ON A THEOREM OF ARHANGEL'SKII CONCERNING LINDELÖF *p*-SPACES

R. E. HODEL

1. Introduction. In [4] Arhangel'skiĭ proved the remarkable result that every regular space which is hereditarily a Lindelöf p-space has a countable base. As a consequence of the main theorem in this paper, we obtain an analogue of Arhangel'skiĭ's result, namely that every regular space which is hereditarily an \aleph_1 -compact strong Σ -space has a countable net. Under the assumption of the generalized continuum hypothesis (GCH), the main theorem also yields an affirmative answer to Problem 2 in Arhangel'skiĭ's paper.

In § 3 we introduce and study a new cardinal function called the *discreteness* character of a space. The definition is based on a property first studied by Aquaro in [1], and for the class of T_1 spaces it extends the concept of \aleph_1 -compactness to higher cardinals. (In general the discreteness character and the cellularity of a space are not related; however, the two functions agree hereditarily.) The main theorem is proved in § 4, and Arhangel'skii's problem is discussed in § 5.

Throughout this paper \mathfrak{m} and \mathfrak{n} denote cardinal numbers; \mathfrak{m}^+ is the smallest cardinal greater than \mathfrak{m} ; σ , τ , and ρ denote ordinal numbers; and |A| denotes the cardinality of the set A. Unless otherwise stated, no separation axioms are assumed. However, paracompact spaces are always Hausdorff and regular spaces are always T_1 .

2. Definitions and known results. We let w, L, h, d, z, c, s and ψ denote the following standard cardinal functions: weight, Lindelöf degree, height (= her. L), density, width (= her. d), cellularity, spread (= her. c), and pseudo-character. (For definitions, see Juhász [12].)

The metrizability degree of a space X, denoted m(X), is $\aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that X has a base which is the union of \mathfrak{m} discrete collections. See [10] for a study of this cardinal function. For any T_1 space X let $F(X) = \aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that every open subset of X is the union of $\leq \mathfrak{m}$ closed sets. Note that $F(X) \leq h(X)$ for any regular space X and $\psi(X) \leq F(X)$ whenever X is T_1 . A T_1 space X is perfect if $F(X) = \aleph_0$; i.e., every open set is a countable union of closed sets.

In [9] the concept of a *p*-space [2] was extended to higher cardinals as follows. A collection $\{\mathscr{G}_{\alpha}: \alpha \text{ in } A\}$ of open covers of a space X is a *pluming for* X if the following holds: if $p \in G_{\alpha} \in \mathscr{G}_{\alpha}$ for all α in A, then

Received October 30, 1973 and in revised form, April 8, 1974.

(a) $C^*(p) = \bigcap \{ \overline{G}_{\alpha} : \alpha \text{ in } A \}$ is compact;

(b) $\{\bigcap_{\alpha \in F} \bar{G}_{\alpha}: F \text{ a finite subset of } A\}$ is a "base" for $C^{*}(p)$ in the sense that given any open set R containing $C^{*}(p)$, there is a finite subset F of A such that $\bigcap_{\alpha \in F} \bar{G}_{\alpha} \subseteq R$.

(See [9] for a proof that every regular space has a pluming.) For a regular space X, the *pluming degree* of X, denoted p(X), is $\aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that X has a pluming $\{\mathscr{G}_{\alpha}:\alpha \text{ in } A\}$ with $|A| = \mathfrak{m}$. The definition of a pluming for X is based on an internal characterization of *p*-spaces given by Burke [5], and from Burke's theorem it follows that a Tychonoff space X is a *p*-space if and only if $p(X) = \aleph_0$. For any regular space X we write $pp(X) = \sup\{p(Y): Y \subseteq X\}$.

According to Arhangel'skiĭ [3] a collection \mathscr{N} of subsets of a space X is a *net* if given any point p in X and any neighborhood R of p, there is some N in \mathscr{N} such that $p \in N \subseteq R$. The *net weight* of a space X, denoted n(X), is $\aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that X has a net of cardinality \mathfrak{m} . It is easy to check that $d(X) \leq n(X), L(X) \leq n(X)$, and $n(X) \leq w(X)$. A space X has a countable net if and only if $n(X) = \aleph_0$.

