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Abstract. It is shown that in consequence of the parametric resonance, g modes of low spherical harmonic 
degree / are strongly coupled to the modes of high degree. The coupling limits the growth of low/modes to 
very small amplitudes. For g,, / = 1 mode, the final amplitude of the radial velocity is of the order of 
10 cm s^1. A mixing of solar core as a result of a finite-amplitude development of linear instability of this 
mode is thus highly unlikely. 

1. Introduction 

The observational evidence for gravity-mode excitation in the Sun is still considered as 
controversial. Nevertheless, there has been a significant amount of work devoted to the 
study of the theoretical properties of such modes. This interest was stimulated by Dilke 
and Gough's (1972) suggestion that the overstability of g modes may lead to mixing in 
the core, as well as by the potential importance of the detection of these modes for 
probing the solar interior (e.g. Hill and Caudell, 1979). 

Following Dilke and Gough's work, numerical calculations of solar g modes have 
been made by several groups (Christensen-Dalsgaard etal, 1974; Boury etal, 1975; 
Shibahashi etal, 1975; Saio, 1980). The common conclusion of those papers is that 
there is a significant driving effect in the core via e-mechanism for the gx and g2 modes 
corresponding to / = 1 harmonics. However, the question of whether there is an actual 
instability will be possible to answer only when a credible theory of the interaction 
between convection and oscillation is available. 

The present paper deals with nonlinear effects in solar gravity modes. Such effects 
must be investigated if we want to determine whether the development of instability may 
lead to mixing in the Sun's interior or to predict the amplitudes of radial velocity 
variation caused by oscillation. The study of nonlinear effects may also help us to 
understand why, if the 160 min oscillation represents a gravity mode, there has only been 
one such mode detected so far. 

It may be expected that the effect limiting the amplitude growth of an unstable g mode 
is the parametric resonance. This is the instability of an oscillating system with the 
angular frequency co, relative to the growth of two modes with angular frequencies co2 

and co3 such that co2 + cu3 « co,. These two newly-excited modes derive their energy 
from the originally-excited mode and the mutual interaction between all three leads, 
under certain conditions, to a limitation of the amplitudes. 
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The importance of parametric (resonance) instability in the stellar pulsation theory 
was first pointed out by Vandakurov (1965). Now a more detailed theory of this 
phenomenon also covering the equilibrium solution for the interacting modes, is 
available (Dziembowski, 1982). 

2. Onset of the Parametric Instability 

The criterion of instability to the growth of modes 2 and 3 in the presence of an excited 
mode 1 may be written in the following form: 

e, > - i A°2 

v 

x , yi-y3 "2~ 

y2 + y3J J 

1/2 

+ 4y2y3} • 0) 

In this formula Qx is the r.m.s. amplitude of the relative distortion of stellar surface 
AR/R, due to the excitation of mode 1. It is assumed that Q{ <£ 1. Aa = CT, - o2 - c3 is 
the frequency mismatch, where iris the angular frequency in units ^JATIG <p> and <p> 
is the mean stellar density. y2>3 are the linear nonadiabatic damping rates in the same 
units. We assume that y2y3 > 0. By v we denoted a normalized coupling coefficient. Its 
explicit form (Dziembowski, 1982) containing integrals of products of the eigenfunctions 
for the involved modes is very complicated and will not be reproduced here. 

At this point it is not important what was the cause of mode 1 excitation, but it is 
essential for the validity of the criterion that the present growth (or damping) rate is small 
in the sense that | y1 \ <l Ql v. The criterion also holds in the cases when some other 
modes are excited, provided that they are not coupled to any of the three modes 
considered. 

Let us assume now that mode 1 is a gravity mode of low radial order k{ and low degree 
/,, and ask what are the characteristics of the pairs of modes that may be excited as 
a result of the parametric resonance at the lowest amplitudes of mode 1. As seen from 
Equation (1), the coupling coefficient must be nonzero and possibly large, while the 
frequency mismatch and the damping rates of modes 2 and 3 must possibly be small. 

The nonzero values of v occur only for certain combinations of the spherical 
harmonics, YtJ, of the involved modes. Choosing l3 > l2, the condition that v# 0 may 
be written as 

Jl = . 

