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Abstract
This paper studies a Pareto-optimal reinsurance problem when the contract is subject to default of the reinsurer.
We assume that the reinsurer can invest a share of its wealth in a risky asset and default occurs when the reinsurer’s
end-of-period wealth is insufficient to cover the indemnity. We show that without the solvency regulation, the
optimal indemnity function is of excess-of-loss form, regardless of the investment decision. Under the solvency
regulation constraint, by assuming the investment decision remains unchanged, the optimal indemnity function is
characterized element-wisely. Partial results are derived when both the indemnity function and investment decision
are impacted by the solvency regulation. Numerical examples are provided to illustrate the implications of our
results and the sensitivity of solution to the model parameters.

1. Introduction

Reinsurance has been one of the most prevailing risk hedging tools in the insurance industry. The study
of optimal reinsurance design has therefore been important in actuarial science. A reinsurance contract
comprises two components: an indemnity function 𝐼 (𝑥), which maps the insurable loss to indemnity,
and a deterministic premium 𝜋. Such a contract is bargained for between the insurer and the reinsurer,
and needs to be determined before the realization of any losses. Since the seminal works of Borch
[12] and Arrow [1], numerous results have been developed along different directions. Early researches
focus on the models which aim to maximize the expected utility (EU) or minimize the risk exposure of
insurer or its counterparty (i.e., reinsurer). These models then evolve to take account of more general
risk measures, heterogeneous beliefs, incentive compatibility, and risk exposure constraints. See, for
example, [4,20,21,23,27,33] for some of the most recent advances.

Although huge efforts have been devoted to generalize the models of Borch [12] and Arrow [1],
most of the works still center around unilateral problems. It is understandable that a contract which is
appealing to one party may not be acceptable to the other party. The conflicting interests between the
insurer and the reinsurer have drawn extensive attention, and authors propose the design of reciprocal
reinsurance treaties. For instance, Cai et al. [14] proposed to study a social welfare objective function
that is formulated as a weighted sum of the risks of the insurer and reinsurer. Any solution of this
social welfare function is Pareto-optimal [35], which means that there does not exist another solution
that is better for both agents (insurer and reinsurer) and strictly better for at least one agent. We follow
this approach in order to characterize Pareto-optimal reinsurance contracts via the maximizing of a
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social welfare function. Some other developments on Pareto-optimality of reinsurance contracts and
weighted-sum objectives can be found in [2,5,6,15,28,34].

In the aforementioned papers, it is assumed that the reinsurer always stays solvent and is able to
fulfill its financial obligations. This assumption may not hold true if the reinsurer is protected by limited
liability. In case of limited liability, the reinsurer can opt to default, and the policyholders face the
risk that the indemnities are not fully paid out. For instance, Cummins and Mahul [24] study optimal
insurance with full default, which means that no indemnity is paid to the policyholder in case of a default.
Bernard and Ludkovski [7] and Boonen and Jiang [10] study the case of multiplicative default risk in
which the effective indemnity is determined by a random recovery rate and the promised indemnity,
and these papers differ in the objective of the insurer. Bernard and Ludkovski [7] study expected utility
and Boonen and Jiang [10] study mean-variance preferences. In [7,10,24], default is modeled as an
exogenous event, which is unaffected by the insurance contract. Li and Li [31] extend the work of
Bernard and Ludkovski [7] to a bilateral setting in the presence of information asymmetry. Asimit et al.
[3] assume a constant default probability and recovery rate and study the optimal indemnity function in
a risk minimization framework.

This paper studies a one-period economy and aims to show optimal reinsurance contracts (premium
and indemnity function) in the sense of Pareto-optimality in a bilateral bargaining setting. This means
that we take into account the preferences of the insurer and the reinsurer jointly. Default happens when
the reinsurance indemnity exceeds the reinsurer’s end-of-period wealth. In particular, we assume that
the reinsurer can invest a fraction of its income in the risky asset. This is in fact an agency problem where
the reinsurer may invest as much as it can to purchase risky asset if the expected return is large enough,
while the insurer may prefer the reinsurer to invest more safely to lower the insolvency probability.

This paper is most related to [8,13,25]. Cai et al. [13] proposed a model with default risk where
the reinsurer’s capital reserve is regulated by the Value-at-Risk (VaR) of its promised indemnity. This
means that the reinsurance contract itself or the investments do not affect the likelihood of the default
event. On the other hand, Filipović et al. [25] and Boonen [8] both assume that the default event is
endogenously affected by the premium and investment decisions of reinsurer. Filipović et al. [25] assume
full insurance and derive the optimal investment decision and premium with and without solvency
regulation in a principal-agent model. The regulation is modeled via a constraint with a convex risk
measure. Boonen [8] studies an optimal insurance model with multiple policyholders that are assumed
to be symmetric (or, more specifically, exchangeable). The main result of Boonen [8] shows that a
partial equilibrium exists, and provides the optimal allocation of remaining assets in the case of default.
However, a major drawback of this approach is that there is only full insurance, and thus it is not possible
to reinsure with a deductible or via coinsurance. This is a main motivation of this paper, and instead of
focusing on multiple policyholders, we extend the literature by allowing for generic indemnity functions
in the reinsurance contract. Moreover, and in contrast to Filipović et al. [25], we model regulation by
a constraint on the probability of default. This constraint translates to a constraint generated from the
VaR, which is a non-convex risk measure, and such constraint is also used in Solvency II regulation for
insurers in the European Union.

Comparing with the existing literature on optimal reinsurance subject to default risk, we summarize
the main contributions of this paper in the following.

• First, by assuming a risk-averse insurer and a risk-neutral reinsurer, the Pareto-optimal indemnity
function exhibits excess-of-loss form in the absence of solvency regulation. The optimal fraction
invested in the risky asset is equal to 100%, and the remaining objective function as a function of the
premium is shown to be concave. To the best of our knowledge, this finding is new for the static
optimal reinsurance problem.

• Second, we show the impact of a solvency regulation constraint on the optimal indemnity function
when the regulator is only regulating the reinsurance contract. Less indemnity is provided by the
reinsurer via coinsurance in the optimal reinsurance contract. If the loss and investment return are
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independent, we further show that the obtained optimal indemnity function is increasing and satisfies
the 1-Lipschitz continuity.

• Third, when restricting to the class of excess-of-loss indemnity functions, we show the effect on the
optimal retention level when solvency regulation is able to restrict jointly the reinsurance indemnity
function and the investment decision of reinsurer.

The rest of this paper is organized as follows. Section 2 introduces the reinsurance market. Section 3
studies the case where no solvency regulation is imposed and thoroughly solves the problem under some
mild regularity assumptions. Section 4 explores the impact of solvency regulation on both the indemnity
function and investment decision. Section 5 concludes. The proofs are delegated to the Appendix.

2. Reinsurance market

Throughout the paper, we use the following notations: 𝑥 ∧ 𝑦 = min{𝑥, 𝑦}, 𝑥 ∨ 𝑦 = max{𝑥, 𝑦} and
(𝑥)+ = 0 ∨ 𝑥.

Let the insurer be endowed with an insurable loss random variable 𝑋 on a fixed probability space,
which is non-negative and integrable. The insurer gets indemnified 𝐼 (𝑥) by the reinsurer if the realized
loss is given by 𝑥, which means that the insurer retains the risk 𝑥 − 𝐼 (𝑥). An indemnity function is a
function in the following class

C := {𝐼 : R+ → R+ | 𝐼 (0) = 0, 0 ≤ 𝐼 (𝑥) ≤ 𝑥}.

In return for the reinsurance indemnity, the reinsurer receives a premium 𝜋 ∈ [0, 𝜋0], where 𝜋0 > 0 is
the maximum premium that the insurer is able to pay.

The reinsurer has access to a risk-free asset and a risky asset. The risk-free rate is equal to 𝑟 ≥ 0, and
the risky asset has an excess return of 𝑅, so that the total return of the risky asset is 1 + 𝑟 + 𝑅 and 𝑅 is
a random variable whose range is a subset of [−(1 + 𝑟),∞). We assume that the expected excess rate
of return is finite and positive: 0 < E[𝑅] < ∞. The distribution of (𝑅, 𝑋) is given and known by the
insurer and reinsurer.

For the risk attitudes of the insurer and reinsurer, we adopt the same setting as in [8,25]. That is, the
insurer is risk-averse and equipped with a concave and increasing1 utility function 𝑢 while the reinsurer is
risk-neutral. We further assume that 𝑢 is twice differentiable and satisfies the following Inada conditions:

lim
𝑥→−∞

𝑢′(𝑥) = ∞, lim
𝑥→∞

𝑢′(𝑥) = 0.

Suppose that the reinsurer is endowed with the initial wealth 𝑤Re, charges a premium 𝜋 ∈ [0, 𝜋0],
and invests a fraction 𝛼 ∈ [0, 1] of its wealth in a risky asset. The final wealth of the reinsurer is equal to

𝐾 (𝛼, 𝜋) = (𝑤Re + 𝜋)((1 − 𝛼)(1 + 𝑟) + 𝛼(1 + 𝑟 + 𝑅)) = (𝑤Re + 𝜋)(1 + 𝑟 + 𝛼𝑅).

As the reinsurer is assumed to be risk-neutral and only able to pay the indemnity when 𝐾 (𝛼, 𝜋) ≥ 𝐼 (𝑥),
its objective is to maximize

𝑈Re (𝐼, 𝛼, 𝜋) = E[(𝐾 (𝛼, 𝜋) − 𝐼 (𝑋))+] . (2.1)

Moreover, the insurer’s objective is to maximize

𝑈In (𝐼, 𝛼, 𝜋) = E[𝑢(𝑤In − 𝑋 + 𝐾 (𝛼, 𝜋) ∧ 𝐼 (𝑋) − 𝜋)], (2.2)

where 𝑤In ∈ R is the initial wealth of the insurer. Note that the insurable loss 𝑋 of the insurer may
contain exposure to the risky asset, and this exposure to the risky asset is considered to be fixed and
common knowledge.

1We do not distinguish between “increasing” and “non-decreasing”.
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The following assumption is similar to Assumption 3.1 in [8], but adjusted to our setting with
reinsurance indemnities.

Assumption 1.

(i) 𝑅 is non-negatively correlated with 1𝑆 (𝐼 ,𝛼, 𝜋) for all (𝐼, 𝛼, 𝜋) ∈ C × [0, 1] × [0, 𝜋0], where
𝑆(𝐼, 𝛼, 𝜋) = {𝐾 (𝛼, 𝜋) ≥ 𝐼 (𝑋)} is the no-default (solvency) event.

(ii) The distribution of (𝑅, 𝑋) admits a jointly continuous density function and is such that 𝑈In and
𝑈Re are twice partially differentiable with respect to (𝛼, 𝜋).

(iii) P(𝑆(𝑋, 𝛼, 𝜋)) > 0 for all (𝛼, 𝜋) ∈ [0, 1] × [0, 𝜋0].

Here, 1𝑆 (𝐼 ,𝛼, 𝜋) = 1 if 𝑆(𝐼, 𝛼, 𝜋) holds and 1𝑆 (𝐼 ,𝛼, 𝜋) = 0 otherwise.
Assumption 1(ii) ensures that we can interchange integration and differentiation [8]. Boonen [8]

allows only for full insurance, and thus we wish to interpret Assumption 1(i) in case of general indemnity
functions. The following proposition provides a sufficient condition under which this assumption holds.

Proposition 2.1. If 𝑅 and 𝑋 are independent, then Assumption 1(i) holds.

3. Pareto-optimal policies without solvency regulation

In this section, we study a Pareto-optimal reinsurance problem without considering any solvency
regulation. A reinsurance contract is modeled as the pair (𝐼, 𝜋). The reinsurer unilaterally selects the
fraction 𝛼 that is invested in the risky asset. The insurer has no influence on 𝛼, while the reinsurance
contract is modeled via a risk-sharing mechanism between the insurer and the reinsurer. Our focus is on
Pareto-optimal reinsurance contracts. We first provide a definition of Pareto-optimality of a pair (𝐼, 𝜋).

Definition 3.1 (Pareto-optimal pair). A pair (𝐼, 𝜋) ∈ C × [0, 𝜋0] is said to be Pareto-optimal if there
does not exist another pair (𝐼, 𝜋̃) ∈ C × [0, 𝜋0] such that

𝑈In(𝐼, 𝛼, 𝜋) ≤ 𝑈In(𝐼, 𝛼̃, 𝜋̃), 𝑈Re(𝐼, 𝛼, 𝜋) ≤ 𝑈Re (𝐼, 𝛼̃, 𝜋̃)

with 𝛼 ∈ arg max𝛼′ ∈ [0,1] 𝑈Re(𝐼, 𝛼′, 𝜋), 𝛼̃ ∈ arg max𝛼′ ∈ [0,1] 𝑈Re(𝐼, 𝛼′, 𝜋̃), and with at least one
inequality strict.

