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ASYMPTOTICS FOR LOCAL MAXIMAL
STACK SCORES WITH GENERAL
LOOP PENALTY FUNCTION

NIELS RICHARD HANSEN,∗ University of Copenhagen

Abstract

A stack is a structural unit in an RNA structure that is formed by pairs of hydrogen bonded
nucleotides. Paired nucleotides are scored according to their ability to hydrogen bond.
We consider stack/hairpin-loop structures for a sequence of independent and identically
distributed random variables with values in a finite alphabet, and we show how to obtain
an asymptotic Poisson distribution of the number of stack/hairpin-loop structures with a
score exceeding a high threshold, given that we count in a proper, declumped way. From
this result we obtain an asymptotic Gumbel distribution of the maximal stack score.
We also provide examples focusing on the computation of constants that enter in the
asymptotic distributions. Finally, we discuss the close relation to existing results for
local alignment.
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1. Introduction

In the attempt to understand the molecular structure of RNA molecules given the primary
sequence of RNA nucleotides – a sequence from the alphabet {a,c,g,u} – a lot of work
has been invested in the development of models and algorithms for correctly predicting the
secondary structure of an entire RNA sequence [12], [16], [22]. The objective is to maximize a
score function – typically minus the free energy – over the space of secondary structures. There
has been less focus on the distribution of the optimal score for random RNA sequences. To
this end, an interesting theoretical result can be found in [21]. Letting Mn denote the maximal
score for a sequence of n independent and identically distributed (i.i.d.) random variables from
the RNA alphabet {a,c,g,u} Xiong and Waterman [21] found the proper scaling of Mn to
obtain strong limit results. More precisely, they showed that for a specific scoring mechanism
there is a phase transition in the parameter space between a logarithmic growth phase and
linear growth phase of Mn. It was, furthermore, conjectured in [21] that for parameters in the
logarithmic phase the normalized, with maximal score θ∗Mn − log(K∗n) for some θ∗, K∗ > 0
asymptotically follows a Gumbel distribution. The conjecture is based upon an analogy to
local alignment of two independent sequences of i.i.d. random variables. Moreover, Xiong
and Waterman reported that a simulation seems to confirm the conjecture. The almost sure
limit, limn→∞ Mn/ log n, necessarily equals 1/θ∗, and this limit can in turn be related to the
log-moment generating functions for Mn, n ≥ 1. The constant K∗ is, however, not given
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Local stack scores with general loop penalty 777

any representation and there is no theoretical results that confirm the conjecture. For local
alignment the analogous – and likewise conjectured – asymptotic result plays an important role
in the assessment of statistical significance of local alignments as implemented for instance in
BLAST [1], [2]. A completely satisfactory, theoretical confirmation of this practice is, however,
still lacking – except for gapless local alignment, see [8], or gapped local alignment with some
control on the number of gaps, see, e.g. [19].

We offer a solution to a more modest problem for RNA structure than the conjecture in [21].
We will restrict our attention to the maximal score over stacks with a single hairpin loop,
i.e. no internal loops, bulges, or multibranch loops are allowed in the structure; see [11] for
definitions and a thorough treatment of secondary structure components. This greatly reduces
the complexity of the problem and allows us, as for local, gapless alignment, to employ results
from the theory of random walks. What we show is that by counting the number of stack/hairpin-
loop structures with a high score in a suitably declumped way, we can obtain a Poisson limit by
using the results in [4]. The major result is Theorem 1, which confirms the conjecture in [21]
in our more restrictive setup. In one respect we are, however, capable of being more general
than in [21], and that is in the choice of penalty function on the length of the hairpin loop.
Where Xiong and Waterman [21] considered a linear penalty function, we handle a completely
general penalty function. First of all we obtain a condition in terms of the penalty function for
the theorem to hold. Second we also obtain rather explicit representations of the constant K∗,
and we investigate through several examples how the choice of penalty function influences this
constant.

A complementary approach that relies on Poisson approximation techniques similar to those
used in the present paper was given by Reinert and Schbath [17]. Their results focused on the
occurrence of words and word collections in stationary Markov chains. As an application of
their general results, they investigated the occurrence of certain word collections that can form
stack/hairpin-loop structures. In the present paper the set of stack/hairpin-loop structures whose
score exceeds a threshold can also be understood simply as a collection of words. What we
focus on, however, is an asymptotic scenario where we understand precisely how the probability
of finding a word from the collection decays with the threshold. Moreover, the general
phenomena that some words are self-overlapping, which forces Reinert and Schbath [17] to
consider a compound Poisson approximation in general, is shown to have vanishing probability
asymptotically in the setup of the present paper; see also Remark 2.

If we choose not to penalize the length of the hairpin loop, the result in Theorem 1 is no
longer valid. We discuss in Section 7 this particular situation and its intimate connection to
results for local, gapless alignment.

Two appendices are included. Appendix A contains some technical inequalities that can
be formulated in a more general framework than explicitly needed in the paper. Appendix B
summarizes the results from [10], upon which the present paper relies heavily.

2. Local stacks and stack scores

Let (Xk)k≥1 be a sequence of random variables taking values in a finite set E, and let
f : E × E → R and g : N0 → (−∞, 0] be given functions. We define, for i and j and δ ≥ 0
satisfying 1 ≤ i − δ, i ≤ j + 1, and j + δ ≤ n, the random variables

Sδ
i,j =

δ∑
k=1

f (Xi−k, Xj+k).
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Figure 1: A graphical illustration of a stack/hairpin-loop structure for the random variables X1, . . . , X13.
This structure corresponds to (i, j, δ) = (5, 9, 3) ∈ Hn and the length of the hairpin-loop consisting of

the variables X5, . . . , X9 is 5.

Then Sδ
i,j +g(j − i +1) is the (loop-length penalized) score of the stack/hairpin-loop structure

as given by (i, j, δ); see Figure 1. Let

Hn = {(i, j, δ) | δ ≥ 0, 1 ≤ i − δ, i ≤ j + 1, j + δ ≤ n},
and define

Mn = max
(i,j,δ)∈Hn

{Sδ
i,j + g(j − i + 1)}

as the maximal, penalized score.
We define a matrix (Ti,j )i,j≥1 by Ti,j = g(0) for j < i, Ti,i = g(1), and recursively by

Ti,j = max{Ti+1,j−1 + f (Xi, Xj ), g(j − i + 1)}
for j > i. Thus, we fill the matrix diagonally from the main diagonal towards the upper-right
corner, and the final matrix becomes an upper triangular matrix. It follows that

Ti,j = max
(i′,j ′,δ)∈Hn

i′−δ=i,j ′+δ=j

{Sδ
i′,j ′ + g(j ′ − i′ + 1)}, (1)

by verifying that the right-hand side fulfills the recursion.
If we introduce the set of upper triangular indices

H0
n = {(i, j) | 1 ≤ i, i ≤ j + 1, j ≤ n},

it can be partitioned into diagonals in the following way. We say that (i, j) and (i′, j ′) are
on the same diagonal if i′ + j ′ = i + j (or equivalently i′ − i = j − j ′), and we call this
partition I . Formally, we introduce an equivalence relation ‘∼’on the set H0

n by (i, j) ∼ (i′, j ′)
if i′ +j ′ = i+j and we can write I = H0

n/ ∼. Since i+j is constant for (i, j) ∈ d, d ∈ I , we
can define |d| = i + j taking any (i, j) ∈ d . We let I0 ⊆ I denote the set of diagonals where
|d| is odd and I1 ⊆ I the set of diagonals where |d| is even. We note that for any (i, j, δ) ∈ Hn

with (i, j) ∈ d then |d| is even if and only if the hairpin-loop length j − i + 1 is odd. Also,
note that |d| takes values in 2, 3, . . . , 2n, that I0 contains n − 1 diagonals, and that I1 contains
the remaining n diagonals.

