CORRIGENDUM

K. SZYMICZEK, Grothendieck groups of quadratic forms and G-equivalence of fields

(Proc. Cambridge Phil. Soc. 73 (1973), 29-36

Theorem 2 of the paper has been proved under stronger hypotheses than stated explicitly. Denote by $g_2(k)$ the subset $g(k) = k^*/k^{*2}$ represented by the form (1, 1) over k and by $U_2(k)$ the set of equivalence classes of 2-dimensional universal quadratic forms over k. What is really proved is the following.

THEOREM 2. (a) The reality of the field k is invariant under G-equivalence.

(b) If there exists an isomorphism $\phi: G(k_1) \to G(k_2)$ sending 1-dimensional quadratic forms over k_1 into 1-dimensional quadratic forms over k_2 then

(i) card $g(k_1) = card g(k_2)$,

(ii) card $g_2(k_1) = card g_2(k_2)$,

(iii) card $U_2(k_1) = card U_2(k_2)$.

The original argument went wrong in the assumption at the top of page 34 that the dimension-preserving isomorphism ϕ takes 1-dimensional forms into forms, not just elements of G. However, note the following examples of G-equivalent fields showing that card g(k), card $g_2(k)$, card $U_2(k)$ are not G-invariants: $k_1 = \mathbf{Q}_p$ (the *p*-adic field) with $p = 1 \pmod{4}$, and k_2 an algebraic extension of the rationals such that

 $g(k_2) = \{1, 2\} \times \{1, 3\} \times \{1, 17\}$

(constructed according to Lemma 4). Here in both cases

$$G = \mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}$$

and card g(k), card $g_2(k)$, card $U_2(k)$ take the values 4, 4, 1 for $k = k_1$ and 8, 8, 8 for $k = k_2$.