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Abstract. We study dynamical systems (X, G, m)with a compact metric space X , a locally
compact, σ -compact, abelian group G and an invariant Borel probability measure m on X .
We show that such a system has a discrete spectrum if and only if a certain space average
over the metric is a Bohr almost periodic function. In this way, this average over the metric
plays, for general dynamical systems, a similar role to that of the autocorrelation measure
in the study of aperiodic order for special dynamical systems based on point sets.
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1. Introduction
There has been a substantial amount of interest in dynamical systems with discrete spectra
in the past and they have attracted quite a lot of attention in recent years.

One reason for this is that such systems play an important role in the investigation of
aperiodic order. Aperiodic order, also known as mathematical theory of quasicrystals, has
emerged as a relevant topic of research over the last three decades (see, e.g., [1] for a
recent monograph and [13] for a recent collection of surveys). A key feature of aperiodic
order is the occurrence of (pure) point diffraction. Due to a collective effort over the years,
pure point diffraction is now understood to be the discrete spectrum of suitable associated
dynamical systems [2, 6, 12, 14, 17, 18].

Another example of the recent interest in discrete spectra can be found in a series of
works which analyze such spectra via weak notions of equicontinuity [9–11]. These works
provide, in particular, a characterization of a discrete spectrum (see also [8, 25] for related
work) and a characterization of a discrete spectrum with continuous eigenfunctions and
unique ergodicity.

The dynamical systems (X, G, m) underlying the investigation of aperiodic order
(and defined in detail in §6) have a special structure. The compact space X , on which

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,

and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/etds.2019.102 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2019.102&domain=pdf
https://doi.org/10.1017/etds.2019.102


A characterization of a discrete spectrum 907

the locally compact, σ -compact, abelian group G acts, consists of point sets or, more
generally, measures. Accordingly, these systems are known as translation bounded
measure dynamical systems (TMDSs). The fact that the points of X are measures allows
one to pair elements of X with elements from the vector space Cc(G) of continuous
compactly supported functions on the group, resulting in a map N from Cc(G) to functions
on X . Via this map, one can then define the autocorrelation measure γ associated to
(X, G, m). The Fourier transform of the autocorrelation measure is known as a diffraction
measure. The diffraction measure or, equivalently, the autocorrelation measure, encodes
a remarkable amount of information on the original system. In fact, a main result of the
theory (already mentioned above and discussed in §6 in more detail) can be stated as
follows.

RESULT—TMDSS. [2, 12, 14, 17, 18] The TMDS (X, G, m) has a discrete spectrum if
and only if the measure γ is strongly almost periodic. In this case, the group generated by
the frequencies of γ is the group of eigenvalues of (X, G, m).

In a general dynamical system (X, G, m) (again with notation to be explained in detail
later in §2), the points of X cannot be paired with elements of Cc(G). Hence, such a system
does not admit an autocorrelation. However, if d is a metric on X inducing the topology,
then—as we will show below—the function

d : G −→ [0,∞), d(t)=
∫

X
d(x, t x) dm(x)

can serve as a convenient analogue to the autocorrelation. Indeed, our main abstract result
reads as follows.

MAIN RESULT. (Compare Theorem 5.1 below) The dynamical system (X, G, m) has a
discrete spectrum if and only if d is almost periodic in the sense of Bohr. In this case, the
group of eigenvalues is generated by the frequencies of d.

For general dynamical systems over metric spaces, this result provides an analogue to
the result above for TMDSs and this can be seen as the main achievement of the article.
Moreover, as a consequence, we also obtain (in Corollary 5.3) a converse to a result of
[23]. More specifically, we obtain a characterization of a discrete spectrum via denseness
of suitable measure almost periods. In [23], it has already been shown that such a denseness
is sufficient for a discrete spectrum. Our characterization shows that it is also necessary.
This is particularly remarkable as it is mentioned in [23] that ‘it is unlikely’ that this
necessity holds (see also the remark after Corollary 5.3, for further details). Finally—as is
to be expected—our considerations allow us to also reprove the above result for TMDSs
provided the group G is metrizable (see the discussion in §6).

Our approach to discrete spectra is somewhat complementary to the approach in the
works mentioned above [9–11, 25]. A central quantity in these works is the pseudometric
d on X , which arises by averaging d over G, i.e.

d(x, y)= lim sup
n→∞

1
mG(Fn)

∫
Fn

d(t x, t y) dmG(t),

where (Fn) is a Følner sequence and mG denotes Haar measure on G. The discreteness
of the spectrum (and related phenomena) is then encoded in equicontinuity and covering
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properties with respect to the topology induced by d . In comparison, our key quantity d
can (essentially) be seen as a metric on G, which arises by averaging over X . Discreteness
of the spectrum is then encoded in almost periodicity properties of d. These two points of
view are certainly related. For example, it is possible to use our result to reprove parts of
the abstract considerations of [11] on spectral isomorphy. This and more will be considered
elsewhere.

The necessary notation and set-up for our investigations is provided in §2. The main
technical tools are gathered in §3. There we also introduce the domination relation ≺,
which is a key ingredient in our analysis. With these tools, we can then provide various
characterizations of almost periodicity of d in §4. The main result, given in §5, is then a
rather direct consequence of these characterizations.

