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Abstract

We prove that the tautological ring of Mct
2,n, the moduli space of n-pointed genus two

curves of compact type, does not have Poincaré duality for any n > 8. This result is
obtained via a more general study of the cohomology groups of Mct

2,n. We explain how
the cohomology can be decomposed into pieces corresponding to different local systems
and how the tautological cohomology can be identified within this decomposition. Our
results allow the computation of Hk(Mct

2,n) for any k and n considered both as Sn-
representation and as mixed Hodge structure/`-adic Galois representation considered
up to semi-simplification. A consequence of our results is also that all even cohomology
of M2,n is tautological for n < 20, and that the tautological ring of M2,n fails to have
Poincaré duality for all n > 20. This improves and simplifies results of the author and
Orsola Tommasi.

1. Introduction

The tautological classes on the moduli spaces Mg,n of n-pointed stable genus g curves can be
defined, following Faber and Pandharipande [FP05], to be the algebraic cycle classes of ‘geometric
origin’. Specifically, we declare the fundamental classes of all spacesMg,n to be tautological, that
the pushforward of tautological classes along the natural maps

Mg,n+1 ×Mg′,n′+1→Mg+g′,n+n′ , Mg−1,n+2→Mg,n, Mg,n+1→Mg,n

should be tautological and that intersections of tautological classes are tautological. In this way
we obtain a collection of subrings R•(Mg,n) ⊂ A•(Mg,n), the tautological rings.

We can also consider the images of the tautological rings in cohomology, denoted RH •(Mg,n).
Finally, if U ⊂Mg,n is Zariski open, then we let R•(U) = Im

(
R•(Mg,n)→ A•(U)

)
, and we define

similarly RH •(U).
Particularly interesting (for us) are the Zariski open setsMrt

g,n ⊂Mct
g,n ⊂Mg,n parametrizing

curves with rational tails and of compact type, respectively. A stable n-pointed genus g curve is
of compact type if its dual graph is a tree; equivalently, if its jacobian is an abelian variety. It has
rational tails if one of its components has geometric genus g, implying that all other components
are trees (or ‘tails’) of rational curves attached to this genus g component.

Faber and Pandharipande [Fab99, Fab01, Pan02] proposed a uniform conjectural description
of the tautological rings R•(Mrt

g,n), R•(Mct
g,n) and R•(Mg,n). These conjectures naturally split

Received 29 November 2014, accepted in final form 19 January 2016, published online 17 June 2016.
2010 Mathematics Subject Classification 14H10, 14C17, 32S60, 14N35, 14D07 (primary), 55R55 (secondary).
Keywords: tautological ring, Faber conjectures, moduli of curves, Gromov–Witten theory, cohomology of moduli
spaces.
This journal is c© Foundation Compositio Mathematica 2016.

https://doi.org/10.1112/S0010437X16007478 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X16007478


Tautological rings of spaces of pointed genus two curves of compact type

into several smaller pieces. First were the vanishing and socle conjectures. These assert that

Rg−2+n−δ0,g(Mrt
g,n) ∼= Q, Rk(Mrt

g,n) = 0 for k > g − 2 + n− δ0,g,
R2g−3+n(Mct

g,n) ∼= Q, Rk(Mct
g,n) = 0 for k > 2g − 3 + n,

R3g−3+n(Mg,n) ∼= Q

(and, obviously, Rk(Mg,n) = 0 for k > 3g− 3 +n). Here δ0,g is the Kronecker delta. Given these
statements, one can (after choosing a generator for the top degree) describe the pairing into
the top degree in terms of proportionalities. OnMg,n these top degree intersection numbers are
all determined by Witten’s conjecture (Kontsevich’s theorem). The next part of the conjectures
were explicit expressions determining the top intersections also in the rational tails and compact
type cases: the λgλg−1-conjecture and the λg-conjecture, respectively, collectively called the
intersection number conjectures.

The vanishing, socle and intersection number conjectures are now all theorems. This
represents work of a large number of people, and all of the statements now have several different
proofs, enlightening in their own way. See the survey [Fab13] and the detailed references therein.

However, the final part of the conjectures is now known to be false in general. The perfect
pairing conjecture proposed that the pairing into the top degree is always perfect, so that the
tautological rings enjoy Poincaré duality. A different way of stating this is in terms of the relations
between the generators of the tautological rings: every potential relation between tautological
classes that is consistent with the top degree pairing is actually a true relation. The perfect
pairing conjecture on Mg,n was first stated by Hain and Looijenga [HL97]. The author and
Tommasi [PT14] showed that this conjecture fails on M2,n. Before this, computer calculations
had been used to find examples where it seems likely that the perfect pairing conjecture fails, also
in the rational tails and compact type cases, by Faber [Fab13], Yin [Yin16] and Pixton [Pix13].

The main result of this paper is that the conjecture fails also on Mct
2,n. In fact, we observe

failure much sooner – the tautological cohomology ring ofM2,n fails to have Poincaré duality for
the first time when n = 20 (see § 3.2), but in the compact type case the pairing fails to be perfect
already when n = 8. Even though computer-assisted computations of tautological rings for small
g and n have not yet got as far asMct

2,8, it is not inconceivable that one could actually determine
the intersection matrices in this case with enough computing power and a clever implementation.
Thus, one could for instance hope to explicitly write down a non-zero tautological class that pairs
trivially with all tautological classes in opposite degree. (The proof given here seems not explicit
enough to produce such a class.) Doing something similar for M2,20 is utterly doomed to fail.

The basic strategy used in [PT14] to construct a non-Gorenstein tautological ring was
to study instead the tautological cohomology ring RH •(M2,n), and to prove that its Betti
numbers are not symmetric about the middle degree. This certainly implies that the tautological
cohomology ring cannot have a perfect pairing, and then also the tautological ring itself. This is
what we do in this paper, too.

The results will follow from a more general study of the cohomology of Mct
2,n. We approach

the cohomology of Mct
2,n via the Leray spectral sequence for f : Mct

2,n →Mct
2 . Our first result,

Theorem 2.1, is that the Leray spectral sequence degenerates, and therefore that the cohomology
of Mct

2,n can be expressed in terms of the cohomology of local systems on Mct
2 and local

systems supported on the boundary. Moreover, after the results in [Pet15] we actually know the
cohomology of all these local systems in any degree, together with their mixed Hodge structure up
to semi-simplification. This allows us to obtain very detailed information about the cohomology
of Mct

2,n: we can compute Hk(Mct
2,n) for any k and n considered both as Sn-representation and
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as mixed Hodge structure/`-adic Galois representation (considered up to semi-simplification).

This has been implemented on a computer, in a way described in § 4.

The results described in the preceding paragraph provide a decomposition of the cohomology

of Mct
2,n into pieces corresponding to different local systems. Theorem 3.4 gives a description of

the subspace

RH •(Mct
2,n) ⊂ H•(Mct

2,n)

in terms of this decomposition. Moreover, Poincaré–Verdier duality applied to the morphism

f : Mct
2,n → Mct

2 implies (Theorem 3.6) that RH •(Mct
2,n) can be written as a part that is

symmetric about the middle degree (corresponding to the trivial local systems on Mct
2 and

on the boundary) and a part that is symmetric about a different degree. The latter part is

non-zero for any n > 8.

The non-symmetric part of RH •(Mct
2,n) is given by the image of a certain Gysin map. This

Gysin map was studied previously in [PT14], where we conjectured that it is never zero. In

§ 5, we present a proof of this conjecture. This non-vanishing result implies also that all even

cohomology of M2,n is tautological for n < 20, and that the tautological ring of M2,n fails to

have perfect pairing for all n > 20 (Theorem 3.8). Theorem 3.8 improves upon the results of

[PT14], with a simpler proof.

Our results imply in fact that the Betti numbers of RH •(Mct
2,n) are always bigger above the

middle degree than below it for n > 8, and similarly that the Betti numbers of RH •(M2,20) are

always bigger above the middle for n > 20. It would be interesting if this phenomenon, that the

tautological ring is bigger above the middle degree than below it, always were true. We remark

that it is always true in cohomology on the spaceMg,n. Indeed, according to the hard Lefschetz

theorem, there is an isomorphism

H3g−3+n−q(Mg,n)→ H3g−3+n+q(Mg,n)

defined by iterated multiplication by an ample class ω. Now note that ω must be a tautological

class (since it is a divisor), so multiplication by ωq maps tautological classes to tautological

classes. Thus, the tautological cohomology below the middle degree injects into that above it.