Let X be a set, and let \mathscr{S} be a cover of X. The cover \mathscr{S} is said to be *separating* if given any two distinct points p and q in X, there is some S in \mathscr{S} such that $p \in S, q \notin S$. For p in X, the *order of* p *with respect to* \mathscr{S} , denoted $\operatorname{ord}(p, \mathscr{S})$, is the cardinality of the set $\{S \text{ in } \mathscr{S} : p \in S\}$.

For a T_1 space X, the *point separating weight* of X, denoted psw(X), is $\aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that X has a separating open cover \mathscr{S} with $\operatorname{ord}(p, \mathscr{S}) \leq \mathfrak{m}$ for all p in X. Note that $psw(X) \leq n(X)$, and that $psw(X) = \aleph_0$ if and only if X has a point-countable separating open cover. (See [15; 18].) In [9] it is proved that $w(X) = L(X) \cdot p(X) \cdot psw(X)$ for any regular space X.

For any space X the *point weight* of X, denoted pw(X), is $\aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that X has a base \mathscr{B} with $\operatorname{ord}(p, \mathscr{B}) \leq \mathfrak{m}$ for all p in X. Clearly $pw(X) \leq w(X)$ for any space X, $psw(X) \leq pw(X)$ whenever X is T_1 , and $pw(X) = \aleph_0$ if and only if X has a point-countable base.

3. The discreteness character. The discreteness character of a space X, denoted $\Delta(X)$, is $\aleph_0 \cdot \mathfrak{m}$, where

 $\mathfrak{m} = \sup\{|\mathscr{F}|: \mathscr{F} \text{ is a discrete collection of non-empty closed sets in } X\}.$

We also write $\Delta\Delta(X) = \sup\{\Delta(Y): Y \subseteq X\}$. Note that for any space X, $\Delta(X) \leq L(X), \Delta\Delta(X) = s(X)$, and $w(X) = m(X) \cdot \Delta(X)$. As for characterizations and other basic properties of $\Delta(X)$, we have the following propositions.

PROPOSITION 3.1. Let X be a T_1 space, let n be an infinite cardinal.

(1) $\Delta(X) = \mathbf{X}_0 \cdot \sup\{|\mathcal{F}| : \mathcal{F} \text{ is a locally finite collection of non-empty closed sets in } X\};$

(2) $\Delta(X) = \mathbf{X}_0 \cdot \sup\{|Y|: Y \subseteq X \text{ and every subset of } Y \text{ is closed in } X\};$

(3) $\Delta(X) \leq \mathfrak{n}$ if and only if every subset of X of cardinality > \mathfrak{n} has a limit point.

Proof. We prove (1) only. Let $\Delta^*(X)$ denote the right hand side of (1). Clearly $\Delta(X) \leq \Delta^*(X)$. Assume, then, that $\Delta(X) = \mathfrak{m}$, and let us show that $\Delta^*(X) \leq \mathfrak{m}$. Let $\mathscr{F} = \{F_{\alpha} : \alpha \text{ in } A\}$ be a locally finite collection of closed sets in X such that $F_{\alpha} \neq \emptyset$ for all α in A and $F_{\alpha} \neq F_{\beta}$ whenever $\alpha \neq \beta$. Suppose $|A| > \mathfrak{m}$. For each α in A pick $x_{\alpha} \in F_{\alpha}$. By Zorn's lemma, there is a subset B of A which is maximal with respect to the property that if α and β are any two distinct elements of B, then $x_{\alpha} \neq x_{\beta}$. By the maximality of B, the point finiteness of \mathscr{F} , and the assumption that $|A| > \mathfrak{m}$, one can conclude that $|B| > \mathfrak{m}$. Then $\{\{x_{\alpha}\} : \alpha \text{ in } B\}$ is a discrete collection of non-empty closed sets in X such that $|B| > \mathfrak{m}$ and $\{x_{\alpha}\} \neq \{x_{\beta}\}$ for $\alpha \neq \beta$. This contradicts $\Delta(X) = \mathfrak{m}$. Hence $|A| \leq \mathfrak{m}$, from which it follows that $\Delta^*(X) \leq \mathfrak{m}$.