The main problem of this section is formulated as follows.

Problem 1. For 𝛽 > 0, solve

max
(𝐼 , 𝜋) ∈C×[0, 𝜋0 ]

𝑈In(𝐼, 𝛼∗, 𝜋) + 𝛽 ·𝑈Re(𝐼, 𝛼∗, 𝜋),

s.t. 𝛼∗ ∈ arg max
𝛼∈[0,1]

𝑈Re(𝐼, 𝛼, 𝜋).

The parameter 𝛽 represents the relative negotiation power of the reinsurer and takes value in (0,∞).
Problem 1 is called the weighting method, and solutions to Problem 1 are Pareto-optimal [35]. We
emphasize that although the weighting method is one of the simplest methods to locate a Pareto-optimal
solution, it may not be able to find all Pareto-optimal solutions (or the efficient frontier) due to the
possible non-concavity of the risk preferences. Also, this method allows us to have an explicit objective
that considers both the interests of the insurer and the reinsurer simultaneously [14]. Figure 1 shows the
relation between the insurer, the reinsurer and the financial market.
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Figure 1. Schematic diagram of Problem 1; the relation between the insurer, the reinsurer and the
financial market.

Under Assumption 1, it holds that

𝜕

𝜕𝛼
𝑈Re (𝐼, 𝛼, 𝜋) = 𝜕

𝜕𝛼
E[((𝑤Re + 𝜋)(1 + 𝑟 + 𝛼𝑅) − 𝐼 (𝑋))+] = (𝑤Re + 𝜋)E[𝑅 · 1𝑆 (𝐼 ,𝛼, 𝜋) ]

= (𝑤Re + 𝜋)E[𝑅 |𝑆(𝐼, 𝛼, 𝜋)]P(𝑆(𝐼, 𝛼, 𝜋))
≥ (𝑤Re + 𝜋)E[𝑅] · P(𝑆(𝐼, 𝛼, 𝜋)) > 0, (3.1)

where the second equality is a result of Leibniz’ rule (cf. [8]). Hence, for any 𝐼 ∈ C and 𝜋 ∈ [0, 𝜋0], it
holds

arg max
𝛼∈[0,1]

𝑈Re (𝐼, 𝛼, 𝜋) = {1}. (3.2)

This implies that the optimal investment fraction can be written as

𝛼∗ (𝐼, 𝜋) := arg max
𝛼∈[0,1]

𝑈Re (𝐼, 𝛼, 𝜋) = 1 = 𝛼∗,

for all (𝐼, 𝜋) ∈ C × [0, 𝜋0]; the optimal investment decision 𝛼∗ is thus single-valued, and independent
of the reinsurance contract (𝐼, 𝜋).

We propose a step-wise approach to deal with multiple-variable optimization problem. First, we
optimize the indemnity function only, and treat the premium and investment decision as given. To have
a slightly more general setting, we fix the investment fraction 𝛼 in the following Problem to be any
[0, 1]-valued constant.

Problem 1a. For 𝛽 > 0, 𝛼 ∈ [0, 1] and 𝜋 ∈ [0, 𝜋0], solve

max
𝐼 ∈C

𝑈In(𝐼, 𝛼, 𝜋) + 𝛽 ·𝑈Re (𝐼, 𝛼, 𝜋).

Proposition 3.1. Let Assumption 1 hold. For given 𝛽 > 0, 𝛼 ∈ [0, 1] and 𝜋 ∈ [0, 𝜋0], the Pareto-
optimal indemnity function 𝐼∗𝜋 which solves Problem 1a is of the excess-of-loss form, that is, 𝐼∗𝜋 (𝑥) =
𝐼𝑑 (𝜋) (𝑥) := (𝑥 − 𝑑 (𝜋))+ for all 𝑥 ∈ R+, where 𝑑 (𝜋) = 0 ∨ (𝑤In − 𝜋 − [𝑢′]−1(𝛽)).

The optimal indemnity function given by Proposition 3.1 implies that either a larger 𝜋 or a larger 𝛽
results in a smaller retention point. This is intuitive as more coverage will be provided if the reinsurer
charges more premium and less coverage will be provided if the reinsurer has more bargaining power
in the negotiation. The value of 𝛼 does not affect the optimality of 𝐼𝑑 (𝜋) . Similar results appear in
continuous-time or dynamic models [16,32].

In the sequel of this section, we fix 𝛼∗ = 1: the investment decision is selected by the reinsurer in an
optimal way. Moreover, the insurer and reinsurer should be better off (or at least not worse off) after the
reinsurance transaction. With (3.2), this implies the following individual rationality constraints for both
parties: {

𝑈In (𝐼, 1, 𝜋) ≥ 𝑈In(0, 1, 0),
𝑈Re (𝐼, 1, 𝜋) ≥ 𝑈Re(0, 1, 0).

(3.3)
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Figure 2. The illustrative objective space (shaded area) and Pareto-optimal frontier. The objective
space illustrates the attainable utility levels for the insurer and reinsurer jointly, and the Pareto-optimal
frontier is the subset of the objective space of the joint utility levels that can be obtained by a Pareto-
optimal reinsurance contract.

If Problem 1 admits a solution which satisfies the above constraints, then the Pareto-optimal frontier
should cross the first quadrant (see Figure 2). Otherwise, no agreement will be reached.

With the constraints in (3.3), the Lagrangian function for Problem 1a is

𝑈In (𝐼, 1, 𝜋) + 𝛽 ·𝑈Re(𝐼, 1, 𝜋) + 𝜆1 · (𝑈In (𝐼, 1, 𝜋) −𝑈In(0, 1, 0)) + 𝜆2 · (𝑈Re(𝐼, 1, 𝜋) −𝑈Re(0, 1, 0))
= (1 + 𝜆1) ·𝑈In(𝐼, 1, 𝜋) + (𝛽 + 𝜆2) ·𝑈Re(𝐼, 1, 𝜋) + constants

= (1 + 𝜆1) ·
(
𝑈In(𝐼, 1, 𝜋) + 𝛽 + 𝜆2

1 + 𝜆1
·𝑈Re(𝐼, 1, 𝜋)

)
+ constants,

where 𝜆1, 𝜆2 ≥ 0 are the fixed Lagrangian coefficients associated with the constraints in (3.3). Then,
for fixed Lagrangian coefficients and fixed 𝜋 ∈ [0, 𝜋0], maximizing the above Lagrangian function is
equivalent to

max
𝐼 ∈C

𝑈In (𝐼, 1, 𝜋) + 𝛽 ·𝑈Re(𝐼, 1, 𝜋), (3.4)

where 𝛽 = (𝛽 + 𝜆2)/(1 + 𝜆1) ∈ [0,∞). By the Lagrangian sufficiency theorem, solutions of the Problem
(3.4) that satisfy the constraints (3.3) are solutions of Problem 1a subject to (3.3). For some specific
𝛽 ∈ [0,∞), if the unconstrained solution 𝐼 to Problem 1a happens to satisfy (3.3), then 𝜆1 = 𝜆2 = 0
and 𝛽 = 𝛽. However, if the unconstrained solution 𝐼 violates (3.3), then at least one of 𝜆1 and 𝜆2 is
not equal to 0 and thus at least one of the individual rationality constraints is binding. Based on the
Lagrangian function, this leads to 𝛽 ≠ 𝛽. For a feasible solution to exist, it must hold that the fixed
premium 𝜋 ∈ [0, 𝜋0] is such that 𝑈In(𝑋, 1, 𝜋) ≥ 𝑈In (0, 1, 0). We follow Jiang et al. [29] by treating 𝛽
as a parameter in our problem and solve Problem 1a for different values of 𝛽 until we find a point on
the frontier and within the first quadrant. This does not raise any technical difficulties if one can solve
Problem 1a for a generic 𝛽 > 0. So, we only focus on Problem 1a for a generic 𝛽 > 0.

The last step in solving Problem 1 is deriving the optimal premium 𝜋. We define the function

𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) = 𝑈In (𝐼𝑑 (𝜋) , 1, 𝜋) + 𝛽 ·𝑈Re(𝐼𝑑 (𝜋) , 1, 𝜋).
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Via Proposition 3.1, Problem 1 simplifies to the following problem:

max
𝜋∈[0, 𝜋0 ]

𝑄(𝐼𝑑 (𝜋) , 1, 𝜋). (3.5)

A closed-form expression of the optimal solution of (3.5) is generally difficult to obtain. We present the
next theorem that shows concavity of the optimization problem (3.5).

Theorem 3.1. Let Assumption 1 hold. The mapping 𝜋 ↦→ 𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) is concave, and thus the optimal
premium 𝜋∗ solving (3.5) is given by the first-order condition:

𝑑𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)
𝑑𝜋

����
𝜋=𝜋∗

⎧⎪⎪⎨⎪⎪⎩
≤ 0, if 𝜋∗ = 0,
= 0, if 0 < 𝜋∗ < 𝜋0,
≥ 0, if 𝜋∗ = 𝜋0.

(3.6)

To sum up, (3.2), Proposition 3.1 and Theorem 3.1 jointly characterize the structure of optimal
solutions to Problem 1.

Clearly, a larger 𝛽 will make the agreement more advantageous to the reinsurer. The next proposition
echoes this point from the perspective of optimal premium.

Proposition 3.2. Let Assumption 1 hold. The optimal premium 𝜋∗, as shown in (3.6), is increasing with
respect to 𝛽.

With Theorem 3.1 and Proposition 3.2, we gain insight about the optimal premium 𝜋∗. We
provide a comparative analysis to end this section. By concavity of 𝜋 ↦→ 𝑄(𝐼𝑑 (𝜋) , 1, 𝜋), if
𝑑𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)/𝑑𝜋 |𝜋=𝜋1 ≥ 0 for some 𝜋1 ∈ (0, 𝜋0], then 𝜋∗ ∈ [𝜋1, 𝜋0) and otherwise 𝜋∗ ∈ [0, 𝜋1). As
the optimal deductible level is given by 𝑑 = 0 ∨ (𝑤In − 𝜋 − [𝑢′]−1(𝛽)), we are interested in knowing
whether it holds that 𝜋∗ > 𝑤In − [𝑢′]−1(𝛽): then full insurance is optimal. For brevity, we denote by
𝑓𝑋 |𝑅 (𝑥 |𝑅;𝛼, 𝜋) the conditional density function 𝑓𝑋 |𝑅 (𝑥 +𝐾 (𝛼, 𝜋) |𝑅). This conditional density function
also plays a role in Section 4.2. A sufficient condition for optimality of full insurance is provided in the
following proposition.

Proposition 3.3. Let Assumption 1 hold. Let 𝜋1 = 𝑤In − [𝑢′]−1(𝛽). If

E[𝑅 · 𝑓𝑋 |𝑅 (𝑥 |𝑅; 1, 𝜋1)] ≥ 0, for all 𝑥 ∈ R+, (3.7)

then 𝜋∗ ∈ (𝜋1,∞) ∩ [0, 𝜋0] and a full insurance should be agreed between the insurer and reinsurer.

If (3.7) holds, then
∫ ∞

0 E[𝑅 · 𝑓𝑋 |𝑅 (𝑥 |𝑅; 1, 𝜋1)]𝑑𝑥 = E[𝑅1𝑆𝑐 (𝐼𝑑 (𝜋1 ) ,1, 𝜋1) ] ≥ 0, where 𝑆𝑐 is defined as
the complement of 𝑆. This indicates that the expected excess return rate is non-negative also conditional
on the default event to hold. Then, since the reinsurer is assumed to be risk-neutral but protected by
limited liability, the reinsurer is willing to sell full insurance in exchange for a high premium that yields
a higher amount invested in the risky asset.

This section solves Problem 1 by giving the explicit formulation of 𝐼∗. Although the explicit optimal
premium, 𝜋∗, is hard to derive in a general setting, we show the concavity of the objective function
with respect to the premium and this facilitates the development of an efficient algorithm to locate the
optimal premium. We conclude this section with an example.

Example 3.1. In the absence of the solvency regulation, we adopt the following setup for the numerical
example which examines the optimal premiums and optimal retention points under different negotiation
powers and risk aversion parameters.

T.J. Boonen and W. Jiang524

https://doi.org/10.1017/S0269964822000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000079


Figure 3. (Left) The effect of 𝜓 and 𝛽 on the optimal premium 𝜋∗; (Right) The effect of 𝜓 and 𝛽 on the
optimal retention point 𝑑∗.

• The reinsurer is endowed with an initial capital of 600. Note that because the insurer is endowed
with exponential utility function, the risk preferences are unaffected by the initial capital of the
insurer 𝑤0, and we set it equal to 500. The risk-free rate is 𝑟 = 0.05.