2. Preliminaries
In this section, we set up notation and recall a few standard facts on dynamical systems.
The material is well known.

We consider a compact space X equipped with a continuous action

G × X −→ X, (t, x) 7→ t x

of a locally compact, σ -compact, abelian group G and a probability measure m, which is
invariant under the action of G. We then call (X, G, m) a dynamical system over the space
X . Throughout, we will assume that the topology of X is induced by a metric. This metric
will usually be denoted by d .

We write the group operation on G additively and denote the neutral element of G by
zero.

We do not assume that the topology of G is induced by a metric. Note that it still
makes sense to speak about uniform continuity of functions on G. More precisely, a
function f : G −→ R is called uniformly continuous if, for any ε > 0, there exists an open
neighborhood U of 0 ∈ G with | f (t)− f (s)|< ε whenever s − t ∈U .

The action of G on X induces unitary operators Tt : L2(X, m)−→ L2(X, m) with

Tt f = f (t ·)

for each t ∈ G. The complex Hilbert space L2(X, m) is equipped with the inner product

〈 f, g〉 =
∫

X
f g dm

and the associated norm
‖ f ‖ := ‖ f ‖2 :=

√
〈 f, f 〉

for f, g ∈ L2(X, m). We will be particularly interested in continuous functions on X and
will denote the vector space of all such functions by C(X).

An f ∈ L2(X, m) with f 6= 0 is called an eigenfunction to the eigenvalue γ ∈ Ĝ
if Tt f = γ (t) f holds for each t ∈ G. Here, Ĝ is the dual group of G consisting
of all continuous group homomorphisms γ : G −→ {z ∈ C : |z| = 1} equipped with
multiplication of functions and complex conjugation as product and inverse, respectively.
We denote the group generated by the set of eigenvalues as the group of eigenvalues. If the
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dynamical system is minimal (i.e. each orbit is dense) or ergodic (i.e. if any measurable
invariant set has measure zero or one), then the set of eigenvalues forms a group already.

The dynamical system (X, G, m) is said to have a discrete spectrum if there exists an
orthonormal basis of L2(X, m) consisting of eigenfunctions.

Whenever f is a bounded function from a set Y to the complex numbers, we define the
supremum norm of f as ‖ f ‖∞ := sup{| f (y)| : y ∈ Y }. We will be interested in the cases
Y = G and Y = X .

Whenever (X1, G, m1), (X2, G, m2) are dynamical systems with actions of the same
group G, a map π : X1 −→ X2 is called G-equivariant if it respects the action of G in that
π(t x)= tπ(x) holds for all t ∈ G and x ∈ X1.

3. The functions e and e′

Let (X, G, m) be a dynamical system over a compact space X . A pseudometric on a set Y
is a function e : Y × Y −→ [0,∞) satisfying e(x, x)= 0, e(x, y)= e(y, x) and e(x, y)≤
e(x, z)+ e(z, y) for all x, y, z ∈ Y . We will be interested in pseudometrics on X and on G.

To a continuous pseudometric e on X , we associate the functions

e : G −→ [0,∞), e(t) :=
∫

X
e(x, t x) dm(x)

and
e′ : G × G −→ [0,∞), e′(s, t) :=

∫
X

e(sx, t x) dm(x).

A short computation (using the invariance of m) gives

e′(s, t)= e(s − t) and e(s)= e′(0, s).

For this reason, properties of e and of e′ are strongly connected and it usually suffices to
study one of these functions.

A few basic properties of e′, e and functions that have a similar relationship are gathered
next. For completeness, we include the simple proofs.

PROPOSITION 3.1. (Basic properties of e′) The function e′ is a continuous, bounded and
G-invariant pseudometric.

Proof. Continuity of e′ is clear from continuity of e and the group action and compactness
of X . Boundedness of e′ follows as the continuous e is bounded on the compact X × X
and m is a probability measure. The G-invariance is clear from the invariance of m under
the action of G. It remains to show that e′ is a pseudometric. This follows easily as e is a
pseudometric. �

LEMMA 3.2. (Functions inducing invariant metrics) For F : G −→ [0,∞), the following
assertions are equivalent.
(i) The function F ′(s, t) := F(s − t) is a pseudometric.
(ii) For all s, t ∈ G, the equality ‖F(s + ·)− F(t + ·)‖∞ = F(s − t) holds.
If one of these equivalent conditions holds, then F satisfies F(0)= 0, F(−s)= F(s) and
|F(s)− F(t)| ≤ F(s − t) for all s, t ∈ G and, moreover, F is uniformly continuous if it is
continuous (at t = 0).
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Proof. The implication (ii)H⇒ (i) is clear. As for the implication (i)H⇒ (ii), we note that

|F(s)− F(t)| = |F ′(s, 0)− F ′(t, 0)| ≤ F ′(s, t)= F(s − t)

for all s, t ∈ G as F ′ is a pseudometric. From this inequality, we directly obtain the
inequality ‖F(s + ·)− F(t + ·)‖∞ ≤ F(s − t) for all s, t ∈ G. The reverse inequality ≥
follows by inserting the value −t .