/3=« 

h + 73 , 

l2 + 1 
l2 or 
l2+ 1 

/2 + 2 
or l2 + 3 

if 
if 
if 

/. = 1, 
/ . = 2 , 
/, = 3 , 

(2) 

and so on. 
Moreover, it turns out that the coupling coefficient is large only, at least in the present 

case, if the radial order of modes 2 and 3 do not differ very much. As we shall see, the 
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expected values of/2 3 and k2 3 are large. For such modes we have k ~ //ff which implies 
in conjunction with Equation (2) and the resonance condition (J<r« 0) that 

k2xk3, C2KO3K(;J2 

for the relevant modes. Thus, for a given l2 we have to consider a few values of/3 and 
a few pairs with frequencies close to ff, /2. 

Consider now the r.h.s. of Equation (1) as a function of l2. For large l2, the value of 
v is virtually independent of l2 (Dziembowski, 1982; see also Table I in Section 4). 

The distance between the consecutive radial modes, da, is given by 

P ( a V off w - I , where p = const. (3) 
/ \ f f i / 2 / 

Thus, the expected frequency mismatch decreases with l2 like l2 '. On the other hand, 

for damping rates we have (Dziembowski, 1982) 

where a~' is the thermal time-scale in the units (4nG <p>)~' for the region where the 
g modes are trapped. For the Sun a is in the range 10" 1 2 -10~ n . Clearly, there is a 
certain optimum range of the /2-values for the instability to occur and as a is so small, 
in our case this range falls at rather high values (102-103). In such a situation, a very 
precise fitting of the resonance is possible. 

It would be unreasonable to rely on the numerical determination of the eigen-
frequencies with an accuracy better than, say, 10~4. Therefore, adopting a probabilistic 
approach we look for the probability P that the instability occurs at a given amplitude 
Qx. For this purpose we assume <r2 = ff3 = ff,/2 and ignore the difference between y2 

and y3. Using now Equation (4) in Equation (1) we get for the amplitude of mode 1 at 
the onset of the instability 

2 1 = -(zlff2 + 4a 2 / 4 ) 1 / 2 . (5) 
v 

The probability, Pltl, that the instability occurs for given l2 = I and for given pair of 
modes 2 and 3, i, is 

pu 

MH^l for l<lc 
/?/-• 

(6) 
0 for l>lc, 

where we used Equation (3) for bo and denoted 
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Assuming the independence of P,,, which is actually not true but usually gives a good 
approximation, we get 

p=i-n na--p/,*)]«i-exp(-E I P , , ) 

Replacing the summation over / by the integral, we obtain 

0 

Q\ v,2 

2ocj3 
1-x 4t 

i eiv,2 

16 a/? 
(8) 

and finally 

P = 1 - exp -
16 aj3 ?'<) (9) 

3. Equilibrium Amplitudes of the Interacting Modes 

The initial growth of the amplitudes of modes 2 and 3 is exponential. This, however, is 
quickly terminated, once the amplitudes are high enough. 

In the case of yl < 0 (linear instability) and y2>3 > 0, the equilibrium solution exists. 
However, it is stable only in a certain range of parameters Aa/yu y2,3h\ and only then 
does it describe the final stage of the parametric resonance phenomenon. 

In the case of our interest, namely \y,\ < y2~ y3, the stability criteria (Wersinger et ai, 
1980; Dziembowski, 1982) are reduced to Ac > 2y2, which, using Equations (4), (5) and 
(7), may be written as 

/^/ca)i/4. 
Performing similar integration as in Equation (8) but in the limits [0, lc(\f

/4] it is easy 
to calculate that the conditional probability that the instability leads to the stable 
equilibrium is 0.82. 

