux

2 ) �= 1, it follows that x ∈ M . Therefore, V ∗
1 is a strongly closed

elementary abelian TI-subgroup of M∗. Then, as X∗ = 〈V ∗
1 , V ∗g

1 〉, (vi) follows (cf. [5,
I.8.3]).

Let A = W g
1 . Then A � M = NX(V1) and, by (v), [A, V1] = W1 and [A, W1] � J �

CV1(A), so A is cubic on V1. Furthermore, by (v), m(A/CA(V1)) = m(A/J) = k and
m(V1/CV1(A)) � m(V1/J) = k + e, so if k > e, then q̂(H1/CH1(V1), V1) < 2. So (viii)
holds. On the other hand, if k = e, then q̂(H1/CH1(V1), V1) � 2.

Suppose e � k. As X∗ is faithful on W̃ of rank 2k, it follows from (v) and the repre-
sentation theory of X∗ (cf. [5, B.4.2]) that e = k, X∗ ∼= L2(2e), and W̃ is the natural
module for X∗. In particular, (vii) holds. �

Lemma 5.6. Assume Hypothesis 5.1 holds, and in addition assume that

(i) M ∈ M(S), R = CS(V (M)), NM (R) is a uniqueness group and

(ii) q(M/CM (V (M)), V (M)) > 1.

Then Baum(S) = Baum(R) and we have the following.

(1) {M} = M(G(Baum(S))).

(2) G(S) � M .
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(3) Suppose H ∈ H with H/O2(H) S3-free. Then one of the following holds:

(a) H � M ;

(b) q̂(M/CM (V (M)), V (M)) < 2;

(c) V (M) is a dual FF-module for M/CM (V (M)).

Proof. Let V = V (M) and B = Baum(M). By (ii), J(S) centralizes V , so B � R by
Lemma 4.6. Set Y = NM (R). Then Y � G(B) and M(Y ) = {M} by (i), so (1) follows.
Then, as G(S) � G(B), (1) implies (2).

Assume the hypothesis of (3) and assume H � M . Then by (2) and Lemma 5.3 (i),
there exists H ′ ∈ X ∗

M (H) and, replacing H by H ′, we may assume H ∈ X ∗
M (H). Hence,

by (1) and Lemma 5.3 (ii), the pair Y, H satisfies Hypothesis 5.2, and by Lemma 5.3 (iii)
NH(V ) is the unique maximal overgroup of S in H.

Suppose V � O2(H). Then Y, H satisfies the hypothesis of Lemma 5.5, so by
Lemma 5.5 (i) we can pick X ∈ Γ∗(H, V1). As H/O2(H) is S3-free, X/W is not iso-
morphic to L2(2f ) for any f , so, by Lemma 5.5 (vii), e < k. Hence, (b) holds in this case
by Lemma 5.5 (viii).

Thus, we may assume V � O2(H). Hence, by the qrc-Lemma 5.4, one of the cases
(ii)–(v) of that result hold. As H/O2(H) is S3-free, case (v) does not hold, and in case
(iv), q < 2, so, as q̂ = q̂(M/CM (V ), V ) � q, conclusion (b) of the lemma holds.

Thus, we may assume case (ii) or (iii) of Lemma 5.4 holds. But, by (ii), q > 1, so case
(3) holds. Hence, (c) holds in this case, completing the proof. �

6. The parameter q̂

In this section we assume the following.

Hypothesis 6.1. G is a finite group with O2(G) = 1 and V is a faithful F2G-module.

In addition, we adopt the notation from [5, § D.2]. In particular, set q̂ = q̂(G, V ) and
Q̂∗ = Q̂∗(G, V ). The parameter q̂ is defined in [5, Definition B.4.1]. It is the minimum of
m(V/CV (A))/m(A) as A ranges over elementary abelian 2-subgroups of G such that A is
cubic on V , i.e. such that [V, A, A, A] = 0. From [5, Definition D.2.1], Q̂∗ consists of those
non-trivial elementary abelian 2-subgroups A of G such that m(V/CV (A))/m(A) = q̂, A

is cubic on V and A is minimal subject to these constraints.
For X = O2(X) � G and Y � NG(X), see [5, Definition A.1.40] for the definition of

Irr+(X, V ) and Irr+(X, V, Y ). Namely, Irr+(X, V ) consists of the X-submodules I of V

such that I = [I, X] and X is irreducible on Ĩ = I/CI(X). Furthermore, Irr+(X, V, Y )
consists of those I ∈ Irr+(X, V ) such that Ĩ is an X-homogeneous component of 〈ĨY 〉.