Perhaps a similar hard Lefschetz principle for tautological classes exists also on the spacesMrt
g,n

and Mct
g,n, and/or in the Chow ring.

1.1 Conventions

We work throughout over the complex numbers and use the language of mixed Hodge theory, but

our arguments would work as well in étale cohomology. Cohomology groups and Chow groups

are taken with Q-coefficients unless stated otherwise.

2. Local systems and the Leray spectral sequence

2.1 Symplectic local systems

To any g-tuple of integers λ = (λ1 > λ2 > · · · > λg > 0) we associate a rational representation

of Sp(2g) whose highest weight is given by λ. This representation defines also a rational local

system Vλ on the moduli stack Ag of principally polarized abelian varieties of dimension g. It

naturally underlies a polarized variation of Hodge structure of weight |λ| = λ1 + · · · + λg. We

may pull back Vλ along the Torelli map Mct
g → Ag; we denote its pullback by the same name.

We call all such Vλ symplectic local systems.

1400
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The reason for the appearance of these local systems is that if π : C →Mg is the universal
curve, then there is an isomorphism

R1π∗Q ∼= V1,0,...,0.

The remaining symplectic local systems appear naturally within the tensor powers of this local
system: if (V1,0,...,0)

⊗n is decomposed into simple local systems, then all Vλ with |λ| 6 n and
|λ| ≡ n (mod 2) will appear in the decomposition (the ones with |λ| < n appearing with a Tate
twist in order to have weight n). Thus, these are precisely the local systems appearing in the
cohomology of the universal curve and its fibered powers.

In this paper we will only consider the cases g ∈ {1, 2}. When g = 2, we denote these local
systems by Vl,m (with l >m > 0). Note that in this particular case, the Torelli mapMct

2 → A2 is
in fact an isomorphism of stacks. When g = 1, these local systems are considered onM1,1

∼= A1

and denoted by Vk, k > 0. We will also have reason to consider local systems on Sym2M1,1 given
by representations of the semi-direct product (SL(2)× SL(2))oS2 (see [Pet13]), and we use the
phrase ‘symplectic local system’ for these as well.

The cohomology groups H•(M1,1,Vk) are completely determined as mixed Hodge structures
by the Eichler–Shimura isomorphism, or rather its Hodge-theoretic interpretation [Zuc79].
The cohomology groups H•(Mct

2 ,Vl,m), considered as mixed Hodge structures up to semi-
simplification, are calculated for all l and m in [Pet15].

2.2 An application of the decomposition theorem
Our approach to the cohomology of the spaces Mct

2,n will be to consider the Leray spectral
sequence for f : Mct

2,n →Mct
2 . An important observation is that f is proper, so that we may

apply the decomposition theorem of [BBD82]. The modest goal of this subsection is to spell out
explicitly what the decomposition theorem says in this particular case; the result can be stated
without mentioning perverse sheaves or mixed Hodge modules. The reader who is not familiar
with such things can feel free to take Theorem 2.1 on faith and proceed to read the rest of the
paper (or refer to [dCM09, Sai89] as needed).

Let i : Sym2M1,1→Mct
2 be the inclusion.

Theorem 2.1. Let f : Mct
2,n→Mct

2 be the forgetful map.

(i) There is an isomorphism Rf∗Q ∼=
⊕

q Rqf∗Q[−q]. In particular, the Leray spectral sequence
for f degenerates.

(ii) We can write Rqf∗Q ∼= Aq ⊕ i∗B
q, where Aq and Bq are polarized variations of Hodge

structure of weight q onMct
2 and on Sym2M1,1, respectively. These are direct sums of Tate

twists of symplectic local systems.

(iii) There are isomorphisms An+q ∼= An−q(−q) and Bn+1+q ∼= Bn+1−q(−q), where (−q) denotes
a Tate twist.

Proof. Note that f is proper and Mct
2,n is smooth, so that there exists an isomorphism

Rf∗Q ∼=
⊕
q

pHq(Rf∗Q)[−q]

in Db(MHM(Mct
2 )), according to Saito’s version of the decomposition theorem. Here we denote

by pHq(K) the usual (middle perversity) cohomology sheaves of a mixed Hodge module K.
Moreover, each pHq(Rf∗Q) is a pure Hodge module, as Rf∗ preserves purity.
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According to the semi-simplicity theorem, each pHq(Rf∗Q) is a direct sum of simple objects.

Let Mct
2 =M2 ∪ Sym2(M1,1) be the stratification of Mct

2 according to topological type. Then

f is a stratified map (even a stratified submersion); the restriction of f to the inverse image of a

stratum is a fiber bundle. Since in addition both strata are smooth (in the sense of stacks), it is

known that each of the simple summands of pHq(Rf∗Q) is obtained as an intermediate extension

of a local system on one of the two strata.

Let V be a local system on one of these strata, which occurs in the decomposition of Rf∗Q,

and let us consider its intermediate extension. If the stratum is Sym2(M1,1), which is closed in

Mct
2 , then the intermediate extension is simply the usual pushforward. If the stratum is M2,

then we claim that the local system extends to a local system onMct
2 . SinceMct

2 is smooth, this

extension will then be equal to the intermediate extension. We should prove that the monodromy

of V vanishes around Sym2M1,1. But the monodromy is given by a Dehn twist around a vanishing

cycle and, since we are in the case of compact type, all nodes of the curves involved will be

separating, which means that we only consider Dehn twists around separating curves. But such

a Dehn twist lies in the Torelli group, that is, it acts trivially on the cohomology of the universal

curve (and then all of its fibered powers etc), from which the result follows. An equivalent way of

thinking about this is that the local systems occurring onM2 will all be symplectic local systems,

from which it is immediate that they extend to Mct
2 . In particular, it follows that all perverse

sheaves occurring in the decomposition of Rf∗Q are bona fide sheaves, not just complexes of

sheaves. Thus, there is also a decomposition

Rf∗Q ∼= Rqf∗Q[−q]

for the classical (non-perverse) t-structure, the usual Leray spectral sequence degenerates and

so on. We have now proven (i) and (ii).

For the last part, observe that Q[n+ 3] is a self-dual sheaf onMct
2,n, and that Rf∗ preserves

self-duality. Thus,
pHn+3+q

(Rf∗Q) ∼= pHn+3−q
(Rf∗Q)∨

for all q (Poincaré–Verdier duality). Recall that

pHq(K) = Hq−d(K)[d]

if the complex K has cohomology sheaves which are local systems supported on a smooth closed

subvariety of dimension d. By what we have written so far, we can write Rf∗Q = A ⊕ i∗B,

where A (respectively B) is a direct sum of symplectic local systems on Mct
2 (respectively on

Sym2M1,1). Then Hn+q(A) ∼= Hn−q(A)∨ and Hn+1+q(B) ∼= Hn+1−q(B)∨. All representations of

the symplectic group are self-dual, so a symplectic local system is always self-dual up to a Tate

twist, which concludes the proof. 2

Remark 2.2. In our proof, the symmetries An+q ∼= An−q(−q) and Bn+1+q ∼= Bn+1−q(−q) arose

from the definition of the perverse t-structure. A more low-brow way of seeing that these are the

‘right’ symmetries is that they are necessary in order to have Poincaré duality onMct
2,n. Indeed,

Poincaré duality says that

Hn+3+k(Mct
2,n) ∼= Hn+3−k

c (Mct
2,n)(−k) (1)
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and, by Theorem 2.1(i),(ii), we have decompositions

Hk(Mct
2,n) ∼=

⊕
p+q=k

Hp(Mct
2 , A

q)⊕Hp(Sym2M1,1, B
q),

Hk
c (Mct

2,n) ∼=
⊕
p+q=k

Hp
c (Mct

2 , A
q)⊕Hp

c (Sym2M1,1, B
q).

(2)

The symmetries of Theorem 2.1(iii), together with Poincaré duality for local systems on Mct
2

and on Sym2M1,1, show that there are isomorphisms

H3+p(Mct
2 , A

n+q) ∼= H3−p
c (Mct

2 , A
n−q)(−p− q)

as well as
H2+p(Sym2M1,1, B

n+1+q) ∼= H2−p
c (Sym2M1,1, B

n+1−q)(−p− q)
for all p and q, which is exactly what is needed for compatibility of (1) with (2).