• The random variables 𝑋 and 𝑅 are independent, 𝑋 is exponentially distributed with mean 400, and
1 + 𝑟 + 𝑅 is log-normally distributed with log-mean 0 and log-variance 0.4. This means that
E[𝑅] ≈ 0.17.

• The insurer’s utility function is an exponential utility function 𝑢(𝑤) = −𝑒−𝜓𝑤 where 𝜓 > 0. For each
risk aversion parameter 𝜓, the maximum premium that the insurer is willing to pay to fully insure 𝑋
(indifference premium) is determined by the exponential premium [26]. In this example, we take
𝜓 ∈ [10−3, 2 × 10−3] such that the exponential premium ranges from 1.3 to 2 times the expected loss.

• For range of risk aversion parameters, we chose a range of negotiation powers 𝛽 such that the
participation incentive constraints are satisfied.

We show the effect of 𝜓 and 𝛽 on the optimal premium and retention level in Figure 3. Moreover, we
show the corresponding implies default probability in Figure 4. We make the following observations.

• The optimal premium increases with respect to the negotiation power (cf. Proposition 3.2). However,
it does not show a monotonic relationship with the insurer’s risk aversion parameter as there are two
conflicting effects. On the one hand, a larger 𝜓 is associated with a lower retention point, and this
leads to an increase in the premium. For a constant retention point 𝑑, a larger 𝜓 implies that the
insurer’s value of the utility function is getting closer to zero, and thus the premium gets smaller to
maximize the objective function.

• The optimal retention point increases with respect to the negotiation power 𝛽 and decreases with
respect to the insurer’s risk aversion parameter. Note that a component in the retention point is
[𝑢′]−1(𝛽), which in this example equals log(𝛽/𝜓)/𝜓. This component monotonically increases with
respect to 𝛽, and monotonically decreases with respect to 𝜓.

• The default probability of the reinsurer decreases with respect to the negotiation power 𝛽 and
increases with respect to the insurer’s risk aversion parameter 𝜓. Both a lower value of 𝛽 and a
larger value of 𝜓 lead to a relatively low premium compared to the retention level, and this yields a
higher probability of default for the reinsurer.

4. Pareto-optimal policies with solvency regulation

It has been well-known that the solvency regulation would greatly impact the indemnity function.
For instance, in [25], the solvency regulation is imposed by constraining the risk of the insurance
seller (reinsurer) through a convex risk measure such as the tail Value-at-Risk (TVaR). In this section,
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Figure 4. The effect of 𝜓 and 𝛽 on the probability of default.

we instead assume that the solvency constraint is given by a constraint on the probability of default,
and this is equivalent to a VaR constraint. The VaR risk measure is used in the insurance industry in,
for example, Solvency II regulation for European insurers. In our context, as the indemnity structure
could be negotiated, the reinsurer can either sell less coverage or invest less in the risky asset to improve
its solvency status. In Subsection 4.1, we study optimal reinsurance contracts when the regulator can
only regulate the reinsurance contract. In Subsection 4.2, the regulator can also regulate the investment
decision of the reinsurer.

4.1. Regulation constraint on the indemnity function

Let there be a regulator, whose objective is to constrain the probability of default of the reinsurer. The
regulator evaluates the reinsurance contract (𝐼, 𝜋), and assumes that the reinsurer will invest such that
only the utility of the reinsurer is optimized. The general problem that we consider in this subsection is
defined as follows.

Problem 2. For 𝛽 > 0 and 𝜉 ∈ (0, 1), solve

max
(𝐼 , 𝜋) ∈C×[0, 𝜋0 ]

𝑈In(𝐼, 𝛼∗, 𝜋) + 𝛽 ·𝑈Re(𝐼, 𝛼∗, 𝜋)

s.t. P(𝐾 (𝛼∗, 𝜋) ≥ 𝐼 (𝑋)) ≥ 𝜉,

𝛼∗ ∈ arg max
𝛼∈[0,1]

𝑈Re (𝐼, 𝛼, 𝜋).

The solvency regulation imposes a constraint on the reinsurer’s solvency probability. Problem 2 could
also be treated as a game where a social planner (consisting of the insurer and reinsurer) decides the
optimal reinsurance contract first and then the reinsurer determines the investment decision in response
to the indemnity function. In our game, the social planner can foresee the reinsurer’s action, and the
regulator can only evaluate the decision of the optimal reinsurance contract made by the social planner.

We remark that Problem 2 is different from that of Filipović et al. [25], who assume that the solvency
regulation constraint is on the investment decision 𝛼 only, and so the reinsurer may not be able to invest
all wealth in the risky asset. The solvency regulation constraint in our problem, however, takes the
optimal investment decision as input, and the investment decision is therefore not affected by regulation.
We will study a relaxation of this assumption in Section 4.2.
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We first recall from (3.2) that arg max𝛼∈[0,1] 𝑈Re (𝐼, 𝛼, 𝜋) = {1}. We do not solve Problem 2 in
full generality, but we use a step-wise approach to understand the structure of optimal solutions. More
precisely, we first fix the premium 𝜋 and solve the following problem, and thereafter we solve Problem
2 numerically in an example.

Problem 2a. For 𝛽 > 0, 𝜉 ∈ (0, 1) and 𝜋 ∈ [0, 𝜋0], solve

max
𝐼 ∈C

𝑈In (𝐼, 1, 𝜋) + 𝛽 ·𝑈Re(𝐼, 1, 𝜋)
s.t. P(𝐾 (1, 𝜋) ≥ 𝐼 (𝑋)) ≥ 𝜉.

Before presenting the main result of this section, we impose the following assumption.

Assumption 2. The conditional hazard rate function of 𝑅, that is, 𝐻𝑅 (𝜁 |𝑋 = 𝑥) :=
𝑓𝑅 |𝑋 (𝜁 |𝑋 = 𝑥)/(1 − 𝐹𝑅 |𝑋 (𝜁 |𝑋 = 𝑥)), is increasing with respect to 𝜁 ∈ [−1 − 𝑟,∞) for all 𝑥 ∈ R+.

Assumption 2 actually states that the likelihood that the investment return will keep growing given
that it exceeds some threshold is decreasing. The monotone hazard rate assumption is satisfied if and
only if the survival function 1 − 𝐹𝑅 |𝑋 (·|𝑋 = 𝑥) is log-concave, and holds for a variety of distributions,
for example, the uniform, the normal, the Pareto, the logistic and the exponential distribution. Such an
assumption is commonly adopted in economics literature [38,39].

As an example, suppose that the conditional distribution of 𝑅 |𝑋 = 𝑥 follows a shifted Weibull
distribution. Then, the hazard rate function is decreasing if its shape parameter 𝑘 is smaller than 1
and increasing if its shape parameter 𝑘 is larger than 1. In [37], the Weibull distribution is said to
be with reversion tendency (RT) if 𝑘 > 1 and with diversion tendency (DT) if 𝑘 < 1. If returns
are RT-distributed, explosive bubbles are not expected to last. For asset returns satisfying a Weibull
distribution under Assumption 2, the RT property holds. For the modeling of financial returns with
Weibull distributions, it is shown in [36] that 𝑘 > 1 is commonly observed.

The following theorem states the main result of this section.

Theorem 4.1. Under Assumptions 1 and 2, for a fixed 𝜋 ∈ [0, 𝜋0], the indemnity function 𝐼∗ that solves
Problem 2a is given by 𝐼∗ (𝑥) = 𝑥 ∧ (0 ∨ 𝑦(𝑥;𝜆)), where 𝑦(𝑥;𝜆) ∈ R solves

𝑢′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) = 𝛽 + 𝜆 · 𝐻𝑅 (𝑔
−1(𝑦(𝑥;𝜆)) |𝑋 = 𝑥)
(𝑤Re + 𝜋) , (4.1)

where 𝑔−1(𝑥) = 𝑥/(𝑤Re + 𝜋) − 1 − 𝑟 and 𝜆 ≥ 0 is chosen such that 𝜆 · (P(𝐾 (1, 𝜋) ≥ 𝐼∗ (𝑋)) − 𝜉) = 0.

The optimal indemnity function in Theorem 4.1 depends on the distribution function of 𝑋 only via
the Lagrangian parameter 𝜆.

It is worth mentioning that, in the literature, the following class of indemnity functions is usually
popular

C̃ :=
{
𝐼 : R+ → R+

���� 𝐼 (0) = 0 and
0 ≤ 𝐼 (𝑥2) − 𝐼 (𝑥1) ≤ 𝑥2 − 𝑥1 for 0 ≤ 𝑥1 ≤ 𝑥2

}
,

where it clearly holds that C̃ ⊂ C. If the optimal indemnity function belongs to C̃, the increment of
indemnity will not exceed the increment of loss.2 ,3 In this case, the insurer has no incentive to over- or

2The functions belonging to the set C̃ are said to satisfy the “no-sabotage” condition [17] and have been extensively applied in the literature
[9,13,19]. As shown in [22], 𝐼 ∈ C̃ if and only if 𝐼 ′ ∈ [0, 1] a.e. and 𝐼 (0) = 0.

3Although C̃ seems to be a better choice than C does, it is extremely difficult to handle the “no-sabotage” condition in many cases. A natural
way to handle the “no-sabotage” condition is to characterize the optimal indemnity function through its derivative, which is very complicated in our
case. Therefore, we focus on the class C and adopt the traditional element-wise optimization technique [27]. We will show that the derived optimal
indemnity function is also within the class C̃ if some specific conditions are satisfied.
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under-report the insurable loss and this avoids ex post moral hazard. Note that 𝐼𝑑 (𝜋) ∈ C̃, where 𝐼𝑑 (𝜋)
is the optimal reinsurance indemnity of Problem 1 without regulation as shown in Proposition 3.1. The
following proposition gives a specific case when the indemnity function derived from (4.1) is in C̃.

Proposition 4.1. If Assumption 2 holds, 𝑅 and 𝑋 are independent and the distribution of 𝑅 admits a
differentiable density function, then the indemnity function characterized by (4.1) is in the class C̃.

In general, the solution to Eq. (4.1) is implicit and this complicates the derivation of the explicit
optimal 𝜋 in the next step. As such, the optimal 𝜋 is to be sought in a numerical manner.

To show the impact of solvency regulation constraint on the optimal indemnity function, we study a
simple example to end this section.

Example 4.1. Empirical distributions of asset returns often exhibit leptokurtic patterns and thus may
not be fully depicted by a normal distribution. Among leptokurtic distributions, the Weibull distribution
turns out to be an appropriate, stable distribution for the modeling of asset returns [37]. Chen and
Gerlach [18] apply a Weibull distribution to model conditional financial asset return distributions and
show that the Weibull distribution performs at least as well as other distributions for VaR forecasting.

For simplicity, we assume that the excess return 𝑅 is independent of 𝑋 . Furthermore, we assume
that the excess return 𝑅 follows a shifted Weibull distribution whose probability density function and
cumulative distribution function are given by

𝑓𝑅 (𝜁) = 𝑘

𝜃

(
𝜁 + 1 + 𝑟

𝜃

) 𝑘−1

𝑒−( (𝜁+1+𝑟 )/𝜃)𝑘 , 𝐹𝑅 (𝜁) = 1 − 𝑒−( (𝜁+1+𝑟 )/𝜃)𝑘 .

Furthermore, to get an increasing hazard rate function, we let 𝑘 > 1 and pick 𝑘 = 2.
Assume that the insurer’s utility function is a quadratic utility function:

𝑢(𝑤) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

2
𝛾𝑤2 + 𝑤, 𝑤 ≤ 1

𝛾
,

1
2𝛾

, 𝑤 >
1
𝛾
,

(4.2)

where 1/𝛾 is called the saturation point, beyond which the insurer’s utility will not be increased. To this
end, Eq. (4.1) becomes

−𝛾(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) + 1 = 𝛽 + 𝜆

𝑤Re + 𝜋
· 2
𝜃2 · 𝑦(𝑥;𝜆)

𝑤Re + 𝜋
.

As per Theorem 4.1, the optimal indemnity function for Problem 2a is given by

𝐼∗ (𝑥) = 𝑥 ∧ 𝛾

𝛾 + 2𝜆
𝜃2 (𝑤Re+𝜋)2

(
𝑥 − (𝑤In − 𝜋 − 1 − 𝛽

𝛾
)
)
+
, (4.3)

where 𝜋 ∈ [0, 𝜋0] is fixed. As a comparison, the optimal indemnity function for Problem 1a is given by

𝐼𝑑 (𝜋) (𝑥) = 𝑥 ∧
(
𝑥 − (𝑤In − 𝜋 − 1 − 𝛽

𝛾
)
)
+
. (4.4)

We illustrate the two indemnity functions in (4.3) and (4.4) in Figure 5. We make the following
observations.