Now the last statement is clear. �

Definition 3.3. (Pseudonorm on G) We will refer to a function F satisfying the
(equivalent) conditions given in the preceding lemma as a pseudonorm on G.

PROPOSITION 3.4. (Basic properties of e) Let e be a continuous pseudometric on X. The
function e is a bounded continuous pseudornorm. In particular, e is uniformly continuous
and satisfies e(0)= 0, e(s)= e(−s) as well as |e(s)− e(t)| ≤ e(s − t) and

‖e(s + ·)− e(t + ·)‖∞ = e(s − t)

for all s, t ∈ G.

Proof. As X is compact and e is continuous, the function e is bounded and continuous.
As for the remaining statements, we note that e′ is a continuous pseudometric due to
Proposition 3.1. Hence, we can apply the previous lemma with F = e and F ′ = e′. �

Of course, the functions e and e′ depend on e. So one may wonder how they change
if e is replaced by another pseudometric. To investigate this, we introduce the following
concept.

Definition 3.5. (The relation ≺) Let f and g be functions from a set Y to the complex
numbers. Then, f is said to dominate g (written as g ≺ f ) if, for all ε > 0, there exists
a δ > 0 such that |g(y)| ≤ ε whenever | f (y)| ≤ δ holds. If both f dominates g and g
dominates f , we say that f and g are equivalent and write f ∼ g.

The following statement is a rather direct consequence of uniform continuity of
continuous functions on compact sets.

PROPOSITION 3.6. Let e be a pseudometric on the compact metric space X. Let d be a
metric on X inducing the topology. Then e is continuous if and only if it is dominated by d.

By the previous proposition, two metrics d and e on the compact X giving the topology
are equivalent. This will be used repeatedly (and tacitly) in what follows.

LEMMA 3.7. Let (X, G, m) be a dynamical system. Let e1 and e2 be continuous
pseudometrics on X with e1 ≺ e2. Then

e1 ≺ e2 and e′1 ≺ e′2.

Proof. It suffices to show the statement for e1 and e2. We have to show that, for each ε > 0,
there exists a δ > 0 such that e2(t) < δ (for t ∈ G) implies that e1(t) < ε. So let ε > 0 be
given. Without loss of generality, we can assume that e1, e2 ≤ 1.
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By e1 ≺ e2, there exists ε1 > 0 with

e2(x, y)≤ ε1 H⇒ e1(x, y)≤
ε

2
.

Without loss of generality, we can assume that

ε1 ≤
ε

2
.

Set δ := ε2
1 and consider a t ∈ G with e2(t)≤ δ. Setting

M := {x : e2(x, t x)≥ ε1},

we then find that
ε1m(M)≤

∫
X

e2(x, t x) dm(x)= e2(t) < ε2
1.

This gives
m(M) < ε1.

By construction, we have e2(x, t x) < ε1 and hence e1(x, t x)≤ ε/2 for x ∈ X \ M . Given
this, a short computation shows that

e1(t)=
∫

X
e1(x, t x) dm(x)

=

∫
M

e1(x, t x) dm(x)+
∫

X\M
e1(x, t x) dm(x)

≤ ‖e1‖∞m(M)+
ε

2
m(X \ M)

< ε1 +
ε

2
≤ ε.

This finishes the proof. �

For us, certain (pseudo)metrics will be of special interest: to each continuous f : X −→
C, we associate the pseudometric

e f : X × X −→ [0,∞), e f (x, y) := | f (x)− f (y)|.

As f is continuous, so is e f . In particular, e f is dominated by the metric d . Now, for
n ∈ N, let the functions fn ∈ C(X) and cn ≥ 0 with

∑
cn‖ fn‖∞ <∞ be given. Then

e( fn),(cn) :=

∑
n

cne fn

is a continuous pseudometric. To an f ∈ C(X), we can also associate the function

F f : G −→ [0,∞), F f (t) := ‖ f − Tt f ‖2.

To fn ∈ C(X) and cn ≥ 0 with
∑

cn‖ f ‖∞ <∞, we can, moreover, associate the function

F( fn),(cn) :=

∑
n

cn F fn .
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PROPOSITION 3.8.
(a) Let f be a continuous function on X. Then e f ≺ d.
(b) Let f be a continuous function on X. Then F f ≤

√
2‖ f ‖∞ ·

√e f and e f ≤ F f hold.
In particular, F f ∼ e f and F f ≺ d.

(c) Let continuous functions fn on X and cn > 0, n ∈ N, with
∑

n cn‖ fn‖<∞ be given
such that the ( fn) separate the points of X. Then

e( fn),(cn)
∼ F( fn),(cn) ∼ d.

Proof. (a) We have already discussed that e f is continuous. Hence, it is dominated by d.
Thus, the previous lemma gives e f ≺ d.

(b) To show the bound on F f , we compute

F f (t)= ‖ f − Tt f ‖

=

(∫
| f (x)− f (t x)|2 dm(x)

)1/2

≤
√

2‖ f ‖∞

(∫
| f (x)− f (t x)| dm(x)

)1/2

=
√

2‖ f ‖∞ ·
√

e f (t).