Introducing
Md

n = max
(i,j)∈d

Ti,j

as the maximum of the Ti,j -values along the diagonal d we find, due to (1) and the fact that the
set of diagonals I forms a partition of H0

n , that

Mn = max
d∈I

Md
n = max

1≤i,j≤n
Ti,j .
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Thus, the maximum Mn can be computed as the maximum over the entries in the Ti,j -matrix.
Defining, for t ≥ 0, the counting variable

Cn(t) =
∑
d∈I

1{Md
n>t},

(where 1{·} is the indicator function) we obtain

(Mn ≤ t) = (Cn(t) = 0).

3. Results

We will assume that (Xk)k≥1 is embedded in a doubly infinite sequence (Xk)k∈Z of i.i.d.
variables. We use the doubly infinite framework solely for notational convenience, for instance
when introducing certain processes below. We let π denote the distribution of X1 and assume
(without loss of generality) that π(x) > 0 for all x ∈ E. We will assume that

f (x, y) > 0 (2)

for some x, y ∈ E, and that f is not of the form

f (x, y) = f1(x) + f2(y)

for some f1, f2 : E → R. For convenience, we will also assume that f does not take values
on a lattice; see Remark 1, below. That is, the set {f (x, y) | x, y ∈ E} is not contained in a set
of the form δZ for some δ > 0.

We let
µ =

∑
x,y∈E

f (x, y) π(x)π(y)

denote the expectation of f (X−1, X1) and we let

ϕ(θ) =
∑

x,y∈E

exp(θf (x, y))π(x)π(y)

denote the Laplace transform of the distribution of f (X−1, X1). It is a convex C∞-function
and µ = ∂θϕ(0). If µ < 0 then there is a positive solution, θ∗, to the equation ϕ(θ) = 1 since
ϕ(θ) → ∞ for θ → ∞ due to (2). It is unique due to convexity.

Following Appendix B we introduce two stochastic processes by the recursive definitions:

T 0
n = max{T 0

n−1 + f (X−n, Xn), g(2n)}, T 0
0 = g(0),

and
T 1

n = max{T 1
n−1 + f (X−n, Xn), g(2n + 1)}, T 1

0 = g(1).

According to Appendix B both processes (T i
n)n≥0, i = 0, 1, are random walks reflected in a

barrier given by evaluating g in either the even or the odd integers. We note that for d ∈ Ii, i =
0, 1, the diagonal (Ti,j )(i,j)∈d in the Ti,j -matrix has the same distribution as (a finite part of)
the process (T i

n)n≥0.
By Theorem 4 in Appendix B it follows that if

Mi := sup
n≥0

T i
n < ∞ almost surely (a.s.) (3)
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for i = 0, 1, then there are constants K∗
0 and K∗

1 such that

P(Mi > x) ∼ K∗
i exp(−θ∗x)

as x → ∞ and for i = 0, 1. Define

K∗ = K∗
0 + K∗

1 . (4)

We should note that for (3) to hold it is obviously necessary (but not sufficient) that µ < 0.
With g ≡ 0, it follows, due to (2), that P(Mi = ∞) = 1 even when µ < 0, and therefore (3)
can be viewed as a condition on the penalty function g; see also Section 4 and Appendix B.

Theorem 1. Assume that µ < 0, that θ∗ > 0 solves ϕ(θ) = 1, that condition (3) is fulfilled,
and that K∗ is defined by (4). For x ∈ R, let

tn = log K∗ + log n + x

θ∗ , (5)

then with D(Cn(tn)) denoting the distribution of Cn(tn) and ‖ · ‖ denoting the total variation
norm, it holds that

‖D(Cn(tn)) − Poi(exp(−x))‖ → 0

for n → ∞. In particular,

P(Mn ≤ tn) → exp(−exp(−x))

for n → ∞.

Remark 1. To give a precise asymptotic distribution for Mn if f takes lattice values, for
example integer values, we need to assume that g also takes values on the same lattice. If f

and g take integer values, say, and the greatest common divisor of f (x, y) for x, y ∈ E is 1,
then Theorem 1 holds under the same assumptions but with the following modifications. With
xn ∈ [0, θ∗) being given as xn = θ∗(tn − �tn
), where �·
 denotes the integer part function,
then

‖D(Cn(tn)) − Poi(exp(−x + xn))‖ → 0

for n → ∞. In particular,

P(Mn ≤ tn) − exp(−exp(−x + xn)) → 0

for n → ∞. The proof of this is identical to the proof given below of Theorem 1 except that it
relies on Remark 2.4 in [10] instead of our Theorem 4.

4. The constant K∗

The value of the constantK∗ depends in a complicated way uponπ , f , andg. We discuss here
the representation of K∗

i as given in Appendix B, and some additional formulas for computing
the quantities that enter in this representation.

Where

Sn =
n∑

k=1

f (X−k, Xk)

https://doi.org/10.1239/aap/1189518638 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518638


Local stack scores with general loop penalty 781

is the random walk as in Appendix B, we introduce

Di := sup
n≥0

{g(2n + i) − Sn}

and
Ci = E∗(exp(θ∗Di))

for i = 0, 1. Here, E∗ denotes expectation under the exponentially changed measure P∗ as
introduced in Appendix B. According to Theorem 3 in Appendix B, Ci < ∞ if and only if
P(Mi < ∞) = 1. Note that (29), below, provides a useful criterion for verifying that Ci < ∞.
If Ci < ∞ it follows, from Theorem 4 in Appendix B, that

K∗
i = E∗(exp(θ∗Di)) E∗(exp(−θ∗B)) = CiC, (6)

where B is a positive random variable. From the definition of the distribution of B inAppendix B
the second factor in (6), C = E∗(exp(−θ∗B)), does not depend upon g but only upon π and
f . We conclude that

K∗ = (C0 + C1)C.