The equilibrium amplitude of mode 1 is 

fii 
2 

v 
y2y3 

l + 
Ac 

y2 + r3 + ?i 

l 
'Aa2 + Ay2

2; (10) 

thus it is approximately the same as at the onset of the instability. For the remaining 
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two amplitudes we have 

Qk = Qi J-'-f^, k=l,2 (11) 

with Ik = j p | h j 2 d3x, where ĥ . is the displacement eigenvector. 
Since the expected values of l2 and l3 are large, these modes are effectively trapped 

in the radiative cores and, consequently, their surface amplitudes are exceedingly small. 
More relevant measure of the amplitude for such modes is the maximum ratio of the 
amplitude of the horizontal displacement Ih^l to the radial half-wavelength X denoted 
by I. Using Equation (11) we have 

t = m<ix(K\/X) = n Q l ^ i l , (12) 

where /x may be considered as constant, because for a « ax/2 we have X ~ l2' and 
y2 ~ l\. This constant must be calculated numerically. As long as £ <̂  1, the motion may 
be regarded as purely oscillatory and the mixing cannot be expected. 

4. A Numerical Example 

We shall provide here an estimate of the maximum amplitude for the g{, I = 1 mode for 
the solar model calculated by Dziembowski and Pamjatnykh (1978). The model is 
characterized by the following parameters: 

envelope composition X= 0.775, Z = 0.01, 

Xc = 0.41, Tc = 145 x 106 , Pc = 133 , 

bottom of the convective envelope at r = 0.77 RQ . 

The g,, / = 1 mode has nondimensional frequency a = 1.345, that corresponds to a 
period of 71.6 min. The mode exhibits the net driving in the radiative core and if the 
convection effects are ignored, its excitation rate is -y , = 3.4 x 10"12. 

The damping rates for high-order modes with frequencies close to <7, /2 are accurately 
described by Equation (4) with a. = 6.9 x 10"12, while the distance between the 
consecutive radial modes by Equation (3) with /? = 0.18. 

The normalized coupling coefficients, v,-, were calculated according to the formulae 
given by Dziembowski (1982). The values of v, for modes 2 and 3 having frequencies 
close to ax/2 at some chosen l2 are given in Table I. The were evaluated for jx = 0 and 
j3 = 0. The latter choice corresponds to the maximum of v. In the case _/, = + 1 the 
maximum occurs for j 2 = + l2 and is by a factor sjl higher. In the same table we given 
values of the frequency mismatch, Ac, as obtained from the numerical calculations. It 
is important to observe the constancy of v with varying l2 and a rapid decline, on the 
average, of v with increasing \k2 - k3\. 

To evaluate the probability of the onset of parametric instability according to 
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TABLE I 

The coupling coefficient (v) and frequency mismatch (An) for some pairs of 
modes coupled to the g,, / = 1 mode 

k2 

l2 = 100 

300 
300 
299 
301 
299 
301 
298 
302 
298 
302 
297 
303 
297 
303 
296 
304 
296 
304 
295 
305 
395 
305 
294 

l2 = 200 

596 
596 
595 
597 
595 
597 

l2 = 500 

1484 
1484 
1483 
1485 
1483 
1485 

k, 

l3 = 101 

300 
299 
300 
299 
301 
298 
301 
298 
302 
297 
302 
297 
303 
296 
303 
296 
304 
295 
304 
295 
305 
294 
305 

/3 = 201 

596 
595 
596 
595 
597 
594 

l3 = 501 

1484 
1483 
1484 
1483 
1485 
1482 

V 

12.58 
14.07 
5.63 
8.30 
0.98 
2.66 
0.25 
0.53 
0.21 
0.26 
0.35 
0.18 
0.21 
0.21 
0.29 
0.10 
0.14 
0.15 
0.21 
0.06 
0.05 
0.11 
0.12 

12.41 
14.00 
5.53 
8.22 
0.84 
2.63 

12.48 
14.04 
5.64 
8.26 
0.90 
2.66 

Ac 

1.73 E-3 
-8.21 E-3 
-7.14 E-3 
1.71 E-3 
1.73 E-3 

-1.12E-4 
- 8.05 E-4 
1.67 E-3 
1.71 E-3 

-1.60 E-4 
-1.09 E-4 
1.61 E-3 
1.68 E-3 

-2.27 E-4 
-1.56 E-4 
1.53 E-3 
1.62 E-3 

-3.12 E-4 
-2.22 E-4 
1.45 E-3 
1.54 E-3 

-4.16 E-4 
-3.07 E-4 

7.82 E-4 
-1.28 E-4 
-1.25 E-4 
8.03 E-4 
7.82 E-4 

-1.35 E-4 

1.97 E-4 
-1.67 E-4 
-1.67 E-4 
1.96 E-4 
1.97 E-4 

-1.69 E-4 

Equation (9), the values of v for the first six pairs were used along with the values of 
a and fi quoted above. The results are shown in Table II. It is seen that the instability 
is likely to occur already at the amplitude Qx of the order of 10"7. The values of /max 