To show the bound on e f , we note that m is a probability measure, and hence the
Cauchy–Schwarz inequality gives

∫
X |g| dm ≤ ‖g‖ for all g in L2(X, m). Thus, we can

estimate

e f (t)=
∫

X
e f (x, t x) dm(x)

=

∫
| f (x)− f (t x)| dm(x)

≤ ‖ f − Tt f ‖

= F f (t)

for each t ∈ G.
The preceding two bounds give F f ∼ e f . Invoking (a), we then also infer that F f ≺ d.
(c) From (b) and the summability condition on the sequence (cn), we directly infer that

e( fn),(cn)
≤ F( fn),(cn) as well as

F( fn),(cn) ≤

∑
n

cn
√

2‖ fn‖∞
√

e fn
≤

(
2
∑

n

cn‖ fn‖∞

)1/2√
e( fn),(cn)

.

This gives
e( fn),(cn)

∼ F( fn),(cn).

From (a) and the summability condition on the sequence (cn), we also easily find
that e( fn),(cn)

≺ d . It remains to show that d ≺ e( fn),(cn)
. Now, by the assumptions,

the function e := e( fn),(cn) is a continuous pseudometric, which separates the points
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of X . Hence, e is a continuous metric. As X is a compact Hausdorff space, this metric
must then generate the topology as well by standard ‘uniqueness’ of a compact Hausdorff
topology (see, e.g., [19]). Thus, d is continuous with respect to the metric e, and vice versa.
Thus, d and e are equivalent. Therefore, the previous lemma gives d ∼ e. This finishes the
proof. �

4. Almost periodicity and d
We begin this section with a recollection on almost periodicity. We then discuss how almost
periodicity is compatible with ≺. Building on this and the results of the previous section,
we can then characterize almost periodicity of d in Lemma 4.4.

Recall that a subset T of G is called relatively dense if there exists a compact K ⊂ G
with Minkowski sum

T + K := {τ + k : τ ∈ T , k ∈ K }

equal to G. A uniformly continuous function F : G −→ C is called almost periodic (in the
sense of Bohr) if, for any ε > 0, the set

{t ∈ G : ‖F(t + ·)− F‖∞ ≤ ε}

is relatively dense. This is the case if and only if the hull of F , defined by

T(F) := {F(t + ·) : t ∈ G}
‖·‖∞

,

is compact. In this case, the hull has a unique group structure making it into a topological
group such that

j : G −→ T(F), t 7→ F(t + ·)

is a continuous group homomorphism. Clearly, the map j has dense range. Hence, the
group T(F) must be abelian. Moreover, the dual map

T̂(F)−→ Ĝ, γ 7→ γ ◦ j

is injective. Thus, any element γ ∈ T̂(F) can be considered as an element of Ĝ and this is
how we will think about elements of T̂(F).

As T(F) is a compact group, it carries a unique normalized invariant measure
and the elements of T̂(F) form an orthonormal basis in the Hilbert space L2(T(F))
consisting of (classes of) square integrable functions on T(F) with respect to this measure.
Consequently, any continuous function h on T(F) can then be expanded uniquely in a
Fourier type series

h =
∑

γ∈T̂(F)

ch
γ γ,

where the sum converges in the L2-sense. Now consider a continuous function H on G that
can be lifted to T(F), i.e. it has the form H = h ◦ j with a (necessarily unique) continuous
h on T(F). Then the frequencies of H are the elements of

{γ ◦ j : ch
γ 6= 0} ⊂ Ĝ.
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Clearly, one such function is given by H = δ ◦ j with the function δ : T(F)−→
C, δ(E)= E(0). In this case, the group generated by the frequencies of H can easily be
seen to be just T̂(F). For details on this reasoning as well as for further discussion of some
basic properties of frequencies used in this article, we refer the reader to the Appendix A.

We will be interested in proving almost periodicity of functions such as e for a
continuous pseudometric e on X , F f for f ∈ C(X) and F(cn),( fn) for fn ∈ C(X) and cn ≥ 0
with

∑
n cn‖ fn‖<∞. Clearly, all of these are continuous pseudonorms and we will use

the following simple criterion to show their almost periodicity.

LEMMA 4.1. A continuous pseudonorm F : G −→ [0,∞) is almost periodic if and only
if, for every ε > 0, the set

{τ ∈ G : |F(τ )| ≤ ε} (1)

is relatively dense.

Proof. This is an immediate consequence of the equality

‖F(s + ·)− F(t + ·)‖∞ = F(s − t)

(applied with t = 0). �

Accordingly, proving relative denseness of sets as in (1) will be our main tool in dealing
with almost periodicity. As relative denseness of sets as in (1) is clearly preserved under
≺, we easily obtain the following consequence.

PROPOSITION 4.2. (Preservation of almost periodicity under ≺) Let F j : G −→ [0,∞),
j ∈ {1, 2}, be continuous pseudonorms with F1 ≺ F2. Then F1 is almost periodic if F2 is
almost periodic.