There are several ways to represent and compute C. With S+
n = max{Sn, 0}, [18, Corol-

lary 8.45] gives

C = exp{− ∑∞
n=1(1/n) E∗(exp(−θ∗S+

n ))}
θ∗π∗(f )

= exp{− ∑∞
n=1(1/n)[E(exp(θ∗Sn); Sn ≤ 0)) + P(Sn > 0)]}

θ∗π∗(f )
, (7)

which is a consequence of the Spitzer–Baxter identities. Here, π∗ is the distribution of
(X−1, X1) under P∗. An integral representation can also be given; see [18, Theorem 8.51],
and the subsequent remarks.

Equation (28) in Appendix B gives a series representation of Ci for i = 0, 1, which we
will use in the examples below. The formula is not analytically tractable but it can be used
in combination with simulations. For a linear penalty function g we can obtain another,
analytically more tractable, formula for computing Ci . If g(n) = αn for α < 0, then

S̃i,n = g(2n + i) − Sn = 2αn − Sn + αi

is a random walk (starting in αi) and Di is thus the maximum of a random walk. We may first
note that for the linear penalty function, (29) implies that Ci < ∞ whenever α < 0 and thus in
turn that (3) holds. It follows, from the Spitzer–Baxter identity, see [7, Theorem VIII.3.2], that

Ci = exp(θ∗αi) exp

{ ∞∑
n=1

1

n
[E∗(exp(θ∗S̃+

0,n)) − 1]
}
. (8)

5. Examples

We consider three examples in detail and focus on the value and computation of K∗. More
precisely, we focus on the computation of Ci for i = 0, 1 since this is a novel problem.
Computing C = E∗(exp(−θ∗B)) is in general not straightforward either, but it is a more
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classical problem; see [7] and [18]. Equation (7) will work for the purpose of the examples we
will consider, although in general it can be hard to compute the terms in the sum. Moreover, the
constant C is only related to the random walk (Sn)n≥0 and does not depend upon the penalty
function g, whereas the factors Ci, i = 0, 1, represent the effect of the penalty function.

Common to all three examples below is the score function f , which is taken as

f (x, y) =

⎧⎪⎪⎨⎪⎪⎩
log

p

p0
if x = y,

log
1 − p

1 − p0
if x �= y,

where p0 = ∑
x∈E π(x)2 and p0 < p < 1. We note that (if 0 < p0 < 1) then

µ = p0 log
p

p0
+ (1 − p0) log

1 − p

1 − p0
< 0,

and we also find that θ∗ = 1. Moreover, the simplicity will allow for some rather explicit
expressions. In all the examples below we will also take p0 = 1

2 . The function f is seen to be
nonlattice if and only if log(p/p0) and log((1 −p)/(1 −p0)) are linearly independent over Q.
In other words, f is nonlattice if and only if there are no integer solutions to the equation

n log
p

p0
+ m log

1 − p

1 − p0
= 0.

This provides a usable – though potentially complicated – criterion for checking whether f is
lattice or not. There does not seem to be a simpler way of determining which ps and p0s give
rise to a lattice f .

Let

Fn,p(k) =
k∑

m=0

(
n

m

)
pm(1 − p)n−m

denote the distribution function for the binomial distribution with parameters (n, p) and let
Fn,p(k) = 1 − Fn,p(k). Then with

n(p, p0) =
⌊

n log((1 − p0)/(1 − p))

log(p(1 − p0)/p0(1 − p))

⌋
,

we find that
E(exp(Sn); Sn ≤ 0) = Fn,p(n(p, p0))

and
P(Sn > 0) = Fn,p0(n(p, p0)).

This gives

C = exp{−∑∞
n=1(1/n)[Fn,p(n(p, p0)) + Fn,p0(n(p, p0))]}

p log(p/p0) + (1 − p) log((1 − p)/(1 − p0))
. (9)

Example 1. Consider the linear penalty function g(n) = αn, α < 0, for which we know that
(3) holds. Letting

n′(α, p, p0) =
⌊

n(log((1 − p)/(1 − p0)) − α)

log(p0(1 − p)/p(1 − p0))

⌋
,
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Figure 2: Considering the linear penalty function g(n) = αn, α < 0, we see (a) C0 as a function of α

for three different choices of p and p0 = 1
2 . We also show examples of sample paths for the process

(T 0
n )n≥0 (b) for different choices of α, p = 2

3 , and p0 = 1
2 .

Table 1: The value of C with p0 = 1
2 , computed using (9), decreases as a function of the parameter p,

but so does µ. Thus, increasing p results in a random walk (Sn)n≥0 with a larger negative drift and a
smaller value of C.

p 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

µ −0.005 −0.020 −0.047 −0.087 −0.144 −0.223 −0.337 −0.511
C 0.96 0.92 0.89 0.86 0.83 0.80 0.78 0.76

we find, from (8), that

Ci = exp(2αi) exp

{ ∞∑
n=1

1

n
[exp(2αn)Fn,p0(n

′(α, p, p0)) + Fn,p(n′(α, p, p0)) − 1]
}
.

Using this formula, in Figure 2 we plot a graph of C0 as a function of α for three different
choices of p (and with p0 = 1

2 ). The infinite sum is truncated to 1000 terms. A small α results
in larger values of M0 in general and there is a corresponding increase in C0. The effect of
changing p is also seen. Larger values of p result in a process with larger fluctuations, which
increases the effect of the penalty function on the value of M0, and we see the corresponding
increase in the value of C0. Thus, the effect of increasing p goes in the opposite direction for C0
compared C, which decreases for increasing p; see Table 1. The behavior of C1 parallels C0.

Example 2. An alternative to the linear penalty function is a piecewise linear penalty function,
where

g(n) = α max{n − n0, 0}
for α < 0 and n0 ∈ N0. Trivially, (29) implies that Ci < ∞ and thus in turn that (3) holds.
Taking n0 = 0 we obtain the linear penalty function, but for n0 > 0 we obtain zero penalty
up to n0 and then the linear penalty from that point. We could choose such a penalty function
if we want to favor small loops in a nonlinear way. Figure 3 shows, based on simulations
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−0.020 −0.015 −0.010 −0.005

−2

−4

n0 = 10
n0 = 100
n0 = 200

n0 = 10
n0 = 100
n0 = 200

Figure 3: Considering the piecewise linear penalty function g(n) = α max{n − n0, 0}, α < 0, n0 ∈ N0,
we see (a) C0 as a function of α for different choices of n0 and with p = 2

3 and p0 = 1
2 . We also show

examples of sample paths for the process (T 0
n )n≥0 (b) for different choices of n0.

of D0
n (under P) and the representation (28) of C0, the value of C0 as a function of α for

n0 = 10, 100, 200 and with p = 2
3 and p0 = 1

2 . The infinite sum is truncated to 10 000 terms,
and since all terms in (28) are positive this gives the upper bound

∞∑
n=10 001

exp(g(n)) = exp(α(10 001 − n0))

1 − exp(α)

on the error due to the truncation. For n0 = 200 and α = −0.001 this upper bound is equal
to 0.055. In addition to this (small) truncation error, there is the random error due to the
simulations. We used 500 i.i.d. replications of D0

n to estimate C0 using (28) and the largest
estimate of the standard error (obtained for n0 = 200 and α = −0.001) was just below 0.25.
The same conclusion about the effect of α as for the linear penalty function holds, i.e. small
values of α give the largest value of C0. The effect of n0 is also clear. We see, as we would
anticipate, that C0 increases for increasing n0.