The parameter q̂ is a variant of the parameter q appearing in the qrc-Lemma 5.4.
The definition of q is the same as that of q̂, except that it is defined with respect to
quadratic subgroups A: those with [V, A, A] = 0. In particular, q̂ � q. The parameter q̂

is important to us because of its appearance in Lemma 5.5 and Lemma 5.6. To apply
Lemma 5.6 to an S3-free fusion system, we need the lower bound q̂ � 2 on F2G-modules V

for S3-free groups G, which is established later in Theorem 6.5. This bound is obtained
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by a reduction to the case G simple. To make that reduction we next define certain
parameters µ and η.

Definition 6.2. Given a non-abelian finite quasisimple group L and a non-trivial
irreducible F2L-module U , define

µ(L, U) =
(dimF (U) − 1) dimF2(U)

4(m2(Aut(L)) + 1)
,

where F = EndF2L(U). Define η(L, U) = q̂(NGL(U)(AutL(U)), U).
Given a non-abelian finite simple group L, define µ(L) and η(L) to be the minima of the

µ(L̂, U), η(L̂, U), respectively, as U varies over all non-trivial irreducible F2L̂-modules,
where L̂ is the universal covering group of L.

Our next two lemmas show that bounds on µ(L) and η(L) for components L of G

suffice to establish the bound q̂(G, V ) � 2 in Theorem 6.5 on F2G-modules V for S3-free
groups G. The bounds on µ and η can be obtained from the work of Guralnick and Malle
in [12].

Lemma 6.3. Assume that q̂ � 2, A ∈ Q̂∗ and L is a component of G with [A, L] �= 1.
Set H = 〈LA〉, Ṽ = V/CV (H) and pick I ∈ Irr+(H, V ) with [I, L] �= 0. Then, we have
the following.

(i) Replacing I by a suitable I1 ∈ Irr+(H, V ) with Ĩ ∼= Ĩ1 as an F2H-module, we have
q̂(AutHA(Ĩ), Ĩ) � q̂.

(ii) Suppose V is an irreducible F2H-module and let U ∈ Irr+(L, V ). If µ(L, U) > 1,
then H = L.

Proof. Set K = HA, let A � S ∈ Syl2(K) and set IS = 〈IS〉. Then S = (S ∩ H)A,
so

(a) IS = I(H∩S)A = IA.

Next, by [5, A.1.42.2], replacing I by a suitable member I1 of Irr+(H, IS) with Ĩ1 ∼= Ĩ,
we may assume I ∈ Irr+(H, IS , S). Then by [5, A.1.42.3],

(b) ĨS is the direct sum of the members of ĨA.

Next, by [5, D.2.7], AutA(IS) ∈ Q̂r(AutK(IS), IS) for some r � q̂. In particu-
lar, q̂(AutK(IS), IS) � q̂. Next, trivially, q̂(AutK(ĨS), ĨS) � q̂(AutK(IS), IS). Let
A1 ∈ Q̂∗(AutK(ĨS), ĨS). Applying [5, D.2.9.1] to the direct sum decomposition of ĨS

in (b), we conclude that |A1 : NA1(Ĩ)| � 2. Set W̃ = 〈ĨA1〉. By another applica-
tion of [5, D.2.7], q̂(AutK(W̃ ), W̃ ) � q̂(AutK(ĨS), ĨS). Pick A2 ∈ Q̂∗(AutK(W̃ ), W̃ ).
If W̃ �= Ĩ, then, applying [5, D.2.9.1] to the direct sum decomposition W̃ = Ĩ ⊕ Ĩt,
t ∈ A1 − NA1(Ĩ), we conclude that A2 acts on Ĩ. Then, by yet another application of [5,
D.2.7], q̂(AutK(Ĩ), Ĩ) � q̂(AutK(W̃ ), W̃ ). Thus, in any event we have established (i).