Proof. By F1 ≺ F2, relative denseness of {τ ∈ G : |F2(τ )| ≤ ε} for each ε > 0 implies
relative denseness of {τ ∈ G : |F1(τ )| ≤ δ} for each δ > 0. Now the proof follows from
Lemma 4.1. �

For our considerations, it will also be helpful that taking the hull is compatible with ≺.
The corresponding statement is the content of the next lemma.

LEMMA 4.3. (Compatibility of the hull construction with ≺) Let F j : G −→ [0,∞),
j ∈ {1, 2}, be continuous bounded pseudonorms with F1 ≺ F2. Then there exists a unique
uniformly continuous G-equivariant map π : T(F2)−→ T(F1) with π(F2)= F1. If T(F2)

is compact, this map is onto.

Proof. For j = 1, 2, set

O(F j ) := {F j (t + ·) : t ∈ G} ⊂ T(F j )

and note that O(F j ) is dense in T(F j ), j = 1, 2.
We now show existence and uniqueness of a map π as specified in the statement of the

lemma. As O(F2) is dense in T(F2), uniqueness is clear. As for existence, we use that F1

and F2 are pseudonorms and hence satisfy the equalities

(E1) ‖F1(t + ·)− F1(s + ·)‖∞ = F1(t − s)
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and
(E2) ‖F2(t + ·)− F2(s + ·)‖∞ = F2(t − s).

By F1 ≺ F2, we immediately obtain that F2(r)= 0 implies that F1(r)= 0. Combining this
with (E1) and (E2), we see that the map

π∗ : O(F2)−→ O(F1), F2(t + ·) 7→ F1(t + ·)

is well defined. Now, combining F1 ≺ F2 once more with (E1) and (E2), we infer that π∗

is uniformly continuous. Hence, it can be extended to a uniformly continuous map

π : T(F2)−→ T(F1).

By construction, π(F2)= π
∗(F2)= F1. The G-equivariance of π follows easily from the

properties of π∗.
If T(F2) is compact, then so is π(T(F2)) by continuity of π . Moreover, π(T(F2))

clearly contains O(F1), which is dense in T(F1). This easily proves the last statement. �

Remark. If F2 and F1 are almost periodic, then T(F2) and T(F1) carry a group structure.
In this case, it is not hard to see that the map π is, in fact, a group homomorphism. Indeed,
as π is equivariant, it respects the group operations on the set O(F2) defined in the proof of
the preceding lemma. By density of O(F2) in T(F2) and continuity of π , this then carries
over to the whole hull.

The following lemma gathers various equivalent versions of almost periodicity of d .
Our main result will be a rather direct consequence of this lemma.

LEMMA 4.4. Let (X, G, m) be a dynamical system and let d be a metric on X generating
the topology. Then the following assertions are equivalent.
(i) The function d is almost periodic.
(ii) For each f ∈ C(X), the function e f is almost periodic.
(iii) The set of f ∈ C(X) for which e f is almost periodic separates the points of X.
(iv) The function e( fn),(cn)

is almost periodic for one (each) set of functions fn in C(X)
and cn > 0, n ∈ N, with

∑
n cn‖ fn‖<∞ such that the ( fn) separate the points of X.

(v) For any f ∈ C(X), the function G −→ C, t 7→ 〈 f, Tt f 〉, is almost periodic.
(vi) For any f ∈ L2(X, m), the function G −→ C, t 7→ 〈 f, Tt f 〉, is almost periodic.

If one of these equivalent conditions holds, the group generated by the frequencies of d
is the same as the group generated by the frequencies of all functions of the form G −→
C, t 7→ 〈 f, Tt f 〉, for f ∈ L2(X, m).

Remark. It is not hard to see that, in all above statements, e
∗

could be replaced by F∗ (with
∗ = f or ∗ = ( fn, cn)). Indeed, e

∗
and F∗ are equivalent by Proposition 3.8, and hence, by

Proposition 4.2, one of them is almost periodic if and only if the other is almost periodic.

Proof. We first discuss the equivalence statement. Note that the functions in statements
(i) to (iv) are continuous pseudonorms. Thus, we can invoke Proposition 4.2 to study
their almost periodicity. Given this, the equivalence between statements (i) to (iv) is a
consequence of Proposition 3.8. Note that (iii) implies (iv) as each set of continuous
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functions that separates the points must contain a countable subset of functions that also
separates the points of X (due to compactness of the metric space X ).

The implication (vi) H⇒ (v) is clear and the implication (v) H⇒ (vi) follows easily by
density of C(X) in L2(X, m).

We now prove the equivalence between (ii) and (v). The crucial ingredient is the equality

F2
f (t)= 2‖ f ‖2 − 〈 f, Tt f 〉 − 〈 f, Tt f 〉, (2)

which follows by a direct computation. Recall that almost periodicity of F f is equivalent
to almost periodicity of e f (see the remark preceding the proof). Hence, the implication
(v) H⇒ (ii) is immediate from (2) (as almost periodicity is preserved under taking square
roots). Similarly, (ii) and (2) then yield almost periodicity of 〈 f, Tt f 〉 for any real-
valued f ∈ C(X). By a simple polarization argument, this then gives almost periodicity
of 〈 f, Tt g〉 for all real-valued continuous f, g. This, in turn, easily implies (v).