given in this table are the values of / at the maximum of the integrand in Equation (8) 
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TABLE II 

Probability of the parametric instability (P), l2 at the maximum of probability 
(/max), and the corresponding frequency mismatch Aaas a function of amplitude 

of the gul= 1 mode (g[) 

e, 
2.5 E-8 
5.0 E-8 
1.0 E-7 
2.0 E-7 
3.0 E-7 

P 

0.044 
0.165 
0.514 
0.944 
0.998 

'max 

121 
172 
243 
343 
420 

Ac 

2.9 E-7 
5.7 E-7 
1.1 E-6 
2.3 E-6 
3.4 E-6 

for the largest v,. It is easy to see that /max = (|)1 /4/c. The corresponding values of Ac 
were calculated with the use of Equation (5). 

As we already noted in the previous section, the equilibrium amplitudes Qx are 
practically the same as at the onset of instability. We therefore conclude that the 
maximum amplitude for the gx, I =. 1 mode is not likely to exceed 2 x 10 ~ 7. At this level, 
the nonresonant nonlinear effects are completely negligible. For instance, as the 
maximum value of the relative pressure perturbation, Ap/p, is of the same order as Qu 

the nonlinear effects in the excitation rate yl may be safely ignored. 
The motion is purely oscillatory, as the parameter ( for all three modes involved is 

much smaller than unity. For modes 2 and 3 it was found that 

I = 9 x 107 g , V^Ti = 1.7 x 102 2 , , 

thus it is of the order of 10"5. 
It is easy to convert the amplitude Qx to the amplitude of the radial velocity for the 

whole-disc measurements AVTeLd. In such measurements, only the modes with the 
equatorial symmetry, i.e., with j \ = ± 1, are visible. We have 

AVrsid= Jl x 4V^ x 0-55 x 7 x 1010 x 1.5 x 10"3 g , cm s"1 = 

= 1.0 x 106g, c m s " 1 . 

In this formula, factor yjl follows from the difference in v between 7 = 0 and j = 1 
cases, factor *Jyi converts the r.m.s. amplitude to the actual amplitude, 0.55 is an 
averaging factor for radial velocity, 7 x 10'° cm x RQ, 1.5 x 10~3 s~' = co,. Thus, the 
expected radial velocity amplitude is of the order of 10 cm s_ 1. 

5. Conclusions 

We have seen that the resonant coupling of gx, I = 1 to higher-order g modes limits its 
amplitude to an unexpectedly low level. It is believed that with the accuracy to ± one 
order of magnitude our estimated value of Qr is valid for all low-order and low-degree 
g modes in all conventional solar modes. 

The reason why the nonlinear effects are important at so low amplitudes is that there 
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is a large number of highly adiabatic modes that may strongly interact with the unstable 
modes. This large number of possibilities permits us to tune the resonance very precisely. 

In view of the presented results, the hypothesis that the finite amplitude development 
of the linear instability of the / = 1 g modes leads to mixing in the solar core seems highly 
implausible. 

At its present stage, the theory of mode coupling does not cause any difficulty to the 
interpretation of the 160 min oscillation in terms of the excitation of a low-degree 
g mode. The observed amplitudes of 0.56 m s" ' (Severny et al., 1979) and 0.22 m s"' 
(Scherrer et al, 1979) are certainly within the limits of uncertainty of our estimate. The 
apparent absence of other modes corresponding to different j at the same / and k may 
be consequence of the fact that their frequencies fall closer to the perfect resonance 
condition Aa = 0, with some pairs of high-order g modes. The probability of such an 
event remains to be calculated. 
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