• The solvency regulation requires the reinsurer to sell less coverage so that the solvency status could
be maintained.
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Figure 5. Comparison between the indemnity functions with and without solvency regulation (for
Example 4.1).

• The smaller the value of 𝜉 is, or equivalently the stronger the solvency regulation is (larger 𝜆), the
less the coverage is (smaller 𝛾/(𝛾 + 2𝜆/𝜃2(𝑤Re + 𝜋)2)).

• The cheaper the policy is (smaller 𝜋), the less the coverage is (smaller 𝛾/(𝛾 + 2𝜆/𝜃2 (𝑤Re + 𝜋)2) and
larger 𝑑 (𝜋)).

Example 4.1 shows an explicit solution for Problem 2a. The following numerical example relates the
optimal premium with the intensity of solvency regulation and the negotiation power.

Example 4.2. In this example, we investigate the effect of solvency regulation on the indemnity function.
As an explicit indemnity function facilitates the computation, we adopt a similar setup as Example 4.1.

• The insurer and reinsurer are endowed with initial capital 200 and 500, respectively. The risk-free
rate is 𝑟 = 0.05.

• The random variables 𝑋 and 𝑅 are independent, 𝑋 is exponentially distributed with mean 500 and
1 + 𝑟 + 𝑅 follows a Weibull distribution with scale parameter 1.3 and shape parameter 2. Under this
setup, it holds that E[𝑅] ≈ 11%.

• The insurer’s utility function is given by the quadratic utility function (see (4.2)) with 𝛾 = 1/700
such that the quadratic premium exists [26]. In this case, the maximum premium that the insurer is
willing to pay to fully insure 𝑋 is equal to two times the expected loss.

As the optimal indemnity function takes the form 𝐼∗ (𝑥) = 𝑥 ∧ {𝑐 · (𝑥 − 𝑑)+} (see (4.3)), we show in
Table 1 the effect of the negotiation power 𝛽4 and solvency probability 𝜉 on the optimal premium and
indemnity function.

From Table 1, we observe that the optimal premium still increases with respect to the insurer’s
negotiation power 𝛽. Moreover, the proportion of ceded loss decreases with respect to the required
solvency probability 𝜉, and the optimal premium also decreases with respect to the required solvency
probability. We illustrate these optimal indemnity functions in Figure 6.

4.1.1. The case when 𝐻𝑅 (𝜁 |𝑋 = 𝑥) is decreasing
The derivation of the indemnity function in Section 4.1 is due to the increasingness of the conditional
hazard rate function 𝐻𝑅 (𝜁 |𝑋 = 𝑥). If 𝐻𝑅 (𝜁 |𝑋 = 𝑥) is decreasing, then without more assumptions on
the utility and hazard rate functions, the objective is no more concave, and the first-order condition may
no longer yield a global maximum.

4We wish to emphasize that the utility function 𝑢 is different in this example than in Example 3.1, and therefore, the size of 𝛽 cannot be compared
with the size of 𝛽 in Example 3.1.
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Table 1. The effect of the negotiation power 𝛽 and solvency probability 𝜉 on the optimal premium and
indemnity function. Here, 𝐼∗ (𝑥) = 𝑥 ∧ {𝑐 · (𝑥 − 𝑑)+}.

𝛽 𝜉 𝜋∗ 𝑐 𝑑 𝐼∗(𝑥)
Case 1 1.6 0.88 816 0.92 –196 𝑥 ∧ (0.92 · (𝑥 + 196))
Case 2 1.6 0.91 797 0.68 –177 𝑥 ∧ (0.68 · (𝑥 + 177))
Case 3 1.6 0.95 644 0.49 –24 𝑥 ∧ (0.49 · (𝑥 + 24))
Case 4 1.2 0.88 435 0.63 –95 𝑥 ∧ (0.63 · (𝑥 + 95))
Case 5 1.2 0.91 357 0.53 –17 𝑥 ∧ (0.53 · (𝑥 + 17))
Case 6 1.2 0.95 219 0.27 121 0.27 · (𝑥 − 127)+

Figure 6. A graphical comparison between the cases presented in Table 1.

Note that

𝐻𝑅 (𝜁 |𝑋 = 𝑥) = −𝑑 log(𝑆𝑅 |𝑋 (𝜁 |𝑋 = 𝑥))
𝑑𝜁

and therefore

𝐻𝑅 (𝜁 |𝑋 = 𝑥) is decreasing ⇐⇒ log(𝑆𝑅 |𝑋 (𝜁 |𝑋 = 𝑥)) is convex
⇐⇒ log(𝑆𝐾 |𝑋 (𝑘 |𝑋 = 𝑥)) is convex.

Applying Jensen’s inequality leads to

P(𝐾 ≥ 𝐼 (𝑋)) = exp(log(P(𝐾 ≥ 𝐼 (𝑋)))) = exp(log(E𝑋 [𝑆𝐾 |𝑋 (𝐼 (𝑋) |𝑋)]))
≥ exp(E𝑋 [log(𝑆𝐾 |𝑋 (𝐼 (𝑋) |𝑋))]) ≥ exp(log(𝑆𝐾 (E𝑋 [𝐼 (𝑋)])))
= P(𝐾 ≥ E𝑋 [𝐼 (𝑋)]),

where the first inequality is due to the concavity of log(·) and the second inequality is due to the
convexity of log(𝑆𝐾 |𝑋 (·|𝑋 = 𝑥)). Therefore, P(𝐾 ≥ E[𝐼 (𝑋)]) ≥ 𝜉 implies P(𝐾 ≥ 𝐼 (𝑋)) ≥ 𝜉, and thus
imposing P(𝐾 ≥ E[𝐼 (𝑋)]) ≥ 𝜉 is more strict than imposing P(𝐾 ≥ 𝐼 (𝑋)) ≥ 𝜉. Since 𝑅 is a continuous
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random variable (see Assumption 1), we have that P(𝐾 ≥ E[𝐼 (𝑋)]) ≥ 𝜉 is equivalent to

E[𝐼 (𝑋)] ≤ 𝐹−1
1−𝜉 (𝐾),

where 𝐹−1
1−𝜉 (𝐾) is also called the (1 − 𝜉)-quantile of the continuous random variable 𝐾 .

Instead of Problem 2a, we investigate the following problem in this subsection.

Problem 2b. For 𝛽 > 0, 𝜉 ∈ (0, 1) and 𝜋 ∈ [0, 𝜋0], solve

max
𝐼 ∈C

𝑈In (𝐼, 1, 𝜋) + 𝛽 ·𝑈Re(𝐼, 1, 𝜋)
s.t. E[𝐼 (𝑋)] ≤ 𝐹−1

1−𝜉 (𝐾).

As the constraint of Problem 2b is more strict than that of Problem 2a, the solution to Problem 2b is
not necessarily a solution to Problem 2a. However, the solution to Problem 2b is feasible to Problem 2a.

Note that the solution of Problem 2b is also a solution of Problem 2a if 𝑋 is deterministic.

Theorem 4.2. If 𝐻𝑅 (𝜁 |𝑋 = 𝑥) is decreasing, then for a fixed 𝜋 ∈ [0, 𝜋0], the indemnity function 𝐼∗ that
solves Problem 2b is given by 𝐼∗ (𝑥) = 𝑥 ∧ (0 ∨ 𝑦(𝑥;𝜆)) where 𝑦(𝑥;𝜆) ∈ R solves

𝑢′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) = 𝛽 + 𝜆

𝑆𝑅 |𝑋 (𝑔−1(𝑦(𝑥;𝜆)) |𝑋 = 𝑥) , (4.5)

where 𝑔−1(𝑥) = 𝑥/(𝑤Re + 𝜋) −1− 𝑟 and 𝜆 ≥ 0 is chosen such that 𝜆 · (P(𝐾 (1, 𝜋) ≥ E[𝐼∗(𝑋)]) − 𝜉) = 0.

The proof is similar to that for Theorem 4.1 and thus omitted. Note that since 1/𝑆𝑅 |𝑋 (𝑔−1(·)) |𝑋 = 𝑥)
is increasing, Eq. (4.5) admits a unique solution on R. Similar to Proposition 4.1, if 𝑋 and 𝑅 are
independent, we again have 𝐼∗ ∈ C̃.

We close this section by presenting an example, which compares the solutions of Problems 2a and
2b for a specific case.

Example 4.3. As in Example 4.1, we assume that the insurer is endowed with a quadratic utility function
and that 𝑋 and 𝑅 are independent. We further assume that 1 + 𝑟 + 𝑅 follows the Weibull distribution
with mean 𝜇 (= 𝜃 · Γ(1 + 1/𝑘)). In contrast to Example 4.1, we let 𝑘 = 0.5 here so that the hazard
rate function of 𝑅 is decreasing. The optimal indemnity functions for Problems 2a and 2b are given by
𝐼∗ (𝑥) = 𝑥 ∧ (𝑦(𝑥;𝜆) ∨ 0) where 𝑦(𝑥;𝜆) is a solution of

𝑢′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) = 𝛽 + 0.5 · 𝜆√
𝜃 · (𝑤Re + 𝜋)

· 1√
𝑦(𝑥;𝜆)

for Problem 2a,

and

𝑢′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) = 𝛽 + 𝜆 · 𝑒
√

𝑦 (𝑥;𝜆)
𝜃 · (𝑤Re+𝜋) for Problem 2b.

Note that the first equation may admit more than one solution and thus the optimal indemnity function
might have jumps. Therefore, solutions to Problem 2a may not be in C̃, while it must hold that solutions
to Problem 2b are in C̃. Figure 7 shows the indemnity functions for two different cases of expected loss
parameter 𝜇.

In this example, the indemnity function that solves Problem 2b covers small losses more and provides
less coverage for large losses compared with the solution of Problem 2a. Moreover, the two indemnity
functions get closer to each other when 𝜇 increases. This is as expected since the riskiness of investment
returns then increases relative to the riskiness of 𝑋 . Moreover, when 𝜇 increases, the indemnity functions
that solve Problems 2a and 2b both get closer to the optimal indemnity function for the case without
regulation constraint. This is as expected since larger investment returns lead to more capacity for the
reinsurer to cover insurance risk.
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Figure 7. Comparison between the indemnity functions that solve Problems 2a and 2b: 𝜇 = 1.5 (left);
𝜇 = 2 (right).

4.2. Regulation constraint with regulation on the insurance indemnity and the investment decision
of the reinsurer

In Section 4.1, the investment decision is not affected by regulation since the regulation constraint
directly takes the optimal investment decision as given. A more realistic situation is to impose the
constraint jointly on the reinsurance contract and the parameter 𝛼. In this case, the complexity of the
problem is enhanced substantially as the indemnity function 𝐼 and the fraction 𝛼 jointly affect the
probability of default. For simplicity, we restrict ourselves to the class of excess-of-loss functions only,
that is, {𝐼𝑑 (𝑥) = (𝑥 − 𝑑)+, 𝑑 ≥ 0}, and study the following problem with a fixed premium.

Problem 3. For 𝛽 > 0, 𝜉 ∈ (0, 1) and 𝜋 ∈ [0, 𝜋0], solve

max
𝑑∈[0,∞)

F (𝑑) := 𝑈In (𝐼𝑑 , 𝛼∗, 𝜋) + 𝛽 ·𝑈Re(𝐼𝑑 , 𝛼∗, 𝜋)

s.t. 𝛼∗ ∈ arg max
𝛼∈[0,1]

𝑈Re(𝐼𝑑 , 𝛼, 𝜋) s.t. P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) ≥ 𝜉.

From (3.1), it follows that𝑈Re(𝐼𝑑 , 𝛼, 𝜋) is increasing in𝛼 under Assumption 1. IfP(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋))
would be increasing in 𝛼, then Problem 3 is solved by a solution with 𝛼∗ = 1, and Problem 3 has the
same solutions as the solutions of Problem 1 (the unconstrained problem). This is however a strong
assumption and, in general, P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) depends on the joint distribution of 𝑋 and 𝑅 and is
not necessarily monotone. We make the following assumption for simplification.

Assumption 3. For every 𝜋 ∈ [0, 𝜋0] and 𝑑 ∈ [0,∞), the probabilityP(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) is decreasing
in 𝛼.