We now turn to the last statement. Set S f : G −→ C, S f (t)= 〈 f, Tt f 〉 for f ∈
L2(X, m). Whenever f ∈ C(X) is real valued, we have F2

f = 2‖ f ‖2 − 2S f by (2). Hence,
we can lift S f to a continuous function on T(F f ). As F f ≺ d due to Proposition 3.8,
we infer that F ′f ≺ d ′ from Lemma 3.7. By Lemma 4.3, this implies that there exists a
continuous map π : T(d)−→ T(F f ) mapping d(t + ·) to F f (t + ·) for any t ∈ G. Hence,
we can then lift S f to a continuous function on T(d) as well. By considering real and
imaginary parts, we can then lift S f to a continuous function on T(d) for any f ∈ C(X).
Taking limits and using that C(X) is dense in L2(X, m), we can then lift S f for any
f ∈ L2(X, m) to T(d). Hence, for any f ∈ L2(X, m), the set of frequencies of S f is
contained in the dual group of T(d), which, in turn, is the group generated by the
frequencies of d.

Conversely, consider F := F( fn),(cn) for a set of functions fn in C(X) and cn > 0,
n ∈ N, with

∑
n cn‖ fn‖<∞ such that the ( fn) separate the points of X . Then F ∼ d

by Proposition 3.8. Hence, by Lemma 4.3, there exists a continuous surjective equivariant
map T(F)−→ T(d). Thus, d can be lifted to a continuous function on T(F). In particular,
the frequencies of d are contained in the group generated by the frequencies of F .
The frequencies of F are, in turn, contained in a union of the frequencies of the F fn ,
n ∈ N. The frequencies of the F fn , however, are contained in the group generated by the
frequencies of the S fn as F fn can clearly be lifted to T(S fn ) by (2). �

5. A characterization of a discrete spectrum
In this section, we state and prove our main result which gives a characterization of
dynamical systems with discrete spectra.

THEOREM 5.1. (Characterizing a discrete spectrum) Let (X, G, m) be a dynamical
system. Let d be a metric on X inducing the topology. Then the following assertions are
equivalent.
(i) The dynamical system (X, G, m) has a discrete spectrum.
(ii) The function d is almost periodic.
If one of these equivalent conditions holds, then the group of eigenvalues of (X, G, m)
equals the group generated by the frequencies of d.
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Remark. If d is almost periodic, then the group generated by its frequencies is the dual
group of T(d) (as follows from the general discussion above). Moreover, it is not hard to
see that this group is also given as the Hausdorff completion of G with respect to d ′.

Proof. We first deal with the equivalence statement. By Lemma 4.4, the function d is
almost periodic if and only if G −→ C, t 7→ 〈 f, Tt f 〉 = S f (t) is almost periodic for any
f ∈ L2(X, m). This, in turn, is a well-known characterization of a discrete spectrum.
Indeed, for any f ∈ L2(X, m), there exists a unique measure µ f on Ĝ with

〈 f, Tt f 〉 =
∫

Ĝ
γ (t) dµ f (γ )

(see, e.g., [19]). Now, a discrete spectrum just means that all these measures are point
measures and pure pointedness of µ f is equivalent to almost periodicity of t 7→ 〈 f, Tt f 〉
(see, e.g., [18] for a recent discussion).

We now turn to the second statement of the theorem. By the last statement of
Lemma 4.4, the group generated by the frequencies of d is the group generated by the
frequencies of the S f , f ∈ L2(X, m). The frequencies of S f , however, are just the atoms
of the measures µ f . Hence, they generate the group of eigenvalues. �

It is possible to rephrase the result in terms of almost periods. This will clarify
the relationship between our result and earlier results. Whenever e is a continuous
pseudometric on X , a t ∈ G is called a measure-theoretic ε-almost period of e if

m({x ∈ X : e(x, t x) > ε}) < ε.

LEMMA 5.2. (Almost periodicity and measure-theoretic ε-almost periods) Let e be a
continuous pseudometric on X. Then the following assertions are equivalent.
(i) For any ε > 0 the set of measure-theoretic ε-almost periods of e is relatively dense.
(ii) The function e is almost periodic.

Proof. (i) H⇒ (ii). We have to show that the set {t ∈ G : e(t)≤ ε} is relatively dense for
any ε > 0 (compare Lemma 4.1). Let ε1 > 0 with

ε1‖e‖∞ + ε1 < ε

be given. Choose a measure-theoretic ε1-almost period t of e and set

M := {x ∈ X : e(x, t x) > ε1}.

Then a direct computation gives

e(t)=
∫

M
e(x, t x) dm +

∫
X\M

e(x, t x) dm ≤ ε1‖e‖∞ + m(X \ M)ε1 < ε.

As the set of measure theoretic ε1-almost periods is relatively dense by (i), the desired
statement follows.