So assume the hypothesis of (ii) with r = |LA| > 1. Let LA = {L1, . . . , Lr} with
L = L1 and set r = 2f . As H is irreducible on V , U is an irreducible F2L-module
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and V is a homogeneous semisimple F2L-module. Set F = EndF2(U) ∼= F2e , write UF

for U regarded as an FL-module, and set d = dimF (UF ). We argue as in the proof
of [5, D.3.7]. In particular, by [1, 27.14], we may regard V as an FH-module VF , and
VF

∼= U1,F ⊗ · · · ⊗ Ur,F , where U1 = U for i > 1, Ui = Uai for ai ∈ A with Lai = Li,
regarded as an F2Li-module, and Ui,F = Uai

F is an FLi-module.
Let t ∈ A − NA(L) and choose notation so that H = J × J t, where J = L1 · · ·Ls and

s = r/2. Thus, VF = WF ⊗ W t
F with WF , W t

F F -modules for J and J t, respectively.
Moreover, WF = U1,F ⊗ · · · ⊗ Us,F as an FJ-module, so dimF (WF ) = ds. Now, an
argument in the proof of [5, D.3.7] shows

(c) dimF (VF /CVF
(t)) = ds(ds − 1)/2, so dimF2(V/CV (t)) = ds(ds − 1)e/2.

Next observe that

(d) m2(A) � f + k, where k = m2(Aut(L)).

Namely, let B be a complement to NA(L) in A. Then m2(B) = f , and (modulo Z(H))
CL(B) is a full diagonal subgroup of H isomorphic to L with NA(L) faithful on CL(B),
so m2(A) = f + m2(NA(L)) � f + k.

Now, by (c) and (d),

2 � q̂ =
m(V/CV (A))

m(A)
� m(V/CV (t))

f + k
=

ds(ds − 1)e
2(f + k)

,

and hence, as m(U) = de, we have

(e) 1 � ds−1(ds − 1)m(U)/4(f + k).

Furthermore, as f � 1,
ds−1(ds − 1)

f + k
� d − 1

k + 1
,

so it follows from (e) that

(f) 1 � µ(L, U).

Now (ii) follows from (f), completing the proof of (ii) and the lemma. �

Lemma 6.4. Assume q̂ � 2 and L is a component of G which is not centralized
by Q̂∗(G, V ). Assume further that µ(L/Z(L)) > 1. Then q̂(G, V ) � η(L/Z(L)), so in
particular η(L/Z(L)) � 2.

Proof. By hypothesis there exists A ∈ Q̂∗ with [A, L] �= 1. Set H = 〈LA〉. By
Lemma 6.3 (i), we may assume V is an irreducible F2HA-module. Then as µ(L/Z(L)) >

1, we conclude from Lemma 6.3 2 that H = L, so V is an irreducible F2L-module. Hence,
by definition of η(L/Z(L)), q̂ � η(L/Z(L)), completing the proof of the lemma. �

The following result is probably known, but we do not have a reference, so instead we
supply a proof.
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Theorem 6.5. Let G be a finite S3-free K-group with O2(G) = 1 and let V be a
faithful F2G-module. Then q̂(G, V ) � 2.

Proof. Assume that the theorem fails and choose a counter-example of minimal order,
and, subject to that constraint, with m(V ) minimal. Thus, q̂ < 2 and we can choose
A ∈ Q̂∗. By parts (1) and (2) of [5, D.2.13], A centralizes F (G). Therefore, there exists
a component L of G with [L, A] �= 1. Thus, to obtain a counter-example and complete
the proof, it suffices by Lemma 6.4 to show that µ(L/Z(L)) > 1 and η(L/Z(L)) � 2.

As G is an S3-free K-group, it follows that L/Z(L) ∼= Sz(2k) or L2(3k) for some k � 3
odd. In particular, m2(Aut(L/Z(L))) = k, 2, in the respective case. Observe from [11]
that the Schur multiplier of L/Z(L) is a 2-group, so L is simple. Pick U and F as in
Definition 6.2, and set d = dimF (U).

Suppose first that L ∼= Sz(2k). Then, by [12], η(L) = 2. Furthermore, d � 4 and
dim(U) � 4k, so indeed µ(L) > 1.

Suppose next that L ∼= L3(3k). By [12], η(L) > 2. Further, m(U) � m([B, U ]), where
B is a Borel subgroup of L, and, as B is a Frobenius group that is the split extension of
E3k by a cyclic group of order (3k − 1)/2, m([B, U ]) � 3k − 1 � 26. Thus,

µ(L) � m(U)
12

� 26
12

> 1,

completing the proof. �

7. S3-free fusion systems

We begin this section with a proof of Theorem 1. We prove the theorem via a series of
reductions. Assume the theorem is false, and choose a minimal counter-example F .