Under Assumption 3, investing more in the risky asset leads to a higher probability of default. The
risky asset does not serve as a hedge of 𝐼𝑑 (𝑋) in order to mitigate default risk, but rather increases the
probability of default for the reinsurer. Under Assumption 3, we get

𝜕P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋))
𝜕𝛼

=
𝜕

𝜕𝛼

∫ ∞

−1−𝑟

∫ (𝑤Re+𝜋) (1+𝑟+𝛼𝜁 )+𝑑

0
𝑓𝑋,𝑅 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

= (𝑤Re + 𝜋)
∫ ∞

−1−𝑟
𝜁 · 𝑓𝑋,𝑅 ((𝑤Re + 𝜋)(1 + 𝑟 + 𝛼𝜁) + 𝑑, 𝜁)𝑑𝜁

= (𝑤Re + 𝜋)
∫ ∞

−1−𝑟
𝜁 · 𝑓𝑋,𝑅 (𝐾 (𝛼, 𝜋) + 𝑑, 𝜁)𝑑𝜁 ≤ 0. (4.6)

Recall the notation used in Proposition 3.3. We readily derive from (4.6) the following result.
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Proposition 4.2. Assumption 3 is equivalent to

E[𝑅 · 𝑓𝑋 |𝑅 (𝑥 |𝑅;𝛼, 𝜋)] ≤ 0, for all 𝑥 ∈ R+. (4.7)

Recall that 𝑓𝑋 |𝑅 (𝑥 |𝑅;𝛼, 𝜋) = 𝑓𝑋 |𝑅 (𝑥 + 𝐾 (𝛼, 𝜋) |𝑅). The standard formula in Solvency II assumes
a negative linear correlation between the insurance risk 𝑋 and the market risk 𝑅. Since 𝐾 (𝛼, 𝜋) is an
increasing function of 𝑅, the conditional density function 𝑓𝑋 |𝑅 (𝑥 + 𝐾 (𝛼, 𝜋) |𝑅) may take large values
for small 𝑅 and small values for large 𝑅. To see more practical implications, one can take the integral
of E[𝑅 · 𝑓𝑋 |𝑅 (𝑥 |𝑅;𝛼, 𝜋)] over an infinitesimal interval [𝑑, 𝑑 + Δ𝑑] of 𝑥:∫ 𝑑+Δ𝑑

𝑑

E[𝑅 · 𝑓𝑋 |𝑅 (𝑥 |𝑅;𝛼, 𝜋)]𝑑𝑥 =
∫ 𝑑+Δ𝑑

𝑑

∫ ∞

−1−𝑟
𝜁 𝑓 (𝐾 + 𝑥, 𝜁)𝑑𝑥𝑑𝜁

=
∫ ∞

−1−𝑟
𝜁

{∫ 𝑑+Δ𝑑

𝑑

𝑓 (𝐾 + 𝑥, 𝜁)𝑑𝑥
}
𝑑𝜁

=
∫ ∞

−1−𝑟
𝜁

{∫ 𝐾+𝑑+Δ𝑑

𝐾+𝑑
𝑓 (𝑡, 𝜁)𝑑𝑡

}
𝑑𝜁

=
∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑
𝜁 𝑓 (𝑡, 𝜁)𝑑𝑡𝑑𝜁 −

∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑+Δ𝑑
𝜁 𝑓 (𝑡, 𝜁)𝑑𝑡𝑑𝜁

= E[𝑅 · 1𝑆𝑐 (𝐼𝑑 ,𝛼, 𝜋) ] − E[𝑅 · 1𝑆𝑐 (𝐼𝑑+Δ𝑑 ,𝛼, 𝜋) ]
= E[𝑅 · 1𝑆 (𝐼𝑑+Δ𝑑 ,𝛼, 𝜋) ] − E[𝑅 · 1𝑆 (𝐼𝑑 ,𝛼, 𝜋) ],

which is non-positive if (4.7) holds. Note that 𝑆(𝐼𝑑 , 𝛼, 𝜋) ⊆ 𝑆(𝐼𝑑+Δ𝑑 , 𝛼, 𝜋), and so (4.7) indicates
that the expected investment return conditional on solvency is larger when the reinsurer provides
more coverage (a lower deductible). Moreover, the integral of (4.7) over the full range of 𝑥 leads
to

∫ ∞
0 E[𝑅 · 𝑓𝑋 |𝑅 (𝑥 + 𝑑 |𝑅;𝛼, 𝜋)]𝑑𝑥 = E[𝑅 · 1𝑆𝑐 (𝐼𝑑 ,𝛼, 𝜋) ] ≤ 0, and so E[𝑅 · 1𝑆 (𝐼𝑑 ,𝛼, 𝜋) ] ≥ E[𝑅] for

all 𝑑 ≥ 0. This is a stronger assumption than Assumption 1(i). Conditional on being solvent, the
expected investment returns are higher than the unconditional expected investment returns. Based on
this derivation, the following proposition provides a sufficient condition under which Assumption 3
holds.

Proposition 4.3. If 𝑅 |𝑆𝑐 (𝑋, 0, 0) ≤ 0, then Assumption 3 holds.

The condition 𝑅 |𝑆𝑐 (𝑋, 0, 0) ≤ 0 is quite strong, and implies that in all scenarios in which the reinsurer
defaults without investing in the risky technology, increasing the investment exposure 𝛼 will be only
more harmful as the excess return 𝑅 is then negative. Thus, investments cannot be used to “gamble for
resurrection,” as the investment returns will not help to avoid default.

Since 𝐼𝑑 (𝑥) is decreasing with respect to 𝑑 for fixed 𝑥, the probability P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) is
increasing with respect to 𝑑. In a limit case, lim𝑑→∞ 𝐼𝑑 (𝑥) = 0 and thus

lim
𝑑→∞
P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) = 1 > 𝜉,

for any 𝛼 ∈ [0, 1]. Define

𝑑 := inf{𝑑 ∈ R+ : P(𝐾 (1, 𝜋) ≥ 𝐼𝑑 (𝑋)) ≥ 𝜉}, (4.8)

𝑑 := inf{𝑑 ∈ R+ : P(𝐾 (0, 𝜋) ≥ 𝐼𝑑 (𝑋)) ≥ 𝜉}, (4.9)

then, by (3.1),

𝛼∗ =
{

1, 𝑑 < 𝑑,
𝛼(𝑑), 𝑑 ≤ 𝑑 ≤ 𝑑,

(4.10)
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where 𝛼(𝑑) is such that P(𝐾 (𝛼(𝑑), 𝜋) ≥ 𝐼𝑑 (𝑋)) = 𝜉. Assume that P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) is strictly
decreasing in 𝛼 for all 𝑑 ∈ (𝑑, 𝑑). Then, we get from the implicit function theorem that

𝜕P(𝐾 (𝛼(𝑑), 𝜋) ≥ 𝐼𝑑 (𝑋))
𝜕𝑑

= 0 =⇒ 𝛼′(𝑑) =
−

∫ ∞
−1−𝑟 𝑓𝑋,𝑅 (𝐾 (𝛼, 𝜋) + 𝑑, 𝜁)𝑑𝜁∫ ∞

−1−𝑟 𝜁 · 𝑓𝑋,𝑅 (𝐾 (𝛼, 𝜋) + 𝑑, 𝜁)𝑑𝜁
· 1
𝑤Re + 𝜋

≥ 0.

Note that the objective in Problem 3 with 𝛼∗ above is continuous in 𝑑 on the interval [𝑑, 𝑑] and, if the
solution 𝑑∗ is such that 𝑑∗ > 𝑑, then it must hold by Proposition 3.1 that 𝑑∗ = 𝑑, with

𝑑 = 0 ∨ (𝑤In − 𝜋 − [𝑢′]−1(𝛽)). (4.11)

We next identify several sufficient conditions under which the optimal deductible level is still 𝑑 and
under which the optimal deductible level is different from 𝑑. For this purpose, we define the following
function:

Q(𝑥; 𝑑) : =

∫ 𝑥

0 E[𝑅 · 𝑓𝑋 |𝑅 (𝑡 + 𝑑 |𝑅;𝛼∗, 𝜋)]𝑑𝑡
E[𝑅 · 1𝑆𝑐 (𝐼𝑑 ,𝛼∗ , 𝜋) ]

=
E[𝑅 · 1𝑆𝑐 (𝐼𝑑 ,𝛼∗ , 𝜋) ] − E[𝑅 · 1𝑆𝑐 (𝐼𝑑+𝑥 ,𝛼∗ , 𝜋) ]

E[𝑅 · 1𝑆𝑐 (𝐼𝑑 ,𝛼∗ , 𝜋) ]

= 1 − E[𝑅 · 1𝑆𝑐 (𝐼𝑑+𝑥 ,𝛼∗ , 𝜋) ]
E[𝑅 · 1𝑆𝑐 (𝐼𝑑 ,𝛼∗ , 𝜋) ]

.

Here, Q(𝑥; 𝑑) is equal to the relative change of the expected excess of return in an insolvent environment
when the retention point changes from 𝑑 to 𝑑 + 𝑥. Moreover, Q(𝑥; 𝑑) is increasing in 𝑥, Q(0; 𝑑) = 0 and
lim𝑥→∞ Q(𝑥; 𝑑) = 1, and so Q(·; 𝑑) is a cumulative distribution function.

Theorem 4.3. Recall 𝑑 from (4.11) and 𝑑, 𝑑 from (4.8) and (4.9). Let 𝐺 (𝑥; 𝑑) = 𝑢′(𝑤In − 𝑥 − 𝑑 − 𝜋),
Assumptions 1 and 3 hold and let P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) be strictly decreasing in 𝛼 for all 𝑑 ∈ (𝑑, 𝑑).
Then, the following statements hold.

(i) If 𝑑 ≥ 𝑑, then the optimal retention point that solves Problem 3 exists and is equal to 𝑑.
(ii) If 𝑑 < 𝑑 < 𝑑 and

∫ ∞
0 𝐺 (𝑥; 𝑑)𝑑Q(𝑥; 𝑑) + 𝛽 · E[𝑅 · 1𝑆 (𝐼𝑑̃ ,𝛼∗ , 𝜋) ]/E[𝑅 · 1𝑆𝑐 (𝐼𝑑̃ ,𝛼∗ , 𝜋) ] ≥ 0, then the

optimal retention point that solves Problem 3 exists and is in [𝑑, 𝑑].
(iii) If 𝑑 ≤ 𝑑, then the optimal retention point that solves Problem 3 exists and is in [𝑑, 𝑑].

Theorem 4.3 states that if the optimal retention point without regulation allows for a full investment
of the risky asset, the optimal retention point with regulation is still given by 𝑑. Moreover, if the insurer
is very risk-averse (large 𝐺 (𝑥; 𝑑)) and if the optimal retention point without regulation does not allow
for full investment of the risky asset in the constrained Problem 3, then the optimal investment is less
than 100% in the risky asset and the optimal retention point might be different from 𝑑.

We next discuss an implication of Theorem 4.3(ii) and its sufficient condition. The next corollary
presents a case with specific utility function, loss distribution, and dependence structure.

Corollary 1. Let Assumptions 1 and 3 hold, P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) be strictly decreasing in 𝛼 for all
𝑑 ∈ (𝑑, 𝑑), and moreover,

1. the loss 𝑋 and excess rate of return 𝑅 are independent;
2. the loss 𝑋 follows an exponential distribution with parameter 𝜇 > 0: 𝑓𝑋 (𝑥) = (1/𝜇)𝑒−𝑥/𝜇 for all

𝑥 ≥ 0;
3. the insurer is endowed with an exponential utility function with parameter 𝜓 > 0.
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Figure 8. An illustration of P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) with respect to 𝛼 for various choices of the retention
level 𝑑.

Let K(𝑑) = 𝜇− 𝜇/E[𝑅] ·
∫ ∞
−1−𝑟 𝑒

−(𝐾+𝑑)/𝜇 · 𝜁 · 𝑓𝑅 (𝜁)𝑑𝜁 . If 𝑑 < 𝑑 < 𝑑 and K(𝑑) ≥ 1/𝜓, then the optimal
retention point that solves Problem 3 is in [𝑑, 𝑑].

Note that 𝜇 ·𝜓 < 1 is equivalent to assuming the exponential premium to be finite [11]. The condition
K(𝑑) ≥ 1/𝜓 in Corollary 4.1 is equivalent to

𝜇 · 𝜓 ≥ 1 + E[𝑅 · 1𝑆𝑐 (𝐼𝑑̃ ,𝛼∗ , 𝜋) ]
E[𝑅 · 1𝑆 (𝐼𝑑̃ ,𝛼∗ , 𝜋) ]

.

The above inequality holds when: (i) the insurer is very risk-averse (𝜓 is large); (ii) the expected loss 𝜇
is large and (iii) the event 𝑆𝑐 (𝐼𝑑 , 𝛼∗, 𝜋) occurs with large probability. In such circumstance, the insurer
would require substantial coverage (a small retention point) under the same premium level.

Example 4.4. We adopt the following setting in this example.

• The insurer and reinsurer are endowed with initial capital 300 and 500, respectively. The risk-free
rate is 𝑟 = 0.05.