2.3 Pure cohomology of the local systems
Note that for the moment we are not primarily trying to understand all of the cohomology
of Mct

2,n, but rather the subspace of tautological cohomology. In particular, the classes we are
after lie in the even degree cohomology of Mct

2,n and hence we are only interested in the even
cohomology of these local systems (since the hyperelliptic involution shows that Rqf∗Q has
vanishing cohomology for odd q). Moreover, algebraic cycle classes must be of pure weight
(i.e. they must lie in the weight p + q subspace of Hp(Mct

2 ,R
qf∗Q)), and they must be of

Tate type (i.e. with Hodge numbers along the diagonal).
The main theorem of [Pet15], building on [Har12], is the calculation of the cohomology of all

symplectic local systems onMct
2 , considered as mixed Hodge structures up to semi-simplification.

In particular, we see the following result.

Proposition 2.3. The only symplectic local systems on Mct
2 with pure cohomology in even

degree have the form V2a,2a with a > 0. More specifically, there is the trivial local system V0,0,
which has

H0(A2,V0,0) = Q and H2(A2,V0,0) = Q(−1),

and, for a > 0, H2(A2,V2a,2a) is pure Tate and of the same dimension as the space of cusp forms
for SL(2,Z) of weight 4a+ 4.1

The local systems on Sym2M1,1 will play a slightly smaller role, and rather than describe
explicitly their cohomology in any degree we will be content to make the following easy
observation.

Proposition 2.4. If a symplectic local system Vλ on Sym2M1,1 has non-zero pure cohomology
in even degrees, then it is either trivial – in which case H0(Sym2M1,1,Q) ∼= Q – or has weight
at least 20, with pure cohomology in H2(Sym2M1,1,Vλ).

1 There is also a possible contribution in H4 which is conjectured to always vanish and which we will ignore
for simplicity. The reader may check that its potential existence will in any case not affect our main results.
Specifically, there is a pure Tate class in H4(A2,V2a,2a) for each normalized cusp eigenform for SL(2,Z) of weight
4a + 4 such that the central value of the attached L-function vanishes. Conjecturally this should not happen; see
Remark 5.4.
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The reason for the above proposition is that the pure cohomology in H1(M1,1,Vk) is the
cohomology attached to cusp forms for SL(2,Z) of weight k + 2: for every normalized cusp
eigenform f of weight k + 2 there is a two-dimensional summand Mf ⊂ H1(M1,1,Vk) of Hodge
type (k + 1, 0) and (0, k + 1). Pure cohomology in H1(M1,1,Vk) appears thus for the first time
for k = 10, corresponding to the discriminant cusp form ∆ of weight 12. Using the Künneth
theorem and the injection

H•(Sym2M1,1,Vλ) ↪→ H•(M1,1 ×M1,1,Vλ),

we then see that pure cohomology in H2(Sym2M1,1,Vλ) will not appear for local systems of
weight below 20 = 10 + 10. We remark that the pure cohomology in H2(M1,1 ×M1,1,Vλ) is a
sum of tensor products Mf1 ⊗Mf2 and, since Mf ⊗Mf

∼= Sym2Mf ⊕Q(−k− 1), there can even
be cohomology of Tate type.

3. Symmetries of the Betti numbers of the tautological ring

3.1 Tautological cohomology of local systems
As in Theorem 2.1(ii), we write Rqf∗Q ∼= Aq ⊕ i∗Bq, so that

Hk(Mct
2,n) ∼=

⊕
p+q=k

Hp(Mct
2 , A

q)⊕Hp(Sym2M1,1, B
q). (3)

The main result in this subsection is Theorem 3.4, which characterizes the subspace of
tautological cohomology of the left-hand side in terms of the decomposition of the right-hand
side into different local systems. This result is the analogue for Mct

2,n of the following simpler
results on Mrt

1,n and Mrt
2,n.

Proposition 3.1. Consider the Leray spectral sequences for Mrt
1,n →M1,1 and Mrt

2,n →M2,
respectively.

(i) The tautological cohomology of Mrt
1,n is exactly the cohomology associated to the trivial

local system on M1,1.

(ii) The tautological cohomology of Mrt
2,n is exactly the cohomology associated to the trivial

local system on M2.

Proof. The proof of (ii) is given in [PT14, § 4]. The proof of (i) is more or less identical. 2

Remark 3.2. SinceM1,1 andM2 both have the rational cohomology of a point, this is the same
as asserting that the tautological rings are in both cases isomorphic to the monodromy invariant
cohomology classes in a fiber of the respective fibrations.

Let ∆ denote the boundary Mct
2,n\Mrt

2,n, and let ∆̃ denote its normalization (which is

a disjoint union of spaces of the form Mrt
1,k+1 × Mrt

1,n−k+1). Since ∆̃ is smooth, there is a

pushforward map in cohomology, Hk−2(∆̃)(−1)→ Hk(Mct
2,n).

Lemma 3.3. The sequence

Hk−2(∆̃)(−1)→ Hk(Mct
2,n)→ Hk(Mrt

2,n)

is exact in the middle. In the decomposition of (3), the image of the first map consists of all
summands of the form Hp(Sym2M1,1, B

q) and the images of all Gysin maps

Hp−2(Sym2M1,1, A
q)(−1)→ Hp(Mct

2 , A
q),

where p+ q = k.
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Proof. It will be easier to prove the Poincaré dual assertions in compactly supported cohomology

(see Remark 2.2 for how the decomposition in (3) behaves under Poincaré duality). Part of the

excision long exact sequence reads

· · ·← Hk
c (∆)← Hk

c (Mct
2,n)← Hk

c (Mrt
2,n)← · · · ,

so if we can show that Hk
c (∆) → Hk

c (∆̃) is injective, then the first part will be proven. By

Theorem 2.1(ii), Rqf∗Q|Sym2M1,1
is pure of weight q. This implies that there is an injection

Rqf∗Q|Sym2M1,1
↪→ Rqg∗Q,

since the pure cohomology of a proper variety injects into the cohomology of a resolution of

singularities [Del74, Proposition 8.2.5]. This injection is in fact a direct summand, since polarized

variations of pure Hodge structure are semi-simple. Thus, Hk
c (∆)→ Hk

c (∆̃) is injective, by the

Leray spectral sequence.

The second part of the lemma now follows easily from the fact that the maps

Hk
c (∆)← Hk

c (Mct
2,n)← Hk

c (Mrt
2,n)

are compatible with the maps of Leray spectral sequences:

Hp
c (Sym2M1,1,R

qf∗Q)← Hp
c (Mct

2 ,R
qf∗Q)← Hp

c (M2,R
qf∗Q). 2

Theorem 3.4. In the Leray spectral sequence for f : Mct
2,n→Mct

2 , the tautological cohomology

coincides with the contributions from the trivial local system on Mct
2 , the trivial local system

on Sym2M1,1 and the image of the Gysin map H0(Sym2M1,1,V2a,2a)(−1)→ H2(Mct
2 ,V2a,2a).

Proof. The tautological cohomology is pure and in even degree. According to Theorem 2.1(ii) and

Propositions 2.3 and 2.4, there are four sources of pure even cohomology in the Leray spectral

sequence:

(1) H0 of the trivial local system on Mct
2 ;

(2) H2(Mct
2 ,V2a,2a) is pure Tate, and has a basis given by the set of normalized Hecke

eigenforms of weight 4a+ 4 for SL(2,Z) when a > 0, and is one dimensional for a = 0;

(3) H0 of the trivial local system on Sym2M1,1;

(4) H2(Sym2M1,1,Vλ) for |λ| > 20.

We should prove that the tautological part is given exactly by (1), (3) and the part of (2)

which is in the image of the Gysin map.

The previous lemma shows that (4), (3) and the part of (2) which is in the image of the

Gysin map is precisely the cohomology which is pushed forward from ∆̃. Now, if we consider the

Leray spectral sequence for g : ∆̃→ Sym2M1,1, then the classes of the form (2) and (3) appear in

the cohomology of the trivial local system on Sym2M1,1, whereas the ones of the form (4) come

from non-trivial Vλ. It therefore follows from Proposition 3.1(i) that the classes of the form (3)

and the part of (2) which is in the image of the Gysin map consist of tautological classes, being

pushforwards of tautological classes on ∆̃. On the other hand, the classes of the form (4) are not

tautological, since their restrictions to ∆̃ under Hk(Mct
2,n)→ Hk(∆̃) are non-tautological, again

by Proposition 3.1(i). We could also have used the main result of [Pet14] in this paragraph.
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If we instead consider the restriction map H•(Mct
2,n) → H•(Mrt

2,n), then we see that the

classes of the form (2) which are not in the image of the Gysin map are all non-tautological, as

they restrict to non-tautological classes in the interior. Indeed, these classes come from H2(M2,

V2a,2a) in the Leray spectral sequence for Mrt
2,n → M2, so non-tautologicality follows from

Proposition 3.1(ii). Finally, it is not hard to verify that the classes of the form (1) are all

tautological, using that they restrict isomorphically onto the tautological ring of Mrt
2,n. This

concludes the proof. 2

Remark 3.5. The preceding theorem shows that we should try to understand the Gysin map

H0(Sym2M1,1,V2a,2a)(−1)→ H2(Mct
2 ,V2a,2a).