Example 3. Consider the logarithmic penalty function g(n) = α log n, α < −1. To show that
(3) holds using (29) we need α < −1. We can show that if α > −1 then P(Mi = ∞) = 1;
see [10, Example 2.7]. Figure 4 shows three sample paths for α = −2, −1.1, −0.5 (where
Ci = ∞). We can hardly see the effect of the penalty function when α = −2. Figure 4 also
shows C0, computed as in Example 2 using simulations and (28), as a function of α for various
values of p and p0 = 1

2 . For this computation we truncated the sum at 4000 terms, which for
α = −1.5 yields the upper bound 0.032 on the truncation error. However, for α = −1.1 this
upper bound is 4.36, and the improvement by increasing the number of terms to 10 000, say, is
not serious – the upper bound is then 3.98. This is due to the slow convergence of the series

∞∑
n=1

exp(α log n) =
∞∑

n=1

nα,

especially for α close to −1, which also renders the representation (28) less useful. Despite
this deficiency, we see that the value of C0 is close to 1 for most values of α, and only when p
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Figure 4: Considering a logarithmic penalty function g(n) = α log(n) we need α < −1 for C0 to be
finite, and we see (a) C0 as a function of α for different choices of p and p0 = 1

2 . We also see examples
of sample paths for the process (T 0

n )n≥0 (b) for different choices of α, p = 2
3 , and p0 = 1

2 .

approaches 1 or α is close to the critical value −1 does C0 take values that are notably larger
than 1. In conclusion, it seems that the initial steepness of a logarithmic penalty function when
|α| is sufficiently large almost completely prevents hairpin-loops in random sequences, which
leads to Ci � 1, i = 0, 1. When α approaches −1 (or exceeds −1) the hairpin-loops are not
as heavily penalized, but then we might actually question the applicability of the asymptotic
results, and for α > −1 Theorem 1 can no longer be applied.

6. Proofs

The proof of Theorem 1 is an application of [3, Theorem 1], which in turn is a consequence
of the Chen–Stein method. The sum of the indicator variables 1{Md

n >tn} is unfortunately not
directly suitable for an application of [3, Theorem 1]. We will therefore band-limit the upper
triangular matrix (Ti,j )i,j before taking the maximum for each d ∈ I . For a given band-limiting
sequence b = (bn)n≥0 we define, for d ∈ I ,

Md,b
n = max

(i,j)∈d
|j−i|≤2bn

Ti,j

as the band-limited maximum of the diagonal given by d. Throughout we will assume that
2bn ≤ n and that

lim
n→∞ b−1

n log n = lim
n→∞ n−εbn = 0 (10)

for all ε > 0. The band-limitation is used in the present paper as a technical tool with the sole
purpose of proving that

∑
d∈I 1{Md

n >tn} asymptotically follows a Poisson distribution. There
is, however, an additional, practical gain, since we will show that the sum of the band-limited,
diagonal maxima that exceeds tn asymptotically is equal to

∑
d∈I 1{Md

n >tn}. Thus, from a
practical point of view, we really only need to compute the values of Ti,j up to the band-limit,
and this can be a serious, computational advantage.

We define, for d ∈ I ,
Vd = 1{Md,b

n >tn} .
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In the framework of [3, Theorem 1] we need to define a neighborhood of dependence for the
variable Vd , i.e. a subset Bd ⊆ I such that, for d ′ �∈ Bd , Vd and Vd ′ are independent. If we, for
d ∈ I , define

Bd = {d ′ ∈ I | ‖d| − |d ′‖ ≤ 4bn},
it is a simple matter to verify that due to the band limitation the variables Vd and Vd ′ are indeed
independent if d ′ �∈ Bd .

With these definitions we rephrase [3, Theorem 1] in a suitable form.

Theorem 2. If
λn :=

∑
d∈I

E(Vd) → λ (11)

for n → ∞, and
β1,n =

∑
d∈I,d ′∈Bd

E(Vd) E(Vd ′) → 0, (12)

β2,n =
∑

d∈I,d ′∈Bd,d �=d ′
E(VdVd ′) → 0, (13)

for n → ∞, then ∥∥∥∥D

(∑
d∈I

Vd

)
− Poi(λ)

∥∥∥∥ → 0.

In fact, the bound ∥∥∥∥D

(∑
d∈I

Vd

)
− Poi(λn)

∥∥∥∥ ≤ 2(β1,n + β2,n)

always holds.

We verify conditions (11), (12), and (13) in the following series of lemmas.

Lemma 1. Under the assumptions given by (10), we have

λn =
∑
d∈I

E(Vd) → exp(−x)

for n → ∞.

Proof. The process (T i
n)n≥0 has the representation

T i
n = Sn + max

0≤k≤n
{g(2k + i) − Sk},

as discussed in Appendix B. Defining

τi(u) = inf{n ≥ 0 | T i
n > u},

we see that τi(u) is a stopping time with respect to the filtration (Fn)n≥0 defined in Appendix B,
and

Sτi(u) = u + Tτi(u) − u + Sτi(u) − Tτi(u)

≥ u − max
0≤k≤τi (u)

{g(2k + i) − Sk}
≥ u − sup

n≥0
{g(2n + i) − Sn}

= u − Di;
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hence, for A ∈ Fτi (u) with A ⊆ (τi(u) < ∞), we obtain, from (26),

P(A) ≤ exp(−θ∗u) E∗(exp(θ∗Di); A). (14)

Since T i
n − Sn = max0≤k≤n{g(2k + i) − Sk} converges P∗-a.s. to the finite limit Di , it also

follows, from nonlinear renewal theory, that

τi(u)

u
→ 1

µ∗

in P∗-probability for u → ∞; see [18, Chapter IX] and, in particular, [18, Lemma 9.13].
Consequently,

τ(tn)

bn

= τ(tn)

log n

log n

bn

→ 0

in P∗-probability for n → ∞, since tn ∼ log n/θ∗; also, since E∗(exp(θ∗Di)) < ∞ by
assumption we obtain, in particular,

ri(n) := E∗(exp(θ∗Di); τ(tn) > bn) → 0

for n → ∞, which will prove to be useful.
Consider a diagonal, d ∈ Ii , with 2bn ≤ |d| ≤ n − 2bn. Then we have

E(Vd) = P(Md,b
n > tn) = P(Mi

bn
> tn),

where
Mi

bn
= max

0≤k≤bn

T i
k .