• The loss 𝑋 follows the exponential distribution with mean 400 and the excess of return 𝑅 follows the
log-normal distribution with log-mean 0 and log-variance 0.4 such that E[𝑅] ≈ 0.17. Moreover, we
assume that the joint distribution function of 𝑋 and 𝑅 is given by

𝐹𝑋,𝑅 (𝑥, 𝜂) = 𝐶𝐺 (𝐹𝑋 (𝑥), 𝐹𝑅 (𝜂); 𝜌),

where 𝐶𝐺 (·, ·; 𝜌) denotes the Gaussian copula function with 𝜌 as the linear correlation coefficient.
In this example, we let 𝜌 = −0.25 so that 𝑋 and 𝑅 are negatively correlated as in the standard
formula of Solvency II regulations.

• The insurer’s utility function is an exponential utility function with 𝜓 being one of the following three
different levels: 10−3, 1.1×10−3 and 1.2×10−3. For each 𝜓, the maximum premium, denoted by 𝑝max,
that the insurer is willing to pay is determined by indifference premium (exponential premium) of 𝑋 .

Probability in the Engineering and Informational Sciences 535

https://doi.org/10.1017/S0269964822000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000079


Table 2. The optimal reinsurance parameters (𝑑∗, 𝛼∗, 𝜋∗) as a function of the model parameters
(𝛽, 𝑥𝑖, 𝜓).

𝜓 = 10−3 𝜓 = 1.1 × 10−3 𝜓 = 1.2 × 10−3

𝛽 𝜉 𝑑∗ 𝛼∗ 𝜋∗ 𝑑∗ 𝛼∗ 𝜋∗ 𝑑∗ 𝛼∗ 𝜋∗

1 × 10−3 0.85 0 1 464 7 0.77 431 0 0.55 347
1 × 10−3 0.875 0 1 510 21 0.59 431 0 0.43 396
1 × 10−3 0.9 387 1 279 499 1 96 550 1 10
1.2 × 10−3 0.85 57 1 510 0 1 527 7 0.79 446
1.2 × 10−3 0.875 148 1 510 63 0.84 527 0 0.65 495
1.2 × 10−3 0.9 260 1 510 359 1 335 0 0.51 545

Figure 8 provides an example of the probability P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) for a fixed premium with
𝜋 = 100 and for selected five values of 𝑑. The probability P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) is then decreasing with
respect to 𝛼.

In Problem 3, the premium level is fixed. Next, we numerically solve the optimal premium by
maximizing the function 𝜋 ↦→ 𝑈In (𝐼𝑑∗ , 𝛼∗, 𝜋) + 𝛽 ·𝑈Re(𝐼𝑑∗ , 𝛼∗, 𝜋) over the range [0, 𝑝max]. In Table 2,
we show the optimal reinsurance parameters (𝑑∗, 𝛼∗, 𝜋∗) for various choices of the solvency probability
𝜉, the negotiation power 𝛽 and the insurer’s risk aversion parameter 𝜓.

We make the following observations.

• The optimal premium decreases with respect to the negotiation power.
• The optimal retention point moves in the opposite direction of the optimal premium.
• In many cases in this example, the optimal fraction of investment 𝛼∗ decreases at first and then

increases with respect to the required solvency probability 𝜉. This might be attributed to the fact that
with an increased solvency probability 𝜉, if the reinsurer decides to sell more coverage for a high
premium, the optimal fraction of investment 𝛼∗ should decrease to meet the solvency regulation
constraint. If the reinsurer decides to reduce the coverage and charge less, there is more room to
increase 𝛼∗ under the solvency constraint and the reinsurer increases 𝛼∗ to maximize its
utility.

5. Concluding remarks and future research

This paper studies a one-period optimal reinsurance problem when the reinsurer is allowed to invest
its wealth in some risky assets and is protected by limited liability. The optimal reinsurance policy is
determined by optimizing a weighted average of the utilities of the insurer and reinsurer. In the absence
of solvency regulation constraint, excess-of-loss contracts are shown to be optimal, while the premium
follows from solving a concave objective function.

We model solvency regulation as a constraint on the probability of default of the reinsurer, and we
show how this affects the shape of optimal indemnities if the regulator can only affect the reinsurance
contract. If the regulator can jointly regulate the reinsurer’s investment behavior and the reinsurance
contract, we show sufficient conditions under which the reinsurer will decrease the exposure to the risky
asset. We show this in the setting where the reinsurance indemnity has to be of an excess-of-loss form.
For further research, we propose to study reinsurance markets in which the indemnities are allowed to
take more general functional forms.

A main assumption in our model is symmetric information, as the joint distribution of the insurable
loss and the investment return is known by the insurer and reinsurer. Also, our focus is on a single
insurer, and the reinsurer is not endowed with background risk that arises from the selling of multiple
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insurance policies. For future research, we also suggest to study the impact of asymmetric information
and the effect of the presence of multiple insurers.
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Appendix

Proof of Proposition 2.1
Let 𝐼 ∈ C, 𝛼 ∈ [0, 1] and 𝜋 ∈ [0, 𝜋0]. Moreover, assume that 𝑅 and 𝑋 are independent. Then, for all
𝑥 ∈ R+, we know that 1𝑆 (𝐼 ,𝛼, 𝜋) |𝑋 = 𝑥 is an increasing function of 𝑅. Thus, E[𝑅1𝑆 (𝐼 ,𝛼, 𝜋) |𝑋 = 𝑥] ≥
E[𝑅 |𝑋 = 𝑥]E[1𝑆 (𝐼 ,𝛼, 𝜋) |𝑋 = 𝑥]. Then, the result follows directly from

Cov(𝑅, 1𝑆 (𝐼 ,𝛼, 𝜋) ) = E[𝑅1𝑆 (𝐼 ,𝛼, 𝜋) ] − E[𝑅]E[1𝑆 (𝐼 ,𝛼, 𝜋) ]
= E[E[𝑅1𝑆 (𝐼 ,𝛼, 𝜋) |𝑋]] − E[𝑅]E[1𝑆 (𝐼 ,𝛼, 𝜋) ]
≥ E[E[𝑅 |𝑋]E[1𝑆 (𝐼 ,𝛼, 𝜋) |𝑋]] − E[𝑅]E[1𝑆 (𝐼 ,𝛼, 𝜋) ]
= E[𝑅] · E[E[1𝑆 (𝐼 ,𝛼, 𝜋) |𝑋]] − E[𝑅]E[1𝑆 (𝐼 ,𝛼, 𝜋) ]
= E[𝑅] · E[1𝑆 (𝐼 ,𝛼, 𝜋) ] − E[𝑅]E[1𝑆 (𝐼 ,𝛼, 𝜋) ] = 0.

This concludes the proof.

Proof of Proposition 3.1
For brevity, we write 𝐾 (𝛼, 𝜋) as 𝐾 , where 𝛼 ∈ [0, 1] and 𝜋 ∈ [0, 𝜋0]. The range of 𝐾 is [𝑘,∞), where
𝑘 = (𝑤Re + 𝜋)(1−𝛼)(1+ 𝑟). Furthermore, we denote by 𝑓𝐾 |𝑋 (·|𝑋 = 𝑥) and 𝐹𝐾 |𝑋 (·|𝑋 = 𝑥) respectively
the probability density function and distribution function of 𝐾 conditional on 𝑋 = 𝑥.

Using the double expectation formula, the objective function in Problem 1a can be written as

E𝑋 [E𝐾 [𝑢(𝑤In − 𝑥 + 𝐾 ∧ 𝐼 (𝑥) − 𝜋)
��𝑋 = 𝑥] + 𝛽 · E𝐾 [(𝐾 − 𝐼 (𝑥))+ |𝑋 = 𝑥]] .

Therefore, solving Problem 1a is equivalent to maximizing the integrand within E𝑋 [·] element-wisely.
In other words,

𝐼∗ (𝑥) = arg max
𝑦∈[0,𝑥 ]

𝐿(𝑦)

where
𝐿(𝑦) = E𝐾 [𝑢(𝑤In − 𝑥 + 𝐾 ∧ 𝑦 − 𝜋)

��𝑋 = 𝑥] + 𝛽 · E𝐾 [(𝐾 − 𝑦)+
��𝑋 = 𝑥] . (A.1)
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Expanding (A.1) yields

𝐿(𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

𝑘

𝑢(𝑤In − 𝑥 + 𝑦 − 𝜋)𝑑𝐹𝐾 |𝑋 (𝑘 |𝑋 = 𝑥) + 𝛽 ·
∫ ∞

𝑘

(𝑘 − 𝑦)𝑑𝐹𝐾 |𝑋 (𝑘 |𝑋 = 𝑥), 0 ≤ 𝑦 ≤ 𝑘,∫ 𝑦

0
𝑢(𝑤In − 𝑥 + 𝑘 − 𝜋)𝑑𝐹𝐾 |𝑋 (𝑘 |𝑋 = 𝑥) +

∫ ∞

𝑦

𝑢(𝑤In − 𝑥 + 𝑦 − 𝜋)𝑑𝐹𝐾 |𝑋 (𝑘 |𝑋 = 𝑥)

+𝛽 ·
∫ ∞

𝑦

(𝑘 − 𝑦)𝑑𝐹𝐾 |𝑋 (𝑘 |𝑋 = 𝑥), 𝑘 < 𝑦.

Then,

𝐿 ′(𝑦) =
{
𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽, 0 ≤ 𝑦 ≤ 𝑘,
(1 − 𝐹𝐾 |𝑋 (𝑦 | 𝑋 = 𝑥)) · (𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽), 𝑘 < 𝑦.

Note that lim𝑦→𝑘− 𝐿 ′(𝑦) = lim𝑦→𝑘+ 𝐿 ′(𝑦) and 𝐿(𝑦) is concave on both [0, 𝑘] and (𝑘,∞), the maximum
of 𝐿(𝑦) is reached when 𝐿 ′(𝑦) = 0, that is, 𝑢′(𝑤In − 𝑥 + 𝑦̂ − 𝜋) = 𝛽 or 𝑦̂ = 𝑥 − (𝑤In − 𝜋 − [𝑢′]−1(𝛽)). To
this end, 𝐼∗ (𝑥) = 𝑥 ∧ (0∨ (𝑥 − (𝑤In − 𝜋 − [𝑢′]−1(𝛽)))) = (𝑥 − 𝑑)+ where 𝑑 = 0∨ (𝑤In − 𝜋 − [𝑢′]−1(𝛽)).

Proof of Theorem 3.1
Recall 𝛼 = 1 in (3.5), and let

𝐾̃ (𝜁) = (𝑤Re + 𝜋)(1 + 𝑟 + 𝜁),

where 𝜁 is the realization of 𝑅. Denote by 𝑓 (𝑥, 𝜁) the joint probability density function of 𝑋 and 𝑅. Then,

𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) =
∫ ∞

−1−𝑟

∫ 𝑑

0
𝑢(𝑤In − 𝑥 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 +

∫ ∞

−1−𝑟

∫ 𝐾̃ (𝜁 )+𝑑

𝑑

𝑢(𝑤In − 𝑑 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+
∫ ∞

−1−𝑟

∫ ∞

𝐾̃ (𝜁 )+𝑑
𝑢(𝑤In − 𝑥 + 𝐾̃ (𝜁) − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+ 𝛽 ·
∫ ∞

−1−𝑟

∫ 𝑑

0
𝐾̃ (𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 + 𝛽 ·

∫ ∞

−1−𝑟

∫ 𝐾̃ (𝜁 )+𝑑

𝑑

(𝐾̃ (𝜁) − 𝑥 + 𝑑) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 .

We now compute the second-order derivative of 𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) with respect to 𝜋 in the following two
cases.