Remark 3.2. Recall that a space is \aleph_1 -compact if every uncountable subset has a limit point. By the above proposition, a T_1 -space X is \aleph_1 -compact if and only if $\Delta(X) = \aleph_0$. In addition, a space X satisfies property (*) in [1] if and only if $\Delta(X) = \aleph_0$.

PROPOSITION 3.3. Let X be a T_1 -space. Then $s(X) \leq \Delta(X) \cdot F(X)$. In particular, every perfect $T_1 \aleph_1$ -compact space hereditarily satisfies the countable chain condition.

Proof. Let $\Delta(X) \cdot F(X) = \mathfrak{m}$, let D be a discrete subspace of X, and let us show that $|D| \leq \mathfrak{m}$. For each p in D let V_p be an open neighborhood of p such that $V_p \cap (D - \{p\}) = \emptyset$, and let $W = \bigcup \{V_p : p \text{ in } D\}$. Now W is open and $F(X) \leq \mathfrak{m}$, so $W = \bigcup \{H_{\sigma}: 0 \leq \sigma < \mathfrak{m}\}$, where each H_{σ} is a closed set. For each $\sigma < \mathfrak{m}$ let $K_{\sigma} = H_{\sigma} \cap D$, and note that $D = \bigcup \{K_{\sigma}: 0 \leq \sigma < \mathfrak{m}\}$. The proof is complete if we can show that $|K_{\sigma}| \leq \mathfrak{m}$ for each $\sigma < \mathfrak{m}$. So let $\sigma < \mathfrak{m}$ be fixed. Now $\mathscr{F} = \{\{x\}: x \text{ in } K_{\sigma}\}$ is a discrete collection of closed sets in X. (Let $p \in X$. If $p \notin H_{\sigma}$, then $(X - H_{\sigma})$ is a neighborhood of p which misses all elements of \mathscr{F} . If $p \in H_{\sigma}$, then $p \in W$ and so there exists q in D such that $p \in V_q$. Thus V_q is a neighborhood of p which intersects at most one element of \mathscr{F} .) Since $\Delta(X) \leq \mathfrak{m}$, it follows that $|K_{\sigma}| \leq \mathfrak{m}$.

COROLLARY 3.4. Let X be a T_1 -space. Then $|X| \leq 2^{\Delta(X) \cdot F(X)}$.

Proof. Hajnal and Juhász [8] have proved that $|X| \leq 2^{s(X) \cdot \psi(X)}$ for any T_1 space X. Since $s(X) \leq \Delta(X) \cdot F(X)$ and $\psi(X) \leq F(X)$, it follows that $|X| \leq 2^{\Delta(X) \cdot F(X)}$.

Remark 3.5. Suppose X is a perfect $T_1 \aleph_1$ -compact space. Then by Corollary 3.4, $|X| \leq 2^{\aleph_0}$. This result generalizes a theorem of Stephenson [20].

Before proving our next result, we need a generalization of a lemma due to Aquaro [1]. No doubt this generalization is well known, and should be considered folklore by now. However, for the sake of completeness we sketch a proof.

LEMMA 3.6. Let X be a topological space with $\Delta(X) \leq \mathfrak{m}$, and let \mathscr{V} be an open cover of X such that $\operatorname{ord}(p, \mathscr{V}) \leq \mathfrak{m}$ for all p in X. Then there is a subcover of \mathscr{V} of cardinality $\leq \mathfrak{m}$.

R. E. HODEL

Proof. Suppose no subcollection of \mathscr{V} of cardinality $\leq \mathfrak{m}$ covers X. By Zorn's lemma, there is a subset M of X which is maximal with respect to the property that if p and q are distinct elements of M, then $q \notin \mathfrak{st}(p, \mathscr{V})$. By the maximality of M, the hypothesis that $\operatorname{ord}(p, \mathscr{V}) \leq \mathfrak{m}$ for all p in X, and the assumption that no subcollection of \mathscr{V} of cardinality $\leq \mathfrak{m}$ covers X, one can show that $|M| > \mathfrak{m}$. Now $\mathscr{F} = \{\{p\}^- : p \text{ in } M\}$ is a discrete collection of closed sets in X. For, let $x \in X$, and let V be some element of \mathscr{V} which contains x. Suppose $V \cap \{p\}^- \neq \emptyset$ and $V \cap \{q\}^- \neq \emptyset$, where p and q are distinct elements of M. Since V is open, $p \in V$ and $q \in V$, so $q \in \mathfrak{st}(p, \mathscr{V})$, a contradiction. Thus \mathscr{F} is a discrete collection of closed sets in X with $|\mathscr{F}| > \mathfrak{m}$, a contradiction of $\Delta(X) \leq \mathfrak{m}$.