Lemma 7.1. O2(F) = 1.

Proof. Assume Q = O2(F) �= 1. Suppose first that Q � Z(F). Then by Lemma 1.2 (i),
F/Q is a saturated fusion system on S/Q with O2(F/Q) = 1. But, by the definition of
F/Q in [2, § 8], for Q � P � S, AutF/Q(P/Q) = AutF (P/Q), so F/Q is S3-free.
Therefore, by minimality of F , F/Q is constrained, so 1 �= O2(F/Q): a contradiction.

Therefore, Q � Z(F), so C = CF (Q) �= F . However, by Lemma 1.2 (ii), C is a saturated
fusion system on CS(Q). As C � F and F is S3-free, C is S3-free. Hence, as C �= F , C is
constrained by minimality of F . Then F is constrained by Lemma 1.2 (ii), contrary to
the choice of F . �

Lemma 7.2.

(i) F is of characteristic 2-type.

(ii) F is a local CK-system.

Proof. Let U ∈ Ff and N = NF (U). By Lemma 7.1, N < F , while as F is S3-free,
so is N . Hence, by minimality of F , N is constrained, establishing (i). Further, applying
Corollary 3 in an inductive context, all composition factors of AutN (U) are in K, so (ii)
also holds. �
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Lemma 7.3. F = 〈NF (U) : U ∈ U〉.

Proof. By Lemma 7.2, F satisfies the hypotheses of [3, Theorem 1], so by that the-
orem, either the lemma holds or F is an obstruction to pushing up at the prime 2, and
we may assume the latter. However, by inspection of the list of such obstructions in [3],
none are S3-free. �

Remark 7.4. The full strength of [3, Theorem 1] is not required in the proof of
Lemma 7.3; see the discussion in [3, Example 8.6], which shows that the weaker [3,
Theorem 7.13] suffices when F is S3-free. Moreover, when F is S3-free, the proof of [3,
Theorem 7.13] is fairly easy; namely in that case, Theorem 7.13 follows from [3, 6.6.3].

We are now in a position to complete the proof of Theorem 1. By choice of F , F is a
saturated fusion system on a finite 2-group S, which is not constrained. By Lemma 7.2 (i),
F is of characteristic 2-type. Thus, Hypothesis 2.1 is satisfied. Then, by Lemma 7.3,
Hypothesis 4.1, and hence also Hypothesis 5.1, is satisfied.

Choose M to be maximal in M(S) with respect to � and set V = V (M). As F is
S3-free, so is M/CM (V ), and by Lemma 7.2 (ii), M/CM (V ) is a K-group. Therefore, by
Theorem 6.5,

q̂(M/CM (V ), V ) � 2. (∗)

Thus, hypothesis (ii) of Lemma 5.6 is satisfied, while hypothesis (i) of that lemma holds
by Lemma 4.5 (i). Therefore, G(S) � M by Lemma 5.6 (2). Next, by Lemma 5.3 (i), there
exists H ∈ HM . As F is S3-free, so is H/O2(H), so the hypotheses of Lemma 5.6 (3) are
satisfied, and therefore one of conclusions (a)–(c) of that lemma hold. As H ∈ HM ,
conclusion (a) fails. Further conclusion (b) fails by (∗). Finally, as M/CM (V ) is S3-free,
condition (c) fails. This contradiction completes the proof of Theorem 1.

We next prove Corollary 2. Assume G is an S4-free finite simple group. Let S ∈ Syl2(G)
and F = FS(G). As G is S4-free, F is S3-free. Therefore, F is constrained by Theorem 1.
Hence, there exists a non-trivial abelian subgroup of S that is strongly closed in S

with respect to G. Now, G is Goldschmidt group by a theorem of Goldschmidt in [10],
establishing Corollary 2.

Next, we observe that Corollary 3 follows from Corollary 2. Namely, assume G is a
finite non-abelian finite simple group that is S3-free. By Corollary 2, G is a Goldschmidt
group. Hence, Corollary 3 follows, as G is S3-free.

Finally, observe that Corollary 4 follows from Corollary 3 and the fact that 3 divides
the order of L2(3n).
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