(ii) H⇒ (i). This follows by mimicking an argument given in the proof of Lemma 3.7.
Let ε > 0 be given. By (ii), the set {t ∈ G : e(t) < ε2

} is relatively dense. For any t in this
set, we obtain, with N := {x ∈ X : e(x, t x) > ε},

εm(N )≤
∫

X
e(x, t x) dm = e(t) < ε2

and, hence m(N ) < ε. This finishes the proof. �
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From the previous lemma and the main result, Theorem 5.1, we directly obtain the
following consequence.

COROLLARY 5.3. Let (X, G, m) be a dynamical system and let d be a metric on X
inducing the topology on X. Then the following assertions are equivalent.
(i) For any ε > 0, the set of measure-theoretic ε-almost periods of d is relatively dense.
(ii) The dynamical system has a discrete spectrum.

Remark. The implication (i)H⇒ (ii) of the corollary is proved as [23, Theorem 3.2] (under
an additional ergodicity assumption). A partial converse is also proved in Proposition 3.3 of
that paper. This converse needs an additional requirement of continuity of eigenfunctions.

We can also derive the following consequence.

COROLLARY 5.4. Let (X, G, m) be a dynamical system. Let F be a family of continuous
functions on X, which separates the points of X. Then the following assertions are
equivalent.
(i) For any ε > 0 and each f ∈ F , the set of ε-almost periods of e f is relatively dense.
(ii) The dynamical system has a discrete spectrum.

Proof. (ii) H⇒ (i). This follows from combining the implication (i) H⇒ (ii) of Theorem
5.1, the implication (i) H⇒ (ii) of Lemma 4.4 and the first lemma of this section.
(This reasoning actually works for any f ∈ C(X) and not only for f ∈ F .)

(i) H⇒ (ii). This follows from combining the first lemma of this section with the
implication (iii) H⇒ (i) of Lemma 4.4 and Theorem 5.1 (ii) H⇒ (i). �

Remark. A possible choice of the family F is given as d(x, ·), x ∈ X .

6. Connection to the autocorrelation measure
Our considerations are motivated by the study of diffraction theory for quasicrystals.
Diffraction theory for quasicrystals and the relationship with dynamical systems has gained
substantial attention in the last two decades. Indeed, from the very beginning, tiling and
point set dynamical systems with discrete spectra have played a key role in the study of
quasicrystals [6, 20–24]. For recent discussions containing further references, we refer the
interested reader to the surveys [3, 15] and the corresponding parts of [16]. In this section,
we briefly sketch the necessary background to put our main result into this context.

As discussed in [2], diffraction theory for quasicrystals can be conveniently set up in
the framework of translation bounded measures on a locally compact, σ -compact abelian
group G (see [17, 18] for generalizations). Here, we follow [2] to which we refer for
further details.

Let Cc(G) be the space of continuous functions on G with compact support. A measure
µ on G is called translation bounded if its total variation |µ| satisfies

sup
t∈G
|µ|(t +U ) <∞

for one (all) relatively compact open U in G. The set of all translation bounded measures
is denoted by M∞(G). It is equipped with the vague topology. There is a natural action
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α of G on M∞(G) by translations, where ,for t ∈ G and µ ∈ M∞(G), the measure αt (µ)

satisfies αt (µ)(ϕ)= µ(ϕ(· − t)) for all ϕ ∈ Cc(G). Whenever X is a compact subset of
M∞(G) which is invariant under the translation action and m is an invariant probability
measure on X , we call (X, G, m) a dynamical system of translation bounded measures or
just a TMDS for short. Such a system admits a canonical map

N : Cc(G)−→ C(X) with Nϕ(µ)=
∫
ϕ(−s) dµ(s).

Let us emphasize that the existence of such a map is a distinctive feature of TMDSs
compared with general dynamical systems. Then there exists a unique translation bounded
measure γ on (X, G, m) with

γ ∗ ϕ ∗ ϕ̃(t)= 〈Nϕ, Tt Nϕ〉 (3)

for all ϕ ∈ Cc(G) and all t ∈ G. Here, ∗ denotes the convolution and ϕ̃(t)= ϕ(−t). The
measure γ is called the autocorrelation of the TMDS. This measure allows for a Fourier
transform γ̂ which is a (positive) measure on Ĝ. A main result of the theory is the following
theorem.

THEOREM. The TMDS (X, G, m) has a discrete spectrum if and only if the measure γ is
strongly almost periodic. In this case, the group of eigenvalues of (X, G, m) is the group
generated by {k ∈ Ĝ : γ̂ ({k}) > 0}.

Remarks.
(a) The measure γ is called strongly almost periodic of γ ∗ ϕ is almost periodic (in the

sense of Bohr) for all ϕ ∈ Cc(G).
(b) The above theorem is usually formulated with the assumption that the diffraction

measure γ̂ is a pure point measure. However, as is well known (see, e.g., [4,
Proposition 7 and Theorem 4] for a discussion in the context of aperiodic order),
the measure γ is strongly almost periodic if and only if γ̂ is a pure point measure.

(c) The theorem has a long history. The connection between the autocorrelation and
point spectrum goes back to work of Dworkin [6]. The first statement giving an
equivalence (in the more restricted setting of uniquely ergodic dynamical systems
of point sets satisfying the regularity requirement of finite local complexity) can be
found in [14]. This was then generalized in [12] to rather general point processes and
in [2] to the context discussed in this section. A unified treatment of [2] and [12] was
given in [18]. Recently, an even more general result was given in [17].