PROPOSITION 3.7. Let X be a regular space. Then $w(X) = p(X) \cdot \Delta(X) \cdot pw(X)$. In particular, every regular \aleph_1 -compact p-space with a point-countable base has a countable base.

Proof. Clearly $p(X) \cdot \Delta(X) \cdot pw(X) \leq w(X)$. Assume, then, that $p(X) \cdot \Delta(X) \cdot pw(X) = \mathfrak{m}$, and let us show that $w(X) \leq \mathfrak{m}$. Since $pw(X) \leq \mathfrak{m}$, X has the property that every open cover has an open refinement \mathscr{V} such that $\operatorname{ord}(p, \mathscr{V}) \leq \mathfrak{m}$ for all p in X. It follows from Lemma 3.6 that $L(X) \leq \mathfrak{m}$. Since $w(X) \leq p(X) \cdot L(X) \cdot psw(X)$ (see [9]), we conclude that $w(X) \leq \mathfrak{m}$.

Problem 3.8. Does every regular \aleph_1 -compact *p*-space with a point-countable separating open cover have a countable base?

4. The main theorem. We begin by introducing a cardinal function called the Σ -degree. This function extends the concept of a strong Σ -space (see [17]) to higher cardinality. Recall that for X a set, $p \in X$, and \mathscr{F} a cover of X, $C(p,\mathscr{F}) = \bigcap \{F \in \mathscr{F} : p \in F\}$. A collection $\{\mathscr{F}_{\alpha} : \alpha \text{ in } A\}$ of locally finite closed covers of a space X is a *strong* Σ -*net* for X if the following hold for each p in X:

(a) $C(p) = \bigcap \{ C(p, \mathcal{F}_{\alpha}) : \alpha \text{ in } A \} \text{ is compact};$

(b) $\{C(p,\mathcal{F}_{\alpha}):\alpha \text{ in } A\}$ is a "base" for C(p) in the sense that given any open set R containing C(p), there exists α in A such that $C(p,\mathcal{F}_{\alpha}) \subset R$.

Before defining the Σ -degree we need the following existence result.

PROPOSITION 4.1. Let X be a regular space. Then X has a strong Σ -net $\{\mathscr{F}_{\alpha}: \alpha \text{ in } A\}$ with $|A| \leq n(X)$.

Proof. Let $\mathcal{N} = \{N_{\alpha} : \alpha \text{ in } A\}$ be a net for X with $|A| \leq n(X)$. For each α in A let $\mathcal{F}_{\alpha} = \{\overline{N}_{\alpha}, X\}$. Then, as is easy to check, $\{\mathcal{F}_{\alpha} : \alpha \text{ in } A\}$ is a strong Σ -net for X.

The Σ -degree of a regular space X, denoted $\Sigma(X)$, is $\aleph_0 \cdot \mathfrak{m}$, where \mathfrak{m} is the smallest cardinal such that X has a strong Σ -net $\{\mathscr{F}_{\alpha}: \alpha \text{ in } A\}$ with $|A| = \mathfrak{m}$. By the above proposition, $\Sigma(X) \leq n(X)$. Note that a regular space X is a

strong Σ -space if and only if $\Sigma(X) = \aleph_0$ (see [15; 17]). We also define $\Sigma\Sigma(X) = \sup\{\Sigma(Y): Y \subseteq X\}$ for any regular space X.