Using the branching formula for (SL2 × SL2) o S2 ⊂ Sp(4) [Pet13], it is easy to see that

H0(Sym2M1,1,V2a,2a)(−1) ∼= Q(−2a − 1) is one dimensional. The main question is therefore

whether or not this Gysin map is zero. In Theorem 5.1, we will prove that the Gysin map

H0(Sym2M1,1,V2a,2a)(−1) → H2(Mct
2 ,V2a,2a) is non-zero for all a 6= 1. Note that H2(Mct

2 ,

V2a,2a) is non-zero in all cases except a = 1, where this cohomology group vanishes. Thus, the

theorem asserts that the Gysin map is non-zero whenever it can be, and that its image is one

dimensional in these cases.

We postpone the proof of Theorem 5.1, since the result and its proof are of a rather different

flavor than the rest of the paper. Instead, let us prove the main result of this article.

Theorem 3.6. The tautological cohomology ring of Mct
2,n has symmetric Betti numbers if and

only if n 6 7.

Proof. We analyze the contributions from the local systems in Theorem 3.4 separately.

(i) The trivial local system on Mct
2 appears with the same multiplicity in An+q and An−q,

and has one-dimensional H0 and H2. Thus, the cohomology coming from this local system is

symmetric about degree n+ 1, as required.

(ii) The trivial local system on Sym2M1,1 appears with the same multiplicity in Bn+1+q and

Bn+1−q, and has cohomology only in degree 0. Hence, the cohomology from this local system,

too, is symmetric about degree n+ 1.

(iiii) The local systems V2a,2a, a > 0, appear with the same multiplicity in An+q and An−q.

For a > 1, there is a one-dimensional subspace of H2(Mct
2 ,V2a,2a) which gives rise to tautological

cohomology according to Remark 3.5 (and Theorem 5.1). Hence, this contribution is symmetric

about degree n+ 2, and as soon as one of these local systems appears as a summand in Rf∗Q,

the Betti numbers of the tautological ring will be asymmetric. This happens for the first time

when n = 8 for V4,4 ⊂ R8f∗Q, and then for all further values of n. 2

Remark 3.7. In an earlier preprint version of this paper, Theorem 5.1 was not available. Instead,

I gave a direct proof of the fact that the pure cohomology ofMct
2,8 is tautological, using a rational

parametrization of the moduli space. In light of the results of this section, this proves indirectly

that H0(Sym2M1,1,V4,4)(−1)→ H2(Mct
2 ,V4,4) is non-zero and then that the tautological ring

of Mct
2,n fails to have Poincaré duality for all n > 8. For the proof of Theorem 3.8 in the next

subsection, the stronger statement of Theorem 5.1 is necessary.
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3.2 Stable curves of genus two revisited
The results of the previous subsection can also be used to study the failure of the Gorenstein
property for the tautological cohomology of M2,n. The main result of [PT14] was that if N is
the smallest integer such thatM2,N has non-tautological even cohomology, then the tautological
cohomology ring of M2,N does not have Poincaré duality.

We can now give a simpler proof of a stronger result.

Theorem 3.8. If n < 20, then all even cohomology of M2,n is tautological (and thus the
tautological cohomology satisfies Poincaré duality). For n > 20, the tautological cohomology
does not have symmetric Betti numbers.

Proof. Observe first of all that the even cohomology of M2,n has symmetric Betti numbers by
Poincaré duality. Thus, the theorem will be proven if we can show that the non-tautological even
cohomology of M2,n has non-symmetric Betti numbers for n > 20, and vanishes for n < 20.

By combining [Del74, Corollaire 8.2.8] and [Del71, Corollaire 3.2.17], there is an exact
sequence

Hk−2(M1,n+2)(−1)→ Hk(M2,n)→WkH
k(Mct

2,n)→ 0,

for all k and n. If k is even, then Hk−2(M1,n+2)(−1) consists only of tautological classes by
[Pet14], so the non-tautological cohomology in Hk(M2,n) maps isomorphically onto the non-
tautological cohomology in WkH

k(Mct
2,n). We know the pure even non-tautological cohomology

in Hk(Mct
2,n) according to Theorem 3.4: in the Leray spectral sequence, it consists of those classes

in H2(Mct
2 ,V2a,2a) which are not in the image of the Gysin map from Sym2M1,1, and the pure

subspace of H2(Sym2M1,1,Vλ) when |λ| > 20.
By the same argument as in the proof of Theorem 3.6, the classes coming from H2(Sym2M1,1,

Vλ) when |λ| > 20 are symmetric about degree n+ 3 in H•(Mct
2,n), so that these classes actually

have symmetric Betti numbers when considered in the cohomology ring of M2,n. These classes
do not appear when n < 20.

However, the contribution from H2(Mct
2 ,V2a,2a) is symmetric about degree n+ 2, so as soon

as this contribution is non-zero, the tautological ring will have asymmetric Betti numbers. This
happens as soon as the Gysin map

H0(Sym2M1,1,V2a,2a)(−1)→ H2(Mct
2 ,V2a,2a)

fails to be surjective. According to Theorem 5.1, this Gysin map always has one-dimensional
image, which implies that it fails to be surjective for the first time when a = 5 (for the local
system V10,10), in which case dimH2(Mct

2 ,V10,10) = 2, as there are two distinct cusp eigenforms
for SL(2,Z) of weight 24. 2

Remark 3.9. We also obtain a simple proof of the fact that all even cohomology onM2,20 that is
pushed forward from the boundaryM2,20\M2,20 is tautological. This was proven in a somewhat
cumbersome way in [PT14, § 5]. The non-tautological even cohomology from the boundary is
exactly the cohomology coming from H2(Sym2M1,1,Vλ) when |λ| > 20 in the Leray spectral
sequence. Now note that when n = 20, the only non-tautological even cohomology class on (the
normalization of) the boundary lies in H11(M1,11)⊗H11(M1,11), so its pushforward (if non-zero)
would give a non-tautological class in degree 24, and no other degree. But, according to the proof
of Theorem 3.8, the cohomology coming from H2(Sym2M1,1,Vλ) should be symmetric about
degree 23, which is a contradiction.
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Remark 3.10. According to [GP03], the algebraic cycle on M2,20 which parametrizes bi-elliptic
genus two curves, for which the bi-elliptic involution switches the 20 markings pairwise, is non-
tautological in cohomology. According to the preceding theorem, their cycle is in fact the simplest
example of a non-tautological algebraic cycle in genus two, as there are no non-tautological even
cohomology classes for n < 20 and, when n = 20, the non-tautological even cohomology is
concentrated in degree 22. We note also that if we write the cohomology in degree 22 (non-
canonically) as the direct sum of tautological and non-tautological cohomology, then the non-
tautological summand consists of a single copy of the representation [2, 2, . . . , 2] of S20. Indeed,
the local system V10,10 appears with this S20-representation by Schur–Weyl duality.

4. Computing the cohomology of Mct
2,n

Let us now explain how the results of this paper can be used to compute the cohomology ofMct
2,n

in arbitrary degree. Although we make heavy use of the theory of mixed Hodge modules [Sai90],
we only use rather formal properties of Saito’s theory. As in Theorem 2.1, we let R•f∗Q = A•⊕B•,
where A• consists of local systems supported on Mct

2 and B• has support on Sym2M1,1.

4.1 The summand A•: review of results of Getzler
Let S be a scheme. The Grothendieck group of varieties over S, K0(VarS), is the free abelian
group generated by isomorphism classes of finite type schemes over S, modulo the following
relation: whenever Z ↪→ X is a closed immersion, we have

[X] = [Z] + [X\Z].

Taking Z = Xred shows that we may restrict our attention to reduced X. The Grothendieck
group of varieties becomes a ring with the multiplication

[X] · [Y ] = [X ×S Y ].