We see that
P(Mi > tn) = P(Mi

bn
> tn) + P(Mi

bn
≤ tn, M

i > tn)

and, since (Mi
bn

≤ tn, M
i > tn) = (bn < τi(tn) < ∞), it follows, from (14) (and the fact that

P∗(τi(u) < ∞) = 1), that

P(Mi
bn

≤ u, Mi > u) ≤ exp(−θ∗tn) E∗(exp(θ∗Di); τi(tn) > bn) = K1n
−1ri(n),

where K1 = exp(−x)/K∗. Using (14) again, we find, for any d ∈ Ii , that

E(Vd) ≤ P(Mi > tn) = P(τi(tn) ≤ ∞) ≤ Ki
2n

−1,

with Ki
2 = Ci exp(−x)/K∗. Since

(n−1) P(M0 > tn)+n P(M1 > tn) ∼ (n−1)K∗
0 exp(−θ∗tn)+nK∗

1 exp(−θ∗tn) → exp(−x)

as n → ∞, we see that

r2(n) := |(n − 1) P(M0 > tn) + n P(M1 > tn) − exp(−x)| → 0

as n → ∞. Summing up, we have∣∣∣∣∑
d∈I

E(Vd) − exp(−x)

∣∣∣∣ ≤
∑
d∈I0

| E(Vd) − P(M0 > tn)| +
∑
d∈I1

| E(Vd) − P(M1 > tn)|

+ |(n − 1) P(M0 > tn) + n P(M1 > tn) − exp(−x)|
≤ K1r0(n) + 4bnK

0
2 n−1 + K1r1(n) + 4bnK

1
2n−1 + r2(n)

→ 0

as n → ∞, by (10).
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Lemma 2. Under the assumptions given by (10), we have

β2,n =
∑

d∈I,d ′∈Bd

E(Vd) E(Vd ′) → 0

as n → ∞.

Proof. Using the bound
E(Vd) ≤ Ki

2n
−1

for d ∈ Ii , as found in the proof of Lemma 1, together with the fact that |Bd | ≤ 8bn, we find
that ∑

d∈I,d ′∈Bd

E(Vd) E(Vd ′) ≤ 8bnn(K0
2 + K1

2 )n−2 → 0

as n → ∞, by (10).

Lemma 3. Under the assumptions given by (10), we have

β3,n =
∑

d∈I,d ′∈Bd,d �=d ′
E(VdVd ′) → 0

as n → ∞.

The proof of this lemma is subdivided into a couple of additional lemmas. First we will
formulate and prove an exponential inequality, which is a rather standard consequence of
the Azuma–Hoeffding inequality. To do so, we find it beneficial to introduce a few graph
constructions.

Suppose that (V1, E1) and (V2, E2) are two graphs with finite vertex sets V1, V2 ⊆ N0. We
will assume that each vertex has precisely one edge (and there are no loops), i.e. the graphs
form perfect matchings of the vertex sets. We will in addition let E∞ denote a set of edges
that form a perfect matching on N0 such that E1 ⊆ E∞. The existence of such an extension of
the perfect matching on V1 is clear, and the purpose is solely to make some formulations more
convenient.

We let V = V1 ∩ V2 denote the common vertex set and let x = (xk)k≥0 denote an infinite
sequence of elements from E. Introduce, for k ∈ V ,

f 1
k (x) =

{
f (xk, xm) if {k, m} ∈ E1 and k < m,

f (xm, xk) if {k, m} ∈ E1 and m < k.

Define f 2
k for k ∈ V likewise but based on the edge set E2 instead. We then define

sV (x) =
∑
k∈V

f 2
k (x) − f 1

k (x).

In order to apply the Azuma–Hoeffding inequality, we need to verify that sV has a certain
Lipschitz property. If x = (xk)k≥0 and y = (yk)k≥0 satisfy that xk = yk for all k �∈
{k1, m1, k2, m2}, where {k1, m1}, {k2, m2} ∈ E∞, then

|sV (x) − sV (y)| ≤ 16 max
x,y∈E

|f (x, y)|. (15)

Indeed, there are at most four terms in the two sums that can differ and each of these differences
can trivially be bounded by 4 maxx,y∈E |f (x, y)|.
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Lemma 4. Let P̃ denote a probability measure such that under this measure (Xk)k≥0 forms a
sequence of random variables where (Xk, Xm) for {k, m} ∈ E∞ (and k < m) are independent.
Let SV = sV ((Xk)k≥0) and let ξV = Ẽ(SV ) denote the expectation of SV under P̃. If ξV < 0 it
holds that

P̃(SV ≥ 0) ≤ exp

(
− ξ2

V

2|V |η2

)
,

with

η = 16 max
x,y∈E

|f (x, y)|,

and with |V | denoting the number of elements in V .

Proof. By assumption, for each k ∈ V there exist unique m1(k), m2(k), m3(k) ∈ N0 such
that {k, m2(k)} ∈ E2 and {k, m1(k)}, {m2(k), m3(k)} ∈ E∞. We define a filtration (Fk)k∈V by

Fk = σ {Xk′ , Xm1(k′), Xm2(k′), Xm3(k′), k′ ∈ V, k′ ≤ k}

and, for k ∈ V , the random variable

Zk = E(SV − ξV | Fk).

Then (Zk, Fk)k∈V is a martingale with mean 0. We say that k′ ∈ V is a predecessor of k ∈ V

if k′ is the largest element in V strictly smaller than k. We let −1 be the predecessor of the
smallest element in V and F−1 the trivial σ -algebra so that Z−1 = E(SV − ξV | F−1) = 0.
For all k ∈ V with predecessor k′, if we have

|Zk − Zk′ | ≤ ck

for some constants ck , then the Azuma–Hoeffding inequality [15, Lemma 5.1] reads, for k ∈ V

and all λ > 0,

P̃(Zk ≥ λ) ≤ exp

(
− λ2

2
∑

m∈V,m≤k c2
m

)
.

It is a direct consequence of the independence assumption and the Lipschitz property of sV , as
expressed by (15), that

|Zk − Zk′ | = | E(SV | Fk) − E(SV | Fk′)| ≤ η = 16 max
x,y∈E

|f (x, y)|.

To complete the proof let m ∈ V be the largest element in V then Zm = SV −ξV and, if ξV < 0,
we have

P̃(SV ≥ 0) = P̃(SV − ξV ≥ −ξV ) = P̃(Zm ≥ −ξV ) ≤ exp

(
− ξ2

V

2|V |η2

)
.