• If 𝑑 (𝜋) = 0, then 𝛽 ≤ 𝑢′(𝑤In − 𝜋) and

𝜕𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)
𝜕𝜋

= −
∫ ∞

−1−𝑟

∫ 𝐾̃ (𝜁 )

0
𝑢′(𝑤In − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+
∫ ∞

−1−𝑟

∫ ∞

𝐾̃ (𝜁 )
𝑢′(𝑤In − 𝑥 + 𝐾̃ (𝜁) − 𝜋)(𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+ 𝛽 ·
∫ ∞

−1−𝑟

∫ 𝐾̃ (𝜁 )

0
(1 + 𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁,

𝜕2𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)
𝜕𝜋2 =

∫ ∞

−1−𝑟

∫ ∞

𝐾̃ (𝜁 )
(𝑟 + 𝜁)2𝑢′′(𝑤In − 𝑥 + 𝐾̃ (𝜁) − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+
∫ ∞

−1−𝑟
(1 + 𝑟 + 𝜁)2 [𝛽 − 𝑢′(𝑤In − 𝜋)] 𝑓 (𝐾̃ (𝜁), 𝜁)𝑑𝜁 ≤ 0.
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• If 𝑑 (𝜋) > 0, then 𝑑 (𝜋) = 𝑤In − 𝜋 − [𝑢′]−1(𝛽) and

𝜕𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)
𝜕𝜋

= −
∫ ∞

−1−𝑟

∫ 𝑑 (𝜋)

0
𝑢′(𝑤In − 𝑥 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+
∫ ∞

−1−𝑟

∫ ∞

𝐾̃ (𝜁 )+𝑑 (𝜋)
𝑢′(𝑤In − 𝑥 + 𝐾̃ (𝜁) − 𝜋)(𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+ 𝛽 ·
∫ ∞

−1−𝑟

∫ 𝐾̃ (𝜁 )+𝑑 (𝜋)

0
(𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 + 𝛽 ·

∫ ∞

−1−𝑟

∫ 𝑑 (𝜋)

0
𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁,

𝜕2𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)
𝜕𝜋2 =

∫ ∞

−1−𝑟

∫ 𝑑 (𝜋)

0
𝑢′′(𝑤In − 𝑥 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+
∫ ∞

−1−𝑟

∫ ∞

𝐾̃ (𝜁 )+𝑑 (𝜋)
𝑢′′(𝑤In − 𝑥 + 𝐾̃ (𝜁) − 𝜋)(𝑟 + 𝜁)2 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 ≤ 0.

Moreover, it could be easily shown that 𝜕𝑄(𝐼𝑑 (𝜋) , 1, 𝜋)/𝜕𝜋 is continuous at 𝜋 = 𝑤In − [𝑢′]−1(𝛽).
Therefore, 𝜋 ↦→ 𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) is concave. This concludes the proof. �

Proof of Proposition 3.2
We show this by analyzing the first-order derivative of 𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) with respect to 𝜋. As is shown in
the proof for Theorem 3.1, 𝑄(𝐼𝑑 (𝜋) , 1, 𝜋) is concave with respect to 𝜋.

Let

𝐹𝑄(𝜋, 𝛽) = 𝑑 (𝑈In(𝐼𝑑 (𝜋) , 1, 𝜋) + 𝛽 ·𝑈Re(𝐼𝑑 (𝜋) , 1, 𝜋))
𝑑𝜋

.

Suppose that the maximum is reached in the interior of [0, 𝜋0], which then follows from the first-order
condition:

𝐹𝑄(𝜋, 𝛽) = 0.

Again, we discuss two cases.

• If 𝜋 ∈ [𝑤In − [𝑢′]−1(𝛽), 𝑤0), then 𝑑 (𝜋) = 0 and

𝜕𝐹𝑄(𝜋, 𝛽)
𝜕𝛽

=
∫ ∞

−1−𝑟

∫ 𝐾̃ (𝜁 )

0
(1 + 𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 =

𝑑𝑈Re(𝐼𝑑 (𝜋) , 1, 𝜋)
𝑑𝜋

,

with

𝑑𝑈Re(𝐼𝑑 (𝜋) , 1, 𝜋)
𝑑𝜋

= E[(1 + 𝑟 + 𝑅)1𝑆 (𝐼 ,1, 𝜋) ]
= (1 + 𝑟 + E[𝑅 |𝑆(𝐼, 1, 𝜋)])P(𝑆(𝐼, 1, 𝜋)) > 0,

and thus 𝐹𝑄(𝜋, 𝛽) is strictly increasing in 𝛽 in this case.
• If 𝜋 ∈ (0, 𝑤In − [𝑢′]−1(𝛽)], then 𝑑 (𝜋) > 0 and in the same way as above we have

𝜕𝐹𝑄(𝜋, 𝛽)
𝜕𝛽

=
𝑑𝑈Re(𝐼𝑑 (𝜋) , 1, 𝜋)

𝑑𝜋
.

Note that in this case

𝑈Re (𝐼𝑑 (𝜋) , 1, 𝜋) = E[((𝑤Re + 𝜋)(1 + 𝑟 + 𝑅) − (𝑋 − 𝑤In + [𝑢′]−1(𝛽) + 𝜋)+)+] .
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Then,

𝑑𝑈Re(𝐼𝑑 (𝜋) , 1, 𝜋)
𝑑𝜋

= E[(1 + 𝑟 + 𝑅)1𝑆 (𝐼𝑑 (𝜋) ,1, 𝜋) − 1𝑋 ≥𝑤In−[𝑢′ ]−1 (𝛽)−𝜋1𝑆 (𝐼𝑑 (𝜋) ,1, 𝜋) ]
≥ (1 + 𝑟 + E[𝑅 |𝑆(𝐼𝑑 (𝜋) , 1, 𝜋)])P(𝑆(𝐼𝑑 (𝜋) , 1, 𝜋)) − P(𝑆(𝐼𝑑 (𝜋) , 1, 𝜋))
> (1 + 𝑟)P(𝑆(𝐼𝑑 (𝜋) , 1, 𝜋)) − P(𝑆(𝐼𝑑 (𝜋) , 1, 𝜋))
= 𝑟P(𝑆(𝐼𝑑 (𝜋) , 1, 𝜋)) ≥ 0,

under Assumption 1. Hence, 𝐹𝑄(𝜋, 𝛽) is strictly increasing in 𝛽.

As 𝐹𝑄(𝜋, 𝛽) is continuous and strictly increasing in 𝛽 and continuous and decreasing in 𝜋, the result
follows directly.

Remark. If 𝐹𝑄(𝜋, 𝛽) is strictly decreasing in 𝜋, we are even able to derive an explicit expression of
𝑑𝜋/𝑑𝛽. By the implicit function theorem, taking the derivative on both sides of 𝐹𝑄(𝜋, 𝛽) = 0 with
respect to 𝛽 yields

𝜕𝐹𝑄(𝜋, 𝛽)
𝜕𝛽

= 𝐹𝑄1(𝜋, 𝛽) · 𝑑𝜋
𝑑𝛽

+ 𝐹𝑄2 (𝜋, 𝛽) = 0,

where 𝐹𝑄𝑖 (·, ·) denotes the partial derivative of 𝐹𝑄(·, ·) with respect to the 𝑖th component. Rearranging
the above equation yields

𝑑𝜋

𝑑𝛽
= −𝐹𝑄2(𝜋, 𝛽)

𝐹𝑄1(𝜋, 𝛽)
> 0.

�

Proof of Proposition 3.3
Note that 𝜋1 = 𝑤In − [𝑢′]−1(𝛽) and thus

𝐹𝑄(𝜋1, 𝛽) =
∫ ∞

−1−𝑟

∫ ∞

𝐾 (1, 𝜋1)
𝑢′( [𝑢′]−1(𝛽) − 𝑥 + 𝐾 (1, 𝜋1))(𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+ 𝛽

∫ ∞

−1−𝑟

∫ 𝐾 (1, 𝜋1)

0
(𝑟 + 𝜁) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

= 𝛽(𝑟 + E[𝑅]) + 𝑟
∫ ∞

−1−𝑟

∫ ∞

0
{𝑢′( [𝑢′]−1(𝛽) − 𝑡) − 𝛽} 𝑓 (𝑡 + 𝐾 (1, 𝜋1), 𝜁)𝑑𝑡𝑑𝜁

+
∫ ∞

0

{∫ ∞

−1−𝑟
𝜁 · 𝑓 (𝑡 + 𝐾 (1, 𝜋1), 𝜁)𝑑𝜁

}
· {𝑢′( [𝑢′]−1(𝛽) − 𝑡) − 𝛽}𝑑𝑡, (A.2)

where 𝐾 (1, 𝜋1) = (𝑤In + 𝜋1)(1 + 𝑟 + 𝑅). Note that∫ ∞

−1−𝑟
𝜁 · 𝑓 (𝑡 + 𝐾 (1, 𝜋1), 𝜁)𝑑𝜁 = E[𝑅 · 𝑓𝑋 |𝑅 (𝑡 |𝑅; 1, 𝜋1)],

If E[𝑅 · 𝑓𝑋 |𝑅 (𝑡 |𝑅; 1, 𝜋1)] ≥ 0 for all 𝑡 ∈ R+, the right-hand side of (A.2) are all positive since
𝑢′( [𝑢′]−1(𝛽) − 𝑡) ≥ 𝛽 for 𝑡 ∈ R+. This shows that 𝐹𝑄(𝜋1, 𝛽) > 0 and therefore 𝜋∗ ∈ (𝜋1, 𝜋0]. �

Proof of Theorem 4.1
First, note that𝐾 is an affine increasing transformation of 𝑅, that is,𝐾 = 𝑔(𝑅) for an affine and increasing
function 𝑔. Apply the change of variable leads to

𝐻𝐾 (𝑘 |𝑋 = 𝑥) = 𝐻𝑔 (𝑅) (𝑘 |𝑋 = 𝑥) = 𝑓𝑅 |𝑋 (𝑔−1(𝑘) |𝑋 = 𝑥)
1 − 𝐹𝑅 |𝑋 (𝑔−1(𝑘) |𝑋 = 𝑥) ·(𝑔

−1(𝑘))′ = 𝐻𝑅 (𝑔−1(𝑘) |𝑋 = 𝑥)(𝑔−1(𝑘))′
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where 𝑔−1(·) is an affine increasing function. Therefore, 𝐻𝐾 (𝑘 |𝑋 = 𝑥) is increasing in 𝑘 .
With the solvency regulation constraint, we solve the Lagrangian form of Problem 2a:

max
𝐼 ∈C
E[𝑢(𝑤In − 𝑋 + 𝐾 ∧ 𝐼 (𝑋) − 𝜋)] + 𝛽 · E[(𝐾 − 𝐼 (𝑋))+] + 𝜆 · (P(𝐾 ≥ 𝐼 (𝑋)) − 𝜉). (B.1)

Note that
P(𝐾 ≥ 𝐼 (𝑋)) = E𝑋 [1 − 𝐹𝐾 |𝑋 (𝐼 (𝑥) | 𝑋 = 𝑥)] .

Then, similar to the proof of Theorem 3.1, we could write the objective function of (B.1) as

E𝑋 [E𝐾 [𝑢(𝑤In − 𝑥 + 𝐾 ∧ 𝐼 (𝑥) − 𝜋) | 𝑋 = 𝑥] + 𝛽 · E𝐾 [(𝐾 − 𝐼 (𝑥))+ | 𝑋 = 𝑥]
+ 𝜆 · (1 − 𝐹𝐾 |𝑋 (𝐼 (𝑥) | 𝑋 = 𝑥))] .

Again, we element-wisely maximize the integrand within E𝑋 [·]. Thus,

𝐼∗ (𝑥) = arg max
𝑦∈[0,𝑥 ]

𝐿(𝑦), (A.3)

where

𝐿(𝑦) = E𝐾 [𝑢(𝑤In − 𝑥 + 𝐾 ∧ 𝑦 − 𝜋) | 𝑋 = 𝑥] + 𝛽 · E𝐾 [(𝐾 − 𝑦)+ | 𝑋 = 𝑥] + 𝜆 · (1 − 𝐹𝐾 |𝑋 (𝑦 | 𝑋 = 𝑥)).

We solve this first by expanding the domain of 𝑦 in (A.3) from [0, 𝑥] to R. Taking the derivative of 𝐿(𝑦)
leads to

𝐿 ′(𝑦) = (1 − 𝐹𝐾 |𝑋 (𝑦 | 𝑋 = 𝑥)) · (𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽) − 𝜆 · 𝑓𝐾 |𝑋 (𝑦 | 𝑋 = 𝑥)
= (1 − 𝐹𝐾 |𝑋 (𝑦 | 𝑋 = 𝑥)) · (𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽 − 𝜆 · 𝐻𝐾 (𝑦 | 𝑋 = 𝑥)).

Since 𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) is decreasing and 𝐻𝐾 (𝑦 | 𝑋 = 𝑥) is increasing in 𝑦, the function 𝑢′(𝑤In − 𝑥 +
𝑦 − 𝜋) − 𝛽 − 𝜆 · 𝐻𝐾 (𝑦 | 𝑋 = 𝑥) is decreasing in 𝑦, and 𝐿 is thus concave.

Since
lim
𝑦→∞

𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽 − 𝜆 · 𝐻𝐾 (𝑦 | 𝑋 = 𝑥) < 0

and
lim
𝑦→−∞

𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽 − 𝜆 · 𝐻𝐾 (𝑦 | 𝑋 = 𝑥) > 0,

the equation
𝑢′(𝑤In − 𝑥 + 𝑦 − 𝜋) − 𝛽 − 𝜆 · 𝐻𝐾 (𝑦 | 𝑋 = 𝑥) = 0 (A.4)

admits a solution 𝑦(𝑥;𝜆) ∈ (−∞,∞). Then, 𝐿 ′(𝑦) ≥ 0 on (−∞, 𝑦(𝑥;𝜆)] and 𝐿 ′(𝑦) ≤ 0 on [𝑦(𝑥;𝜆),∞).
Therefore 𝑦(𝑥;𝜆) maximizes 𝐿(𝑦). To this end, 𝐼∗ (𝑥) = 𝑥 ∧ (0 ∨ 𝑦(𝑥;𝜆)).