If S is a complex algebraic variety, let MHM(S) denote the abelian category of mixed Hodge
modules on S. If X is a finite type reduced scheme over S, then we put

eS(X) = [Rf!Q] ∈ K0(MHM(S)),

where f : X → S is the structure morphism. This is the ‘Euler characteristic’ or ‘Hodge–Deligne
polynomial’ of X in this category. It satisfies

eS(X) = eS(X\Z) + eS(Z)

for Z ⊂ X a closed subvariety, and eS(X ×S Y ) = eS(X)eS(Y ). We thus have a ring
homomorphism K0(VarS)→K0(MHM(S)). There is a natural λ-ring structure on K0(MHM(S)):
if M is a mixed Hodge module, then λn([M ]) = [∧mM ].

Remark 4.1. If S is smooth and X → S is smooth and proper, then Saito’s theory implies that
we can recover Rif∗Q from eS(X) by applying grWi .

We denote by Λ the completed ring of symmetric functions,

Λ =
∏
n>0

Λn.
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Each Λn is isomorphic to the ring of virtual representations of Sn. As in [Get95b, Theorem 4.8], we
can identify K0(MHM(S))⊗Λn with the Grothendieck group of Sn-representations in MHM(S).
If X is a variety over S with Sn-action, we denote by eSnS (X) its class in K0(MHM(S)) ⊗ Λn.
Elements of Λ are sequences of virtual representations and can therefore be thought of as ‘virtual
S-modules’, where by an S-module we mean a representation of the groupoid S =

∐
n>0 Sn. We

can identify K0(MHM(S)) ⊗̂ Λ (completed tensor product) with virtual S-modules in MHM(S).
This, too, is naturally a λ-ring.

If X is a variety over S, then we denote by F (X/S, n) the relative configuration space of n
distinct ordered points on X, that is, the complement of the ‘big diagonal’ in the n-fold fibered
product of X with itself over S. Define an element FX/S ∈ K0(MHM(S))⊗̂Λ by

FX/S =
∑
n>0

eSnS (F (X/S, n)).

The element FX/S has the following explicit formula.

Proposition 4.2 (Getzler).

FX/S = exp

(∑
n>1

∑
d|n

µ(n/d)

n
log(1 + pn)ψdeS(X)

)
.

Here pn ∈ Λn is the nth power sum, and ψd denotes the dth Adams operation (that is, the
λ-ring operation corresponding to pd). This is proven when S = Spec(C) in [Get95b, § 5] (see
also the treatment in [GP06, Theorem 3.2]) and for X → S any morphism of quasi-projective
complex varieties in [Get99, Theorem 4.5]. The former proof uses only formal properties of the
Euler characteristic e : K0(VarC)→ K0(MHSQ), whereas the latter proof is more involved and
involves a ‘by hand’ construction of a complex in Db(MHM(Xn)) which resolves j!j

∗Q, where
j is the open embedding of F (X/S, n) in Xn, and Xn is the n-fold fibered power over S. We
remark, however, that the former proof actually works equally well in the relative setting (and this
removes the quasi-projectivity assumption), by replacing e by its relative version eS : K0(VarS)→
K0(MHM(S)).

Let us now in addition assume that S is smooth and irreducible, and that X→ S is a smooth,
quasi-projective morphism. Then we denote by FM(X/S, n) the relative Fulton–MacPherson
compactification of the configuration space of n distinct ordered points on X, as defined in
[FM94]. (They focus on the case when S is a point, but they note also that their construction
works just as well in this more general setting; see the beginning of § 3 in [FM94].)

Under our hypotheses, the fiber of FM(X/S, n) over a point s ∈ S is exactly the usual
Fulton–MacPherson compactification of n points in the fiber Xs. Define a second element

FMX/S =
∑
n>0

eSnS (FM(X/S, n)).

Finally, let

M =
∑
n>3

eSn(M0,n) ∈ K0(MHSQ) ⊗̂ Λ.

The element M was expressed in terms of Tate type Hodge structures in [Get95a]. Note that
K0(MHM(S)) is in a natural way a K0(MHSQ)-algebra.

If f is a symmetric function, then we denote by f⊥ : Λ→ Λ the operation which is adjoint to
multiplication by f , as well as its extension to R ⊗̂ Λ→ R ⊗̂ Λ, for any ring R. The plethysm
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operation on Λ is denoted by ◦. If R is in addition a λ-ring, then the plethysm extends in a
natural way to an operation ◦ on R ⊗̂ Λ.

The following result is proven in [Get95b, Proposition 6.9].

Proposition 4.3 (Getzler). If X → S has relative dimension one, then FMX/S = FX/S ◦
(s1 + s⊥1M).

Proof. The proof uses a certain yoga of symmetric functions and Sn-representations. In this
formalism, the plethysm should be interpreted as ‘attaching’, in a sense which can be made
precise using Joyal’s theory of species.

Seen in this framework, the equation simply states that to obtain a point of one of the
Fulton–MacPherson compactifications, we should first choose a configuration of distinct markings
in a fiber of X→ S, and at each of these markings we should either attach ‘a point’ (the summand
s1) or ‘a stable pointed tree of projective lines with one distinguished point’ (the summand s⊥1M),
the distinguished point being the one which is attached to X.

If [V ] ∈ Λn is the class of a representation of Sn, then s⊥1 ([V ]) = [ResSnSn−1
V ] ∈ Λn−1, which

explains why the operator s⊥1 corresponds to choosing one of the markings as distinguished. 2

In our case, we take S =M2, X =M2,1 and f the natural forgetful map. Then F (X/S, n)
=M2,n and FM(X/S, n) =Mrt

2,n. We have

eS(X) = Q− V + Q(−1)

with V = V1,0
∼= R1f∗Q. The only other mixed Hodge modules which will appear from now

on will arise by applying Adams operations to this expression. Hence, for our purposes, we can
replace K0(MHM(S)) with the representation ring of GSp(4) – the sub-λ-ring of K0(MHM(S))
generated by V – and Q(−1) is isomorphic to this representation ring, by an isomorphism sending
V to the standard four-dimensional representation and Q(−1) to the multiplier.

Propositions 4.2 and 4.3, and the calculation of M from [Get95a], allow us to calculate as
many terms as we wish of FMX/S in terms of the local systems Vl,m and their Tate twists. By
Remark 4.1, the same is true for each of the Rif∗Q (considered as Sn-equivariant Hodge modules
on M2), where f denotes the projection Mrt

2,n→M2.

4.2 The summand B•

To ease notation in this section, we let T = Mct
2 \M2

∼= Sym2M1,1, and Y = Mct
2,1\M2,1, the

universal curve over T . As in the previous subsection, we have the relative configuration space
F (Y/T, n); it can be identified with a Zariski open subset of Mct

2,n\Mrt
2,n. Although we do not

give a general definition of the Fulton–MacPherson compactification of a singular variety, we
make the definition

FM(Y/T, n) =Mct
2,n\Mrt

2,n,

by analogy with the preceding subsection.
To determine the summand B•, we will compute

FMY/T =
∑
n>0

eSnT (FM(Y/T, n)) ∈ K0(MHM(T )) ⊗̂ Λ.

Each eT (FM(Y/T, n)) is equal to the sum of B• and the restriction A•|Sym2M1,1
. The latter is

determined by the branching formula from Sp(4) to (SL(2)× SL(2)) o S2 [Pet13] since we have
already expressed A• in terms of local systems attached to representations of Sp(4) and their
Tate twists, and in this way we find B•.
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We can write [PT14, Lemma 5.2]

eT (Y ) = Q− V + Q(−1) + Q(−1)⊗ ε,
where the term V denotes the restriction of the local system V = V1,0 we had onMct

2 , and where
ε is defined by the equality µ∗Q = Q ⊕ ε, with µ : (M1,1)

2
→ Sym2M1,1 the double cover. As

a local system, ε is defined by the sign representation of S2. The terms Q(−1) + Q(−1) ⊗ ε
simply mean that H2(Yt) is two dimensional for any t ∈ T , and it is spanned by the sum of
the fundamental classes of the two components (which is S2-invariant) and the difference of the
fundamental classes (which transforms under the sign representation).

Let Y sm ⊂ Y be the locus where the morphism Y → T is smooth; that is, the complement
of the node in each fiber.

Proposition 4.4. FMY/T = (FY sm/T ◦ (s1 + s⊥1M)) · (1 + ε⊗ s⊥1,1M+ s⊥2M).