Lemma 5. There exists an ε > 0 such that, for all (i, j, δ), (i ′, j ′, δ′) ∈ Hn with (i, j) and
(i′, j ′) not on the same diagonal and t ≥ 0, we have

P(Sδ
(i,j) > t, Sδ′

(i′,j ′) > t) ≤ exp(−θ∗(1 + ε)t). (16)
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Proof. We define the graph (V1, E1) by

V1 = {i − δ, . . . , i − 1, j + 1, . . . , j + δ}, E1 = {{i − k, j + k} | 1 ≤ k ≤ δ},
and (V2, E2) is defined likewise using (i′, j ′, δ′). Then we see that the intersection, V , of the
vertex sets corresponds precisely to the set of variables Xi that enter in both of the sums Sδ

i,j

and Sδ′
i′,j ′ . This implies that if we define

V0 = {k | i − k ∈ V or j + k ∈ V }, V ′
0 = {k | i′ − k ∈ V or j ′ + k ∈ V },

together with

S1 =
∑
k∈V0

f (Xi−k, Xj+k), S′
1 =

∑
k∈V ′

0

f (Xi′−k, Xj ′+k),

then S2 := Sδ
i,j − S1 and S′

2 := Sδ′
i′,j ′ − S′

1 are independent. Since there are at most |V | terms
in S1 and S′

1 it follows that if |V | ≤ t (4‖f ‖∞)−1, say, then independence and an exponential
change of measure gives

P(Sδ
(i,j) > t, Sδ′

(i′,j ′) > t) ≤ P

(
S2 >

3

4t
, S′

2 >
3

4t

)
= P

(
S2 >

3

4t

)
P

(
S′

2 >
3

4t

)
≤ exp

(
− 3

2θ∗t

)
.

In particular, (16) holds with ε = 1
2 .

Suppose, instead, that |V | ≥ t (4‖f ‖∞)−1. With SV = sV ((Xk)k≥0) as above, we have

P(Sδ
(i,j) > t, Sδ′

(i′,j ′) > t) ≤ P(Sδ
(i,j) > t, SV ≥ 0) + P(Sδ′

(i′,j ′) > t, SV ≤ 0). (17)

We introduce the probability measure P∗
(i,j,δ) by

dP∗
(i,j,δ)

dP
= exp(θ∗Sδ

i,j ),

and then, considering the first term in (17), we find that

P(Sδ
(i,j) > t, SV ≥ 0) = E∗

(i,j,δ)(exp(−θ∗Sδ
i,j ); Sδ

(i,j) > t, SV ≥ 0)

≤ exp(−θ∗t) P∗
(i,j,δ)(SV ≥ 0),

where E∗
(i,j,δ) denotes expectation under P∗

(i,j,δ). It follows that under P∗
(i,j,δ) the distribution

of the sequence of variables (Xi)i≥0 is as follows:

• the variables (Xk, Xm) for {k, m} ∈ E1 with k < m are i.i.d. with distribution π∗,

• the variables Xk for k �∈ V1 are i.i.d. with distribution π ,

• (Xk)k∈V1 and (Xk)k �∈V1 are independent.
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The probability measure π∗ on E × E, with marginals denoted by π∗
1 and π∗

2 , is defined in
Appendix B. We draw two conclusions. First, for any extension of E1 to a perfect matching E∞
of N0, it holds that (Xk, Xm) for {k, m} ∈ E∞ with k < m are independent. Second, since (i, j)

and (i′, j ′) are not on the same diagonal the expectation of each term in SV can be bounded
above by ζ := max{π∗

1 ⊗ π2(f ), π∗
1 ⊗ π∗

2 (f )} − π∗(f ). Hence,

E(SV ) = ξV ≤ ζ |V |,
where ζ < 0 according to Lemma 6 in Appendix A. The assumptions of Lemma 4 are fulfilled
and we find that, since |V | ≥ t (4‖f ‖∞)−1,

P∗
(i,j,δ)(SV ≥ 0) ≤ exp

(
−ζ 2|V |

2η2

)
≤ exp

(
− ζ 2t

8‖f ‖∞η2

)
= exp(−θ∗εt),

where ε = ζ 2(8θ∗‖f ‖∞η2)−1. By a similar argument, we can deal with the other term in (17),
and this completes the proof.

Proof of Lemma 3. For any d ∈ I there are at most b2
n elements (i, j, δ) ∈ Hn fulfilling

that (i, j) ∈ d and j − i + 2δ ≤ 2bn. Since Vd indicates that for one such (i, j, δ) we have
Sδ

i,j > tn, it follows, from Lemma 5, that, for d, d ′ ∈ I with d �= d ′, we have

E(VdVd ′) ≤ b4
n exp(−θ∗(1 + ε)tn).

Then, since |I | = 2n − 1, |Bd | ≤ 8bn, and tn is given by (5), we obtain∑
d∈I,d ′∈Bd,d �=d ′

E(VdVd ′) ≤ 16bnnb4
n exp(−θ∗(1 + ε)tn)

≤ K̃b5
nn

−ε

→ 0

as n → ∞, due to (10).

Remark 2. Lemma 3 essentially shows, given the assumptions of this paper, that, for a sequence
of letters that reach a high score, the probability that a shift of the sequence reach an equally
high score is of an asymptotically smaller order. The proof relies among other things on the
assumption that f is not of the form

f (x, y) = f1(x) + f2(y). (18)

In Lemma 5 with reference to Lemma 6 in Appendix A the assumption is used to establish
that ζ < 0. From the expression for ζ in the proof of Lemma 5 we see how ζ quantifies
‘nonadditivity’ of f and consequently determines the size of the ε we can take in Lemma 5. If
f is of the, biologically quite nonsensical, form (18) we have ζ = 0, and for such a function the
proof breaks down. This is because parallel diagonals in the score matrix can then reach scores
of asymptotically the same order, which forces us to use a declumping technique to obtain a
Poisson limit result. This phenomena is closely related to the potential self-overlap of words
as discussed in [17].

Proof of Theorem 1. Note that ∑
d∈I

Vd ≤ C(tn).

https://doi.org/10.1239/aap/1189518638 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518638


792 N. R. HANSEN

It is then possible to show that E(C(tn)) → exp(−x) by the same arguments as in the proof
of Lemma 1, but it is actually sufficient to verify the easier result that lim supn→∞ E(C(tn)) ≤
exp(−x). Indeed,

E(Cn(tn)) =
∑
d∈I

P(Md
n > tn)

≤ (n − 1) P(M0 > tn) + n P(M1 > tn)

→ exp(−x)

for n → ∞. Then, by the coupling inequality and the fact that the random variables are integer
valued, we have

lim sup
n→∞

∥∥∥∥D(C(tn)) − D

(∑
d∈I

Vd

)∥∥∥∥ ≤ lim sup
n→∞

P

(∑
d∈I

Vd < C(tn)

)
≤ lim sup

n→∞
E(C(tn)) − lim

n→∞ E

(∑
d∈I

Vd

)
= exp(−x) − exp(−x)

= 0.