Now we are ready to prove the main theorem in this paper, namely that $n(X) \leq \Delta\Delta(X) \cdot \Sigma\Sigma(X)$ for any regular space X. The basic idea behind the proof is the same as that developed by Arhangel'skii in [4], and can be briefly described as follows. Assume $\Delta\Delta(X) \cdot \Sigma\Sigma(X) = \mathfrak{m}$. First divide X into two subspaces X_1 and X_2 in such a way that every compact subset of X_i (i = 1, 2) has cardinality $\leq \mathfrak{m}$. To complete the proof, it suffices to show that $n(X_i) \leq \mathfrak{m}$, i = 1, 2. This is accomplished by showing that X_i is the union of $\leq \mathfrak{m}$ subspaces, each of which has net weight $\leq \mathfrak{m}$.

The proof of the main theorem (4.9) requires several propositions. The first of these makes use of the following set-theoretic result of Miščenko (see [7; 16]).

LEMMA (Miščenko). Let X be a set, let m be an infinite cardinal, let \mathscr{S} be a collection of subsets of X such that $\operatorname{ord}(p, \mathscr{S}) \leq m$ for all p in X, and let H be a subset of X. Then the cardinality of the set of all finite minimal covers of H by elements of \mathscr{S} does not exceed m.

PROPOSITION 4.2. Let X be a regular space. Then $n(X) = \Delta(X) \cdot \Sigma(X) \cdot psw(X)$.

Proof. It is easy to check that $\Delta(X) \cdot \Sigma(X) \cdot psw(X) \leq n(X)$. Suppose, then, that $\Delta(X) \cdot \Sigma(X) \cdot psw(X) = \mathfrak{m}$, and let us construct a net \mathscr{N} for X with $|\mathscr{N}| \leq \mathfrak{m}$. Let $\{\mathscr{F}_{\alpha} : \alpha \text{ in } A\}$ be a strong Σ -net for X with $|A| \leq \mathfrak{m}$. Since $\Delta(X) \leq \mathfrak{m}$, it follows from Proposition 3.1 that $|\mathscr{F}_{\alpha}| \leq \mathfrak{m}$ for each α in A. Let \mathscr{H} be all finite intersections of elements of $\bigcup \{\mathscr{F}_{\alpha} : \alpha \text{ in } A\}$, and note that $|\mathscr{H}| \leq \mathfrak{m}$. Let \mathscr{G} be a separating open cover of X such that $\operatorname{ord}(p, \mathscr{G}) \leq \mathfrak{m}$ for all p in X. We may assume that $X \in \mathscr{G}$, and hence for any subset H of X there is at least one finite minimal cover of H by elements of \mathscr{G} , namely $\{X\}$.

First we prove that $|\mathcal{S}| \leq \mathfrak{m}$. For each H in \mathcal{H} let $\{\mathcal{S}(H, \sigma): 0 \leq \sigma < \mathfrak{n}_H \leq \mathfrak{m}\}$ be all finite minimal covers of H by elements of \mathcal{S} (use Miščenko's lemma), and let

$$\mathscr{S}' = \bigcup \{ \mathscr{S}(H, \sigma) : H \in \mathscr{H}, 0 \leq \sigma < \mathfrak{n}_H \}.$$

We are going to show that $\mathscr{G} \subseteq \mathscr{G}'$, from which it follows that $|\mathscr{G}| \leq \mathfrak{m}$. Let $S_0 \in \mathscr{G}$, and let $p \in S_0$. Recall that $C(p) = \bigcap \{ C(p, \mathscr{F}_{\alpha}) : \alpha \text{ in } A \}$ is compact. Obtain a finite subcollection \mathscr{G}_0 of \mathscr{G} which covers C(p) and has these properties: (1) $S_0 \in \mathscr{G}_0$; (2) if $S \in \mathscr{G}_0$ and $S \neq S_0$, then $p \notin S$. Choose α in A such that $H = C(p, \mathscr{F}_{\alpha}) \subseteq \bigcup \mathscr{G}_0$. Let \mathscr{G}_1 be a minimal subcollection of \mathscr{G}_0 which covers H, and note that $S_0 \in \mathscr{G}_1$. Now $\mathscr{G}_1 = \mathscr{G}(H, \sigma)$ for some $\sigma < \mathfrak{n}_H$, so $S_0 \in \mathscr{G}'$.