Proof. Again we use the yoga of species. As in the preceding proposition, we can interpret
FY sm/T ◦ (s1 + s⊥1M) as a choice of distinct markings in the smooth locus of a fiber of Y → T ,
and for each of them we attach a point or a pointed tree of projective lines with one of the points
distinguished.

In order to obtain FMY/T , we should also put markings at the node. Here we can either
have no marking at all (the summand ‘1’), or we need to choose a pointed tree of projective
lines with two of the points distinguished. Choosing two marked points is the same as restricting
an Sn-representation V to Sn−2 × S2. The part of this restriction that transforms according to
the trivial representation of S2 is s⊥2 [V ], and the part that transforms according to the sign
representation is s⊥1,1[V ]. This explains the formula. 2

Note that even though the map h : FM(Y/T, n)→ T fails to be smooth, each Rih∗Q is still
pure of weight i. Indeed, this follows from Theorem 2.1. One could also prove this by writing
the fiber of h over t as an iterated blow-up of (Yt)

n (which clearly has pure cohomology) in loci
which themselves have pure cohomology. Thus, FMY/T determines each of the terms Rih∗Q.

The expressions for FMX/S that were derived earlier will only contain Schur functors applied
to V and Q(−1). Here we are going to find an expression for FMY/T in terms of Schur functors
applied to V, Q(−1) and ε. Moreover, both FMX/S and FMY/T are going to be ‘effective’, in
the sense that terms of odd weight always occur with a negative coefficient and terms of even
weight with a positive coefficient. Thus, it makes sense to say that FMX/S is a ‘direct summand’
of FMY/T . (It would perhaps be more accurate to talk about ‘i∗R0j∗FMX/S ’ as such a summand,
where j : S→Mct

2 and i : T →Mct
2 are the respective open and closed immersions.) In making

our calculations, we have verified in particular that FMY/T −FMX/S satisfies the Poincaré duality
with a degree shift of Theorem 2.1, a non-trivial consistency check.

In Table 1, we tabulate the cohomology of Mct
2,n for some small values of n. We encode the

cohomology as the polynomial
∑

i[H
i(Mct

2,n)] · ti, where [H i(Mct
2,n)] is considered as an element

of K0(MHSQ)⊗ Λn. This class is given as a polynomial in L and the Schur polynomials sλ. By
L, we mean the Tate Hodge structure Q(−1). (For n 6 9, all the cohomology is of Tate type.) In
general, we can only determine the cohomology up to semi-simplification (since the cohomology
of local systems on Mct

2 was only computed with this caveat in [Pet15]), but in this table there
are actually no non-trivial extensions since none of the local systems have cohomology of different
weights in the same degree.

In Table 2, we give the tautological cohomology ofMct
2,8, i.e. the first non-Gorenstein example.

Here we do not specify the mixed Hodge structure (obviously it is all pure Tate).
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Table 1. Cohomology of Mct
2,n for n 6 5. Non-pure cohomology occurs in even degrees for the

first time when n = 5, with the impure cohomology arising from classes in H2(Sym2M1,1,V)
given by products of classes attached to Eisenstein series, and V is a Tate twist of a weight 4
local system.

n H•(Mct
2,n)

1 L2s1t
4 + 2Ls1t

2 + s1

2 L3s2t
6 + (L5s2 + L4s1,1)t5 + (4L2s2 + L2s1,1)t4 + (4Ls2 + Ls1,1)t2 + s2

3 L4s3t
8 + (L6s3 + L6s2,1 + L5s2,1 + L5s1,1,1)t7 + (5L3s3 + 3L3s2,1)t6 + (L5s3 +

L5s2,1 + 2L4s2,1 + 2L4s1,1,1)t5 + (10L2s3 + 7L2s2,1)t4 + (5Ls3 + 3Ls2,1)t2 + s3

4 L5s4t
10 + (L7s4 + L7s3,1 + L7s2,2 + L6s3,1 + L6s2,1,1)t9 + (7L4s4 + 4L4s3,1 +

2L4s2,2)t8 + (2L6s4 + 4L6s3,1 + 2L6s2,2 +L6s2,1,1 +L6s1,1,1,1 +L5s4 + 5L5s3,1 +
2L5s2,2+6L5s2,1,1+2L5s1,1,1,1)t7+(20L3s4+18L3s3,1+9L3s2,2+3L3s2,1,1)t6+
(L5s4 +L5s3,1 +L5s2,2 + 3L4s3,1 +L4s2,2 + 4L4s2,1,1 +L4s1,1,1,1)t5 + (20L2s4 +
18L2s3,1 + 9L2s2,2 + 3L2s2,1,1)t4 + (7Ls4 + 4Ls3,1 + 2Ls2,2)t2 + s4

5 L6s5t
12 + (L8s5 + L8s4,1 + L8s3,2 + L7s4,1 + L7s3,1,1)t11 + (8L5s5 + 6L5s4,1 +

3L5s3,2)t10 + (4L7s5 + 7L7s4,1 + 6L7s3,2 + 3L7s3,1,1 + 2L7s2,2,1 + L7s2,1,1,1 +
L7s1,1,1,1,1 + 2L6s5 + 9L6s4,1 + 5L6s3,2 + 11L6s3,1,1 + 4L6s2,2,1 + 4L6s2,1,1,1)t9 +
(L7s3,2 + L7s2,2,1 + L7s2,1,1,1 + L7s1,1,1,1,1 + 33L4s5 + 37L4s4,1 + 25L4s3,2 +
8L4s3,1,1 + 6L4s2,2,1)t8 + (4L6s5 + 7L6s4,1 + 6L6s3,2 + 3L6s3,1,1 + 2L6s2,2,1 +
2L6s2,1,1,1+2L6s1,1,1,1,1+3L5s5+15L5s4,1+10L5s3,2+21L5s3,1,1+10L5s2,2,1+
10L5s2,1,1,1 + L5s1,1,1,1,1)t7 + (51L3s5 + 68L3s4,1 + 48L3s3,2 + 22L3s3,1,1 +
L3s2,1,1,1 + 14L3s2,2,1)t6 + (L5s5 + L5s4,1 + L5s3,2 + 4L4s4,1 + 2L4s3,2 +
6L4s3,1,1+2L4s2,2,1+2L4s2,1,1,1)t5+(33L2s5+37L2s4,1+25L2s3,2+8L2s3,1,1+
6L2s2,2,1)t4 + (8Ls5 + 6Ls4,1 + 3Ls3,2)t2 + s5

5. The non-vanishing of the Gysin map

In this section, we will prove the non-vanishing of the Gysin map discussed in Remark 3.5. Let
us first give a trivial reformulation of the result. Let p : A1 × A1 → A2 be the natural map,
assigning to a pair of elliptic curves its product considered as a principally polarized abelian
surface. Consider the local system V2a,2a on A2. The pullback p∗V2a,2a contains a single copy of
the trivial local system Q as a summand. Choosing a map Q ↪→ p∗V2a,2a (which is unique up to
a non-zero scalar) allows one to define a Gysin map

p! : H
0(A1 ×A1,Q)→ H2(A2,V2a,2a)

for all a. (As the reader may have noticed, we are now omitting Tate twists; the Hodge structures
on both sides will no longer play any role.) The goal of this section will be to prove the non-
vanishing of p! for all a 6= 1.