7. Local stacks and local alignment

The reader who is familiar with local alignment of biological sequences, that being either
amino acid sequences (proteins) or DNA sequences, will have noticed a clear similarity between
the results obtained in this paper and results obtained for local alignment. Among the many
papers on that subject we refer to the theoretical papers [5], [6], [9], and [19] and the more
applied papers [13] and [20]. The result that comes closest to Theorem 1 is the one obtained
by Dembo et al. [9, Theorem 1] about gapless, local alignment using a general score function.

By reformulating Theorem 1 we see that, for appropriate ts (of order log n),

−log P(Mn ≤ t) � K∗n exp(−θ∗t). (19)

We find this formulation convenient for comparison with the local alignment results.
For gapless, local alignment we have, in addition to the sequence (Xk)k≥1, an independent

sequence (Yk)k≥1 of i.i.d. variables, and the maximal local similarity between two contiguous
parts is defined as

M̃n = max
i,j,δ

δ∑
k=1

f (Xi+k, Yj+k),

with the maximum taken over i, j, δ ≥ 0 such that i + δ, j + δ ≤ n. A consequence of
[9, Theorem 1] is that, if E(f (X1, Y1)) < 0, then, for appropriate ts,

−log P(M̃n ≤ t) � K ′n2 exp(−θ ′t), (20)

where θ ′ > 0 is the solution to E(exp(θf (X1, Y1))) = 1. Representations of the constant
K ′ can be found in [14]; see also [9, Equation (1.2)]. The major assumption for (20) to hold
is [9, Condition (E’)], which gives a restriction on the distribution of the sequences in relation
to the score function used – in addition to requiring a negative score on average. The major
assumption in the present paper for (19) to hold is (3), which essentially asks for a sufficiently
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fast rate of decay of the loop-penalty function g; see [10] and Appendix B. In particular, taking
g ≡ 0, the condition is violated. However, it is easy to see that g ≡ 0 gives a setup very similar
to aligning two i.i.d. sequences. When g ≡ 0 it is possible to show that

−log P(Mn ≤ t) � K ′ n2

2
exp(−θ∗t), (21)

where K ′ is the same constant that occurs when aligning two independent sequences with the
same distribution as (Xk)k≥1. This holds if [9, Condition (E’)] is fulfilled. We will not give
a proof of this, but we may go through the proof in [9] and verify that it carries over almost
verbatim. The major difference is that we consider only an upper triangular score matrix, which
explains the occurrence of n2/2 in (21) as compared to n2 in (20).

Summing up, the theory for gapless, local alignment of two random sequences pretty much
carries over to provide results for the maximal stack score for a single random sequence when the
loop is not penalized (g ≡ 0). The present paper treats the case when g decreases sufficiently
fast so that (3) holds. It is an open problem to deal with the case when (3) is violated but
g(n) → −∞ as n → ∞.

8. Concluding remarks

We have in this paper provided an affirmative answer to the conjecture stated in [21] in the,
quite restrictive, case where we only consider stack RNA structures. Thus, no internal loops,
bulges, or multibranch loops are allowed. We have, however, been able to generalize the setup
in the direction of allowing for a completely general hairpin-loop penalty function by relying
on the results developed in [10].

Applying techniques similar to those in [19], it is expected that the results of the present
paper could be generalized to allow for stem-loop structures with a finite or suitably controlled
number of internal loops or bulges in the stack. As in [19] such a generalization should affect
the constant K∗ only (not θ∗).

To allow for general stem-loop or even general secondary structures in the computation
of the score as in [21] is, however, a challenge of a substantially different nature. As for
local alignments we must expect that strong laws as given in [21] are easier to obtain than
limit distributions, and it seems that more sophisticated methods are needed in order to prove
distributional limit results for general structures.

Appendix A. Mean value inequalities and Laplace transforms

We show in this appendix some general, useful mean value inequalities that are needed in
the paper.

Consider two random variables X and Y taking values in a set E and let f : E × E → R

be a given function. Let the distribution of X be π1 and the distribution of Y be π2 and let
π = π1 ⊗ π2. For the derivations presented in this appendix, we do not need to require that E

is finite, but only that the Laplace transform

ϕ(θ) = E(exp(θf (X, Y ))) =
∫

exp(θf (x, y))π(dx, dy)

of the distribution of f (X, Y ) exists (is less than ∞) for all θ > 0, that µ = E(f (X, Y )) < 0,
and, furthermore, that f (X, Y ) takes positive values with positive probability. In this case,
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ϕ(θ) → ∞ as θ → ∞, and, since ∂θϕ(0) = µ < 0, there is a unique solution θ∗ > 0 to
ϕ(θ) = 1 due to convexity of ϕ. We define the measure π∗ by

dπ∗

dπ
(x, y) = exp(θ∗f (x, y))

and let π∗
1 and π∗

2 denote the marginals of π∗.
Under π∗, the mean

µ∗ =
∫

f (x, y)π∗(dx, dy) =
∫

f (x, y) exp(θ∗f (x, y))π(dx, dy) = ∂θϕ(θ∗)

is positive, and we ask how this mean relates to the mean of f under π∗
1 ⊗ π∗

2 as well as under
π∗

1 ⊗ π2 or π1 ⊗ π∗
2 .

Introducing the Laplace transform

ϕ∗(θ) =
∫

exp(θ(f (x, z) + f (w, y) − f (x, y) − f (w, z)))π∗ ⊗ π∗(dx, dy, dw, dz),

we see that ϕ∗(0) = ϕ∗(θ∗) = 1, and with

µ̂∗ =
∫

f (x, y)π∗
1 ⊗ π∗

2 (dx, dy)

we obtain ∂θϕ
∗(0) = 2µ̂∗ − 2µ∗. Hence, by the convexity of ϕ∗ we obtain µ̂∗ ≤ µ∗. If

π ⊗ π({(x, y, z, w) | f (x, z) + f (w, y) �= f (x, y) + f (w, z)}) > 0, (22)

the Laplace transform ϕ∗ is strictly convex implying that µ̂∗ < µ∗.
Likewise, we can consider the Laplace transform

ϕ̃∗(θ) =
∫

exp(θ(f (x, z) − f (x, y)))π∗ ⊗ π2(dx, dy, dz),

for which ϕ̃∗(0) = ϕ̃∗(θ∗) = 1, and with

µ̃∗ =
∫

f (x, y)π∗
1 ⊗ π2(dx, dy),

we have ∂θ ϕ̃
∗(0) = µ̃∗ − µ∗. So, if

π ⊗ π2({(x, y, z) | f (x, z) �= f (x, y)}) > 0, (23)

then the Laplace transform ϕ̃∗ is strictly convex; hence, µ̃∗ < µ∗.
We collect these observations into the following lemma for the case in which E is finite.