At last, we prove the existence of 𝜆 ∈ [0,∞). For that purpose, we write 𝐼∗(𝑥;𝜆) instead of 𝐼∗(𝑥)
to emphasize the effect of 𝜆 on the solution. By Eq. (A.4), the function 𝐼∗(𝑥;𝜆) is continuously
decreasing in 𝜆 and lim𝜆→∞ 𝐼∗ (𝑥;𝜆) = 0 and lim𝜆→0 𝐼

∗ (𝑥;𝜆) = 𝐼∗𝜋 (𝑥). Assume {𝜆𝑖}𝑖=1,2,... → 𝜆0, we
have {𝐼∗(𝑥;𝜆𝑖)}𝑖=1,2,... → 𝐼∗ (𝑥;𝜆0). Note that

P(𝐾 ≥ 𝐼∗ (𝑋;𝜆)) = E𝑋 [1 − 𝐹𝐾 (𝐼∗(𝑋;𝜆))]

and 1 − 𝐹𝐾 (𝐼∗𝜋 (𝑥)) ≤ 1 − 𝐹𝐾 (𝐼∗ (𝑥;𝜆)) ≤ 1. By the Lebesgue dominated convergence theorem,
P(𝐾 ≥ 𝐼∗ (𝑋;𝜆)) is continuous with respect to 𝜆. Thus, for 𝜉 ∈ [0, 1], there exists a 𝜆 ∈ [0,∞) such
that the regulation constraint is satisfied. �
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Proof of Proposition 4.1
To show 𝐼∗ ∈ C̃, we only need to show that 𝑦′(𝑥;𝜆) ∈ [0, 1]. Note that if 𝑅 and 𝑋 are independent, we
can write 𝐻𝐾 (𝑦 | 𝑋 = 𝑥) = 𝐻𝐾 (𝑦). Also, 𝐻𝐾 is differentiable because 𝑅 admits a differentiable density
function and 𝐾 is an affine transformation of 𝑅.

Since 𝑅 and 𝑋 are independent and 𝑦(𝑥;𝜆) solves (A.4), that is,

𝑢′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) − 𝛽 − 𝜆 · 𝐻𝐾 (𝑦(𝑥;𝜆)) = 0,

taking the derivative of the above equation on both sides with respect to 𝑥 yields

𝑢′′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋)(𝑦′(𝑥;𝜆) − 1) = 𝜆 · 𝑦′(𝑥;𝜆) · 𝐻 ′
𝐾 (𝑦(𝑥;𝜆))

=⇒ 𝑦′(𝑥;𝜆) = 𝑢′′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋)
𝑢′′(𝑤In − 𝑥 + 𝑦(𝑥;𝜆) − 𝜋) − 𝜆 · 𝐻 ′

𝐾 (𝑦(𝑥;𝜆)) ∈ [0, 1] .

This concludes the proof. �

Proof of Proposition 4.3
We directly note that 𝑆𝑐 (𝑋, 0, 0) = {𝐾 (0, 0) < 𝑋} = {𝑤Re(1 + 𝑟) < 𝑋} and 𝑆𝑐 (𝐼𝑑 , 0, 𝜋) ⊆ 𝑆𝑐 (𝑋, 0, 0)
for all 𝑑 ≥ 0 and all 𝜋 ≥ 0. Let 𝑆𝑐 (𝑋, 0, 0) hold. Then, we discuss two scenarios of the tuple (𝐼𝑑 , 0, 𝜋):
• if 𝑆𝑐 (𝐼𝑑 , 0, 𝜋), then

𝐾 (𝛼, 𝜋) − 𝐼𝑑 (𝑋) = 𝐾 (0, 𝜋) + (𝑤Re + 𝜋)𝛼𝑅 − 𝐼𝑑 (𝑋) = [𝐾 (0, 𝜋) − 𝐼𝑑 (𝑋)] + (𝑤Re + 𝜋)𝛼𝑅
< (𝑤Re + 𝜋)𝛼𝑅 ≤ 0,

where the strict inequality is due to 𝑆𝑐 (𝐼𝑑 , 0, 𝜋) and the weak inequality is due to
𝑆𝑐 (𝐼𝑑 , 0, 𝜋) ⊆ 𝑆𝑐 (𝑋, 0, 0) and 𝑅 |𝑆𝑐 (𝑋, 0, 0) ≤ 0. Hence, 𝑆𝑐 (𝐼𝑑 , 𝛼, 𝜋) holds for all 𝛼 ∈ [0, 1], and
thus 1𝑆 (𝐼𝑑 ,𝛼, 𝜋) is decreasing in 𝛼;

• if 𝑆(𝐼𝑑 , 0, 𝜋), then 𝐾 (0, 𝜋) − 𝐼𝑑 (𝑋) ≥ 0 and thus 1𝑆 (𝐼𝑑 ,0, 𝜋) = 1. Moreover,
𝐾 (𝛼, 𝜋)− 𝐼𝑑 (𝑋) = 𝐾 (0, 𝜋)− 𝐼𝑑 (𝑋) + (𝑤Re+𝜋)𝛼𝑅 is affine in 𝛼, and thus, 1𝑆 (𝐼𝑑 ,𝛼, 𝜋) is decreasing in 𝛼.

To sum up, 1𝑆 (𝐼𝑑 ,𝛼, 𝜋) is decreasing in 𝛼, and hence, P(𝑆(𝐼𝑑 , 𝛼, 𝜋)) = P(𝐾 (𝛼, 𝜋) ≥ 𝐼𝑑 (𝑋)) is decreasing
in 𝛼. This concludes the proof. �

Proof of Theorem 4.3
For brevity, we write 𝐾 (𝛼, 𝜋) as 𝐾 in this proof. The objective function in Problem 3 equals

F (𝑑) =
∫ ∞

−1−𝑟

∫ 𝑑

0
𝑢(𝑤In − 𝑥 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 +

∫ ∞

−1−𝑟

∫ 𝐾+𝑑

𝑑

𝑢(𝑤In − 𝑑 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+
∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑
𝑢(𝑤In − 𝑥 + 𝐾 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 + 𝛽 ·

∫ ∞

−1−𝑟

∫ 𝑑

0
𝐾 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+ 𝛽 ·
∫ ∞

−1−𝑟

∫ 𝐾+𝑑

𝑑

(𝐾 + 𝑑 − 𝑥) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 .

We first check the first-order derivative of F (𝑑):
• when 𝑑 > 𝑑

F ′(𝑑) = (𝛽 − 𝑢′(𝑤In − 𝑑 − 𝜋)) ·
∫ ∞

−1−𝑟

∫ 𝐾+𝑑

𝑑

𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 .
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• when 𝑑 ≤ 𝑑 ≤ 𝑑

F ′(𝑑) =
∫ ∞

−1−𝑟
𝑢(𝑤In − 𝑑 − 𝜋) 𝑓 (𝑑, 𝜁)𝑑𝜁 +

∫ ∞

−1−𝑟
𝑢(𝑤In − 𝑑 − 𝜋)(𝐾 ′(𝑑) + 1) 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

−
∫ ∞

−1−𝑟
𝑢(𝑤In − 𝑑 − 𝜋) 𝑓 (𝑑, 𝜁)𝑑𝜁 −

∫ ∞

−1−𝑟

∫ 𝐾+𝑑

𝑑

𝑢′(𝑤In − 𝑑 − 𝜋) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

−
∫ ∞

−1−𝑟
𝑢(𝑤In − 𝑑 − 𝜋)(𝐾 ′(𝑑) + 1) 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

+
∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑
𝑢′(𝑤In − 𝑥 + 𝐾 − 𝜋)𝐾 ′(𝑑) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 + 𝛽 ·

∫ ∞

−1−𝑟
𝐾 𝑓 (𝑑, 𝜁)𝑑𝜁

+ 𝛽 ·
∫ ∞

−1−𝑟

∫ 𝑑

0
𝐾 ′(𝑑) 𝑓 (𝑥, 𝜁)𝑑𝜁 + 𝛽 ·

∫ ∞

−1−𝑟

∫ 𝐾+𝑑

𝑑

(𝐾 ′(𝑑) + 1) 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

− 𝛽 ·
∫ ∞

−1−𝑟
𝐾 𝑓 (𝑑, 𝜁)𝑑𝜁

= (𝑤Re + 𝜋) · 𝛼′(𝑑) ·
{∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑
𝑢′(𝑤In − 𝑥 + 𝐾 − 𝜋)𝜁 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

+𝛽 ·
∫ ∞

−1−𝑟

∫ 𝐾+𝑑

0
𝜁 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁

}
+ (𝛽 − 𝑢′(𝑤In − 𝑑 − 𝜋)) ·

∫ ∞

−1−𝑟

∫ 𝐾+𝑑

𝑑

𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁,

where 𝐾 (𝑑) = 𝐾 (𝛼(𝑑), 𝜋).
The statement (i) is straightforward. If 𝑑 ≥ 𝑑, then as per (4.10) the optimal fraction invested in the

risky asset could take 1 when taking 𝑑 as the retention point. Note that 𝐼𝑑 solves Problem 1a (Proposition
3.1), and (𝐼, 𝛼) = (𝐼𝑑 , 1) is feasible to Problem 3. Therefore, 𝑑 solves Problem 3.

To prove (ii), let

G(𝑑) :=
∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑
𝑢′(𝑤In − 𝑥 + 𝐾 − 𝜋)𝜁 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 + 𝛽 ·

∫ ∞

−1−𝑟

∫ 𝐾+𝑑

0
𝜁 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁,

whose first-order derivative is

G′(𝑑) = {𝛽 − 𝑢′(𝑤In − 𝑑 − 𝜋)} ·
{
(𝑤Re + 𝜋)𝛼′(𝑑)

∫ ∞

−1−𝑟
𝜁2 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁 +

∫ ∞

−1−𝑟
𝜁 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

}
+ (𝑤Re + 𝜋)𝛼′(𝑑)

∫ ∞

−1−𝑟

∫ ∞

𝐾+𝑑
𝑢′′(𝑤In − 𝑥 + 𝐾 − 𝜋)𝜁2 𝑓 (𝑥, 𝜁)𝑑𝑥𝑑𝜁 .

Since

����∫ ∞

−1−𝑟
𝜁 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

����2 ≤
(∫ ∞

−1−𝑟
|𝜁 | 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝑥𝑑𝜁

)2

=

(∫ ∞

−1−𝑟

√
𝑓 (𝐾 + 𝑑, 𝜁) · |𝜁 |

√
𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

)2

≤
(∫ ∞

−1−𝑟
𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

)
·
(∫ ∞

−1−𝑟
𝜁2 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

)
,
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where the last inequality is based on the Cauchy–Schwarz inequality,

(𝑤Re + 𝜋)𝛼′(𝑑)
∫ ∞

−1−𝑟
𝜁2 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁 +

∫ ∞

−1−𝑟
𝜁 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

= −
∫ ∞
−1−𝑟 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁 ·

∫ ∞
−1−𝑟 𝜁

2 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁∫ ∞
−1−𝑟 𝜁 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁

+
∫ ∞

−1−𝑟
𝜁 𝑓 (𝐾 + 𝑑, 𝜁)𝑑𝜁 ≥ 0.

Therefore, G′(𝑑) ≤ 0 on [𝑑, 𝑑].
Under the condition

∫ ∞
0 𝐺 (𝑥)𝑑Q(𝑥; 𝑑) ≥ −𝛽 · E[𝑅 · 1𝑆 (𝐼𝑑̃ ,𝛼, 𝜋) ]/E[𝑅 · 1𝑆𝑐 (𝐼𝑑̃ ,𝛼, 𝜋) ], it is easy to

derive that G′(𝑑) ≤ 0 and thus F ′(𝑑) ≤ 0. Since G′(𝑑) ≤ 0 on [𝑑, 𝑑], we have F ′(𝑑) ≤ 0 on [𝑑,∞)
and therefore the optimal retention point is in [𝑑, 𝑑].

The statement (iii) is also straightforward. As 𝑢′(𝑤In−𝜋−𝑑) ≥ 𝛽when 𝑑 ≥ 𝑑, it holds that F ′(𝑑) ≤ 0
on [𝑑,∞). Hence 𝑑∗ ∈ [𝑑, 𝑑].
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