Now let

 $\mathscr{N} = \{H - W : H \in \mathscr{H}, W = \emptyset \text{ or } W \text{ a finite union of elements of } \mathscr{S}\}.$

Then $|\mathcal{N}| \leq m$, and so the proof is complete if we can show \mathcal{N} a net for X. Let $p \in X$, let R be an open neighborhood of p. Let Z = C(p) - R, and note that Z is compact. (Recall that $C(p) = \bigcap \{C(p, \mathscr{F}_{\alpha}) : \alpha \text{ in } A\}$ and is compact.) We may assume that $Z \neq \emptyset$, since the case $Z = \emptyset$ is trivial. Let \mathscr{S}_0 be a finite subcollection of \mathscr{S} which covers Z such that $p \notin \bigcup \mathscr{S}_0 = W$. Now $C(p) \subseteq R \cup W$, so there exists α in A such that $C(p, \mathscr{F}_{\alpha}) \subseteq R \cup W$. Then $N = C(p, \mathscr{F}_{\alpha}) - W$ is an element of \mathscr{N} such that $p \in N \subseteq R$.

COROLLARY 4.3. Let X be a regular space. Then $w(X) = \Delta(X) \cdot \Sigma(X) \cdot pw(X)$.

Proof. Let $\Delta(X) \cdot \Sigma(X) \cdot pw(X) = \mathfrak{m}$. Then by the above result, $n(X) = \mathfrak{m}$, from which it follows that $d(X) \leq \mathfrak{m}$. Let D be a dense subset of X with $|D| \leq \mathfrak{m}$, let \mathscr{B} be a base for X such that $\operatorname{ord}(p, \mathscr{B}) \leq \mathfrak{m}$ for all p in X and $\emptyset \notin \mathscr{B}$. Then $\mathscr{B} = \{B \text{ in } \mathscr{B} : B \cap D \neq \emptyset\}$, from which it easily follows that $|\mathscr{B}| \leq \mathfrak{m}$.

PROPOSITION 4.4. Let X be a regular space. Then $L(X) \leq \Delta(X) \cdot \Sigma(X)$.

Proof. Let $\Delta(X) \cdot \Sigma(X) = \mathfrak{m}$, and let $\{\mathscr{F}_{\alpha} : \alpha \text{ in } A\}$ be a strong Σ -net for X with $|A| \leq \mathfrak{m}$. Since $\Delta(X) \leq \mathfrak{m}$, it follows that $|\mathscr{F}_{\alpha}| \leq \mathfrak{m}$ for all α in A. Let \mathscr{H} be all finite intersections of elements of $\bigcup \{\mathscr{F}_{\alpha} : \alpha \text{ in } A\}$, and note that $|\mathscr{H}| \leq \mathfrak{m}$.

Now let \mathscr{V} be an open cover of X, and let us show that there is a subcover of \mathscr{V} of cardinality $\leq \mathfrak{m}$. Let \mathscr{H}_0 be all elements of \mathscr{H} which are contained in a finite union of elements of \mathscr{V} . Clearly $|\mathscr{H}_0| \leq \mathfrak{m}$, and so if we can show that \mathscr{H}_0 covers X, it easily follows that a subcollection of \mathscr{V} of cardinality $\leq \mathfrak{m}$ covers X. Let $p \in X$. Now C(p) is compact, and \mathscr{V} covers C(p), so there is a finite subcollection \mathscr{V}_0 of \mathscr{V} such that $C(p) \subseteq \bigcup \mathscr{V}_0 = W$. Choose α in A such that $C(p, \mathscr{F}_\alpha) \subseteq W$. Then $C(p, \mathscr{F}_\alpha)$ is an element of \mathscr{H} which is contained in a finite union of elements of \mathscr{V} ; i.e., $C(p, \mathscr{F}_\alpha) \in \mathscr{H}_0$. Since $p \in C(p, \mathscr{F}_\alpha)$, the proof is complete.

PROPOSITION 4.5. Let X be a regular space. Then $z(X) \leq \Delta \Delta(X) \cdot \Sigma \Sigma(X)$.

Proof. Let $\Delta\Delta(X) \cdot \Sigma\Sigma(X) = \mathfrak{m}$. First note, by Proposition 4.4