Lemma 6. If E is finite, if π1(x), π2(x) > 0 for all x ∈ E, and f is not of the form

f (x, y) = f1(x) + f2(y) (24)

for some f1, f2 : E → R, then

max{π∗
1 ⊗ π∗

2 (f ), π∗
1 ⊗ π2(f ), π1 ⊗ π∗

2 (f )} < π∗(f ).
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Proof. Since π1(x) > 0 and π2(x) > 0 for all x ∈ E, condition (22) implies that π∗
1 ⊗

π∗
2 (f ) < π∗(f ) is equivalent to the existence of x, y, z, w ∈ E such that

f (x, z) + f (w, y) �= f (x, y) + f (w, z).

We show by contradiction that if f is not of the form (24), then there exist such x, y, z, w ∈ E.
Therefore, suppose that, for all x, y, z, w ∈ E, we have

f (x, z) + f (w, y) = f (x, y) + f (w, z),

then we can fix some w0, z0 ∈ E such that, for all x, y ∈ E, we have

f (x, y) = f (x, z0) − f (w0, z0) + f (w0, y) = f1(x) + f2(y),

with, for example, f1(x) = f (x, z0) − f (w0, z0) and f2(y) = f (w0, y). This contradicts the
assumption that f does not take the form (24).

A similar argument based on (23) instead of (22) implies that π∗
1 ⊗ π2(f ) < π∗(f ), and

analogously π1 ⊗ π∗
2 (f ) < π∗(f ).

Note that if f (x, y) = f1(x) + f2(y) for some f1 and f2 then π∗ = π∗
1 ⊗ π∗

2 and the
conclusion of Lemma 6 does not hold.

Appendix B. Reflections of random walks

We present in this appendix a summary of the most important constructions and results
from [10] adapted to the setup of the present paper.

With the notation as introduced in Section 3 we define the random walk (Sn)n≥0 by

Sn =
n∑

k=1

f (X−k, Xk)

and if h : N0 → (−∞, 0] is any given function we define the reflection of the random walk at
the barrier h recursively by T0 = h(0) and, for n ≥ 1,

Tn = max{Tn−1 + f (X−n, Xn), h(n)}. (25)

The process (Tn)n≥0 can be expressed as

Tn = Sn + max
0≤k≤n

{h(k) − Sk},

which follows by verifying that the right-hand side fulfills the recursion (25) and is equal to
h(0) for n = 0.

In [10] it is (implicitly) assumed that h(0) = 0 to make the reflected process start at 0, but
in this paper we allow for h(0) < 0. Since Tn − h(0) is the reflection of the random walk at
the barrier given by h(n) − h(0) for n ≥ 0, which is 0 for n = 0, the results in [10] are easily
seen to generalize allowing h(0) < 0.

To formulate the main results from [10] we need to introduce the tilted measure P∗. Recall
the definition of θ∗ > 0, assuming µ < 0, as the unique solution to the equation ϕ(θ) = 1 where
ϕ(θ) = E(exp(θf (X−1, X1))). Let π∗ denote the probability measure on E × E given by

π∗(x, y) = exp(θ∗f (x, y))π(x)π(y).
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Then P∗ is a probability measure such that (X−n, Xn)n≥1 forms an i.i.d. sequence under P∗
with the distribution of (X−1, X1) being π∗. The mean of f (X−n, Xn) under P∗ is

π∗(f ) =
∑
x,y

f (x, y) exp(θ∗f (x, y))π(x)π(y) = ∂θϕ(θ∗) > 0.

The probability measure P∗ is an example of an exponential change of the measure P,
which is defined on the same probability space and related to P as follows. With Fn the
σ -algebra generated by X−n, . . . , Xn, the restriction of P∗ to Fn has Radon–Nikodym derivative
exp(θ∗Sn) with respect to P restricted to Fn, and exp(−θ∗Sn) is the Radon–Nikodym derivative
the other way around. As a consequence, if τ is a stopping time with respect to the filtration
(Fn)n≥1 then, for any event A ∈ Fτ with A ⊆ (τ < ∞), it holds that

P(A) = E∗(exp(−θ∗Sτ ); A), (26)

P∗(A) = E(exp(θ∗Sτ ); A); (27)

see [7, Theorem XIII.3.2]. Here, E∗ denotes expectation under P∗.
If we define

M = sup
n≥0

Tn and D = sup
n≥0

{h(n) − Sn},
the first half of [10, Theorem 2.1] reads as follows.

Theorem 3. When µ < 0 it holds that

P(M > u) ≤ exp(−θ∗u) E∗(exp(θ∗D))

and P(M < ∞) = 1 if and only if

E∗(exp(θ∗D)) < ∞.

We can elaborate a little on the second half of [10, Theorem 2.1] and provide not only a
bound on E∗(exp(θ∗D)) but another formula. By partial integration we find that

E∗(exp(θ∗D)) =
∫ ∞

−∞
θ∗ exp(θ∗u) P∗(D > u) du.

With τ(u) = inf{n ≥ 0 | h(n) − Sn > u} for u ∈ R, (27) then implies that

P∗(D > u) = P∗(τ (u) < ∞) = E(exp(θ∗Sτ(u)); τ(u) < ∞).

With
Dn = max

0≤k≤n
{h(k) − Sk},

it follows that if Dn − Dn−1 > 0 then Sn + Dn = h(n). With D−1 = −∞, we find that
τ(u) = n if and only if Dn−1 < u ≤ Dn and, consequently,

E∗(exp(θ∗D)) =
∞∑

n=0

E

(
exp(θ∗Sn)

∫ Dn

Dn−1

θ∗ exp(θ∗u) du

)

=
∞∑

n=0

E(exp(θ∗Sn)[exp(θ∗Dn) − exp(θ∗Dn−1)])

=
∞∑

n=0

exp(θ∗h(n)) E(1 − exp(θ∗(Dn−1 − Dn))), (28)

https://doi.org/10.1239/aap/1189518638 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518638


Local stack scores with general loop penalty 797

with the third equality following from the fact that Sn + Dn = h(n) whenever the integral is
nonzero, i.e. whenever Dn − Dn−1 > 0. From this expression, we derive the useful upper
bound

E∗(exp(θ∗D)) ≤
∞∑

n=0

exp(θ∗h(n)), (29)

because the second factor in (28) is less than or equal to 1.
To formulate the second result from [10] we introduce the stopping time τ+ = inf{n ≥

0 | Sn > 0}, which is finite P∗-a.s., and we define B to be a positive random variable that
(under P∗) has distribution given by

P∗(B ≤ x) = 1

E∗(Sτ+)

∫ x

0
P∗(Sτ+ > y) dy, x ≥ 0.

Since we work under the general assumption that the distribution of f (X−1, X1) is not con-
centrated on a lattice, [10, Theorem 2.3] can be formulated as follows.

Theorem 4. When µ < 0 and P(M < ∞) = 1, or equivalently E∗(exp(θ∗D)) < ∞, it holds
that

P(M > u) ∼ exp(−θ∗u) E∗(exp(θ∗D)) E∗(exp(−θ∗B))

as u → ∞.
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