5.1 Reduction to the Baily–Borel boundary
Let j : A2 ↪→A2 be the inclusion into the Baily–Borel compactification (also known as the Satake
compactification). The space A2 can be written set-theoretically as

A2 = A2 t A1 t A0,
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Table 2. The S8-representations RH •(Mct
2,8), with failure of the Gorenstein property

highlighted.

k RH k(Mct
2,8)

0 s8

2 13 s8 + 10 s7,1 + 8 s6,2 + 4 s5,3 + 2 s4,4

4 87 s8+122 s7,1+127 s6,2+40 s6,1,1+90 s5,3+52 s5,2,1+37 s4,4+34 s4,3,1+16 s4,2,2+6 s3,3,2

6 307 s8+565 s7,1+695 s6,2+319 s6,1,1+563 s5,3+485 s5,2,1+53 s5,1,1,1+234 s4,4+355 s4,3,1+
183 s4,2,2 + 80 s4,2,1,1 + 91 s3,3,2 + 38 s3,3,1,1 + 32 s3,2,2,1 + 4 s2,2,2,2

8 578 s8 + 1194 s7,1 + 1578 s6,2 + 814 s6,1,1 + 1354 s5,3 + 1328 s5,2,1 + 202 s5,1,1,1 + 569 s4,4 +
1018 s4,3,1 + 547 s4,2,2 + 326 s4,2,1,1 + 13 s4,1,1,1,1 + 290 s3,3,2 + 156 s3,3,1,1 + 136 s3,2,2,1 +
16 s3,2,1,1,1 + 16 s2,2,2,2 + 4 s2,2,2,1,1

10 578 s8 + 1194 s7,1 + 1578 s6,2 + 814 s6,1,1 + 1354 s5,3 + 1328 s5,2,1 + 202 s5,1,1,1 + 569 s4,4 +
1018 s4,3,1 + 547 s4,2,2 + 326 s4,2,1,1 + 13 s4,1,1,1,1 + 290 s3,3,2 + 156 s3,3,1,1 + 136 s3,2,2,1 +
16 s3,2,1,1,1 + 17 s2,2,2,2 + 4 s2,2,2,1,1

12 307 s8+565 s7,1+695 s6,2+319 s6,1,1+563 s5,3+485 s5,2,1+53 s5,1,1,1+234 s4,4+355 s4,3,1+
183 s4,2,2 + 80 s4,2,1,1 + 91 s3,3,2 + 38 s3,3,1,1 + 32 s3,2,2,1 + 4 s2,2,2,2

14 87 s8+122 s7,1+127 s6,2+40 s6,1,1+90 s5,3+52 s5,2,1+37 s4,4+34 s4,3,1+16 s4,2,2+6 s3,3,2

16 13 s8 + 10 s7,1 + 8 s6,2 + 4 s5,3 + 2 s4,4

18 s8

where A0 is a point. Let i0 be the inclusion of A0 in A2. Similarly, let j′ : A1×A1 ↪→ A1×A1 be

the inclusion into the Baily–Borel compactification, and i′0 the inclusion of the zero-dimensional

boundary stratum (the product of the two cusps in A1 ×A1).

We can consider the derived pushforwards into the respective Baily–Borel compactifications,

Rj∗V2a,2a and Rj′∗Q, and take their stalks at the respective zero-dimensional strata. As in

[Lem15, § 3.2], one can define a Gysin map also between the stalks (we will discuss this further

in § 5.3), giving rise to a commutative diagram

(4)

Clearly, j′∗Q is the constant sheaf Q on A1 × A1, and thus the upper horizontal arrow is an

isomorphism. It follows that p! will be non-zero whenever p0! is, which is what we will actually

prove.
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5.2 Harder’s formula, take one
Let us first compute the stalks appearing in the right-hand side of the diagram (4). There is
a useful and well-known formula which calculates the restrictions to individual strata of higher
direct images of local systems in a Baily–Borel compactification. We will refer to it as Harder’s
formula, since it seems that it does not have a standard name and that it was first obtained
by Harder. The earliest proofs of Harder’s formula that I am aware of prove it in the far more
general settings of mixed Hodge modules [LR91] and `-adic sheaves [Pin92], respectively. We
state the result only in our particular situation; see the above references for the general case.

Let G = Sp(4) and let K = U(2) ⊂ G(R). Then A2 is a locally symmetric space for G:

A2
∼= G(Z)\G(R)/K.

By the general theory of the Baily–Borel compactification, the strata of A2 correspond bijectively
to G(Z)-conjugacy classes of maximal parabolic subgroups of G. The zero-dimensional stratum
corresponds to the Siegel parabolic subgroup P ⊂ G of matrices of the form∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 .

We write its Levi decomposition as P = MU , where M ∼= GL(2) consists of block-diagonal
matrices of the form

(
A
A−t

)
and U is the additive group of 2× 2 symmetric matrices, sitting in

the symplectic group as
(
1 B

1

)
. Then Harder’s formula asserts that

i∗0R
2j∗V2a,2a

∼=
⊕
p+q=2

Hp(M(Z), Hq(u,V2a,2a)).

Here u is the Lie algebra of U(R).
A famous theorem of Kostant expresses Hq(u,V2a,2a) as a representation of M . For our

purposes, it will be enough to know it as a representation of the derived subgroup Mder ∼= SL(2),
whose representations we continue to denote by Vk, k > 0. In lieu of describing Kostant’s theorem,
we quote from [Sch95, Table 2.3.4] that H1(u,V2a,2a) ∼= V4a+2. This is the only cohomology group
we will need to consider.

Let also H = SL(2)× SL(2), which we consider as a subgroup of G via the inclusion

(
a b
c d

)
,

(
a′ b′

c′ d′

)
7→

a b
a′ b′

c d
c′ d′

 .

The corresponding locally symmetric space H(Z)\H(R)/KH (where KH = H(R) ∩ K) is
isomorphic to A1 × A1, and the map induced by H ↪→ G is precisely p. Let PH = P ∩ H,
which is the product of the two Borel parabolic subgroups of SL(2). Let similarly MH = M ∩H
(which is the diagonal torus in H), UH = U ∩H and let uH be the Lie algebra of UH(R). We
have already noted that i′∗0 j

′
∗Q
∼= Q, but we can compute also with Harder’s formula that

i′∗0 j
′
∗Q
∼= H0(MH(Z), H0(uH ,Q)) ∼= Q.

However, it is not clear at all from these descriptions what the map p0! is, or even why such a
map should exist at all. To make sense of this, we need to understand the geometric content of
Harder’s formula.
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5.3 Harder’s formula, take two
By definition, i∗0R

kj∗V is given by the direct limit of Hk(V ∩ A2,V), where V ranges over
neighborhoods of the zero-dimensional stratum in A2. The shape of Harder’s formula is
explained by the fact that a small enough deleted neighborhood V ∩ A2 is homeomorphic to
a U(R)/U(Z)-bundle over the space M(Z)\M(R)/KM . Now the cohomology of U(R)/U(Z)
coincides with the Lie algebra cohomology of u by the van Est isomorphism (which is
somewhat trivial in this case as the Lie algebra in question is abelian), and the cohomology
of M(Z)\M(R)/KM coincides with the group cohomology of M(Z) since M(R)/KM is
contractible. Finally, the Leray spectral sequence associated with this U(R)/U(Z)-bundle
degenerates. This explains Harder’s formula. See [LR91, § 6] for more details.

We can now understand the map p0!. For every V as in the previous paragraph, there is
an oriented codimension two embedding V ∩ (A1 × A1) ↪→ V ∩ A2. The direct limit of the
corresponding Gysin maps defines p0!. But there is also a Gysin map between the two Leray
spectral sequences, defined by the two codimension one embeddings

UH(R)/UH(Z) ↪→ U(R)/U(Z) and MH(Z)\MH(R)/KMH
↪→M(Z)\M(R)/KM

between the respective fibers and base spaces. This includes in particular a map

H0(MH(Z), H0(uH ,Q))→ H1(M(Z), H1(u,V2a,2a)), (5)

which we want to prove is non-zero.
Consider now the following diagram with exact rows:

(6)

By assigning to each of the above groups G its locally symmetric space G(Z)\G(R)/K, the rows
become fiber bundle sequences. We therefore get a map between fiber bundles over the base

Gm(Z)\Gm(R)/± 1 ∼= R>0 ×BZ/2.

We also get a map between the Leray spectral sequences for the two fiber bundles. These spectral
sequences compute the cohomology of MH(Z) and M(Z), respectively, and become rather trivial
in our case since BZ/2 has non-zero cohomology only in degree 0 (rationally), where it is given
by the space of Z/2-invariants. We thus find a commutative diagram

(7)

where the superscripts denote Z/2-invariants; the Z/2-action is defined by the monodromy of
the respective fiber bundles. Here A1 and R>0×BZ/2 arise as locally symmetric spaces for Mder

and Gm, respectively. Now H0(uH ,Q) is the trivial representation of Gm × Gm, which means
that both factors Z/2 act trivially on H0(R>0,Q). Thus, we will know that the Gysin maps of
the diagram (7) are non-zero, whenever the Gysin map

H0(R>0,Q)→ H1(A1,V4a+2) (8)

(which is Z/2-equivariant) is non-zero. The latter map is associated with the inclusion of R>0

into the upper half plane, t 7→ t · i.
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Note that we also need to specify a map from the constant sheaf Q on R>0 to the restriction
of the local system V4a+2, which is of course a trivial local system of rank 4a + 3. This map is
pinned down by the Gm-action. In general, the restriction of the representation Vk of SL(2) to
its diagonal torus Gm decomposes as the direct sum of k + 1 eigenspaces, with eigenvalues

k, k − 2, . . . ,−k + 2,−k.