Clearly, the preceding theorem is quite close to our main result. Pure pointedness of
the spectrum is characterized by almost periodicity of a suitable function (in this case, the
measure γ ) and the group of eigenvalues is generated by the frequencies of the function
(in this case, the atoms of the diffraction measure). In fact, it is easy to derive the previous
result from our main result (provided the group is metrizable). We leave the details to the
reader.
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A. Appendix. Frequencies of almost periodic functions
In this appendix, we gather some facts on frequencies of almost periodic functions used in
the main body of the text. All of these facts are certainly well known but may not easily be
found in the literature in the way we need it above. For background and further details on
results used in this appendix, we refer the reader to [5, 7, 19].

The basic idea is that any almost periodic function on G can be ‘expanded’ in a sum of
the form

∑
γ∈Ĝ cγ γ with cγ ∈ C. The (countably many) γ ∈ Ĝ with cγ 6= 0 are then the

frequencies of the almost periodic function. It does require some care to make sense of the
sum and we include a discussion next.

Equip Ĝ with the discrete topology and denote the arising discrete group by Ĝdisc.
The identity κ : Ĝdisc −→ Ĝ, γ 7→ γ, is then clearly a continuous surjective group
homomorphism. By Pontryagin duality, the dual group Gb of Ĝdisc is then compact and
there exists an injective group homomorphism ι : G −→ Gb. The group Gb is known
as Bohr compactification of G. Whenever F is an almost periodic function on G with
associated map j : G −→ T(F), j (t)= F(t + ·), the injective map

T̂(F)−→ Ĝ, γ 7→ γ ◦ j

factors through Ĝdisc, i.e. it can be expressed as a κ ◦ λ with a continuous group
homomorphism λ : T(F)−→ Ĝdisc. Hence, Pontryagin duality gives that there exists a
continuous surjective group homomorphism p : Gb −→ T(F) with j = p ◦ ι. This is a
crucial feature of Gb. It implies, in particular, that any almost periodic function F on G
can (uniquely) be written as Fb ◦ ι with a continuous function Fb on Gb.

As Gb is a compact group, it carries a unique normalized Haar measure and the elements
of Ĝb = Ĝdisc form an orthonormal basis of the corresponding L2-space over Gb. In
particular, any continuous function H on Gb admits a Fourier type expansion

H =
∑

γ∈Ĝdisc

cH
γ γ,

where the cH
γ ∈ C satisfy

∑
|cH
γ |

2 <∞.
Now, whenever F is an almost periodic function on G, Fb admits such a Fourier

type expansion and this provides a precise version of the desired expansion of F . More
specifically, the γ ∈ Ĝ (considered as elements of Ĝdisc) with cFb

γ 6= 0 are called the
frequencies of F .
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As a direct consequence of the preceding considerations, we see that the frequencies of
the almost periodic F =

∑
n∈N Fn are contained in the union of the frequencies of the Fn

whenever the Fn are almost periodic on G with
∑

n∈N ‖Fn‖∞ <∞.
Of course, the frequencies of an almost periodic function can also be expressed in

terms of its hull. More specifically, consider an almost periodic F . Then the elements of
T̂(F) provide an orthonormal basis of the Hilbert space L2(T(F)) of (classes of) square
integrable functions on T(F) with respect to the unique normalized Haar measure on
T(F). In particular, any continuous h : T(F)−→ C can be written as

h =
∑

γ∈T̂(F)

ch
γ γ

and the γ ∈ T̂(F) with ch
γ 6= 0 are called the frequencies of h. Now assume that the almost

periodic function H can be lifted to T(F), i.e. it arises as H = h ◦ j with a continuous h
on T(F). Then

Hb = h ◦ p

(as Hb ◦ ι= H = h ◦ j = h ◦ p ◦ ι). This easily gives that the set of frequencies of H is
just the set of frequencies of h, where T̂(F) is considered as a subgroup of Ĝ via the map
j . In particular, the set of frequencies of H is contained in T̂(F).

For us, the special case H = δ ◦ j with δ : T(F)−→ C, δ(E)= E(0) will be
particularly relevant. In this case, the group generated by the frequencies of H is the whole

group T̂(F). To see this, assume that γ ∈ T̂(F) is perpendicular to the group generated by
the frequencies of H . As δ can clearly be expressed as a series invoking these frequencies,
γ must then be perpendicular to δ. As we consider the group generated by the frequencies,
γ must then also be perpendicular to the constant function with value 1 as well as to the
complex conjugate δ of δ. This can easily be seen to imply that γ is perpendicular to all
functions from the algebra generated by the constant functions together with the functions
δ( j (t)+ ·) and δ( j (t)+ ·) for t ∈ G. As this algebra clearly separates the points of T(F),
contains the constant functions and is invariant under complex conjugation, it is dense
in the algebra of continuous functions on T(F) by the Stone–Weierstrass theorem. This
gives that γ is perpendicular to all continuous functions on T(F), and hence it must vanish
everywhere. This is a contradiction.
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