Thus, the restriction of V4a+2 to R>0 has a canonically defined one-dimensional summand
corresponding to the eigenvalue 0, and it is this summand which we identify with the constant
sheaf Q.

The question of non-vanishing of the map H0(R>0,Q)→ H1(A1,Vk) is related to classical
theory of periods of cusp forms and modular symbols, as we now explain.

5.4 The Eichler–Shimura isomorphism and periods of cusp forms
In this subsection, we briefly recall results principally due to Eichler, Shimura and Manin.
Everything here is well known and can be found e.g. in [Lan76, Part II] (although without
the cohomological language).

It will be slightly more convenient to consider the complexification of the rational local
system Vk considered previously (although strictly speaking not necessary). Let us make the
identification

Vk ⊗C ∼= C[X,Y ]k,

where the right-hand side denotes the space of homogeneous polynomials in X and Y of degree
k, with the action

(P |γ)(X,Y ) = P (aX + cY, bX + dY )

for P (X,Y ) ∈ C[X,Y ]k and γ =
(
a b
c d

)
∈ SL(2,Z).

Let f be a cusp form of weight k + 2 for SL(2,Z). Consider the expression

f(z)(zX + Y )k dz,

which defines a holomorphic 1-form in the upper half plane H taking values in Vk ⊗ C. It is
easily checked that this 1-form is closed and invariant under the action of SL(2,Z) and hence
defines a cohomology class in H1(A1,Vk ⊗ C). In addition, these 1-forms are actually rapidly
decreasing at infinity, which implies that they define cohomology classes also in compactly
supported cohomology. We write them as

[f ] ∈ H1
c (A1,Vk ⊗C).

A remark is that a similar construction associates a cohomology class also to an antiholomorphic
cusp form. The Eichler–Shimura theorem says that this construction defines an injection

Sk+2 ⊕ Sk+2 ↪→ H1(A1,Vk ⊗C),

where Sk+2 (respectively Sk+2) is the space of holomorphic (respectively antiholomorphic) cusp
forms of weight k + 2; moreover, the cokernel of this injection is identified with the space of
Eisenstein series of weight k + 2.

As explained before, the inclusion Gm ↪→ SL(2) induces a map R>0 → H of symmetric
spaces, t 7→ t · i. We get a pullback map

H1
c (A1,Vk ⊗C)→ H1

c (R>0,Vk ⊗C) = Vk ⊗C
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under which it is easy to check that

[f ] 7→
k∑

n=0

(
k

n

)
XnY k−n

∫ i∞

0
f(z)zn dz

for f ∈ Sk+2. Indeed, if we represent the compactly supported cohomology class associated to f
by the above rapidly decreasing differential form, then the pullback is given simply by integration.

The integral
∫ i∞
0 f(z)zn dz is called the nth period of f and we denote it by rn(f). If f is a

Hecke eigenform, then its periods are related to the special values of the L-function attached to
f : if the L-function is normalized to have a functional equation relating L(f, s) and L(f, k+2−s),
then

L(f, n) =
(−2πi)n

(n− 1)!
rn−1(f), n = 1, 2, . . . , k + 1.

As mentioned earlier, the restriction of Vk to Gm ⊂ SL(2) splits as a sum of k + 1 distinct
one-dimensional representations, whose eigenvalues are

k, k − 2, . . . ,−k + 2,−k.

We can choose Xk, Xk−1Y , . . . , Y k to be the eigenvectors in Vk⊗C corresponding to the above
eigenvalues. Each such monomial XnY k−n gives rise to a map C ↪→ Vk ⊗C from the constant
sheaf to the restriction of Vk ⊗C to R>0, and thus to an evaluation

H1
c (A1,Vk ⊗C)→ H1

c (R>0,C) = C, (9)

which maps a cusp eigenform f to
(
k
n

)
rn(f). These evaluations are classically called modular

symbols. The case we consider is the eigenvalue 0, which corresponds to the middle monomial
Xk/2Y k/2 and to the central critical value of the L-function.

5.5 Putting it all together
We are now in a position to prove the main result of this section.

Theorem 5.1. The Gysin map p! : H
0(A1 ×A1,Q)→ H2(A2,V2a,2a) is non-zero for all a 6= 1.

Proof. The case a = 0 is easy, so assume that a > 2. We have already noted that the map p!
is non-zero whenever p0! is non-zero, as is clear from the diagram (4). By expressing the source
and target of p0! using Harder’s formula, we saw that it would be enough to show that the Gysin
map in (5) is non-zero. By considering the diagram (7), we then saw that this would follow from
the non-vanishing of the Gysin map (8).

Tensoring our cohomology groups by C and applying Poincaré duality, we see that the last
statement is equivalent to the non-vanishing of the modular symbol in (9), where k = 4a + 2.
As explained in § 5.4, this modular symbol will map a Hecke eigenform f of weight 4a + 4 to
its central L-value L(f, 2a + 2) (up to a non-zero scalar). Thus, we have finally reduced to the
following assertion: for any weight w ≡ 0 (mod 4), w > 12, there is a Hecke eigenform of weight w
whose central L-value is non-zero. This last fact is a special case of [Koh80, Corollary of Theorem
2] (or alternatively of [KZ81, Corollary 2]). This finishes the proof. 2

Remark 5.2. Recall from [Pet15] that H4
c (A2,V2a,2a) has a basis corresponding to the normalized

cusp eigenforms for SL(2,Z) of weight 4a + 4. Moreover, this cohomology group is the direct
sum of the cuspidal cohomology and the residual Eisenstein cohomology, where the former is
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spanned by those cusp forms whose central critical value vanishes, and the latter is spanned

by those with non-zero central value. It is natural to think of Theorem 5.1 as the conjunction

of two separate assertions: firstly that the map H4
c (A2,V2a,2a) → H4

c (A1 × A1,Q) does not

vanish on the residual Eisenstein subspace, and secondly that the residual Eisenstein subspace

is non-empty. The latter fact is where we need the input from Kohnen–Zagier in the proof of

Theorem 5.1. We remark also that H4
c (A2,V2a,2a)→ H4

c (A1 ×A1,Q) will in fact vanish on the

subspace of cuspidal cohomology, cf. [AGR93].

Remark 5.3. A statement nearly equivalent to Theorem 5.1 had previously been obtained by Qiu

[Qiu14, Lemma 14]. In fact, Qiu proved the non-vanishing of an analogously defined Gysin map

on the residual Eisenstein subspace associated with the Siegel parabolic subgroup P (cf. the

preceding remark) for an arbitrary Siegel threefold (as opposed to A2, which is the special

case of the full modular group). However, he restricted his attention to the case of cohomology

with constant coefficients, so we could not directly quote his result. Qiu’s proof uses Harder’s

formalism of Eisenstein cohomology to represent residual Eisenstein classes as differential forms,

and what he proved is that the integral of such a differential form over A1×A1 (or an analogously

defined cycle) is non-zero. Compared to the proof given here, the computations involving Harder’s

formula and Leray spectral sequences are replaced by explicit manipulations of adelic integrals

and Fubini’s theorem; the classical theory of period integrals of cusp forms is replaced by the

Jacquet–Langlands theory for GL(2). Qiu has informed me that his proof would generalize to

the case of local coefficients as well.

Remark 5.4. Famous results of Manin and Shimura imply that the special values L(f, n) admit

a factorization into a ‘transcendental part’ and an ‘algebraic part’. The transcendental part is

expressed in terms of certain numbers ω±(f) and powers of π (and is always non-zero). The

algebraic part is an algebraic number, as the name suggests, and the action of Gal(Q/Q) on

the set of Hecke eigenforms is compatible with the natural action on the algebraic parts of the

special values. Now a conjecture of Maeda asserts that all Hecke eigenforms for SL(2,Z) of given

weight form a single Galois orbit. In particular, it would follow that if a single cusp eigenform

of some weight k has a vanishing/non-vanishing central value, then the same should be true for

all eigenforms of this weight. Therefore, the decomposition into cuspidal and residual Eisenstein

cohomology discussed in Remark 5.2 would become a bit silly, assuming Maeda’s conjecture: the

cuspidal subspace should always vanish. Maeda’s conjecture is known to be true for all weights

up to 14 000 [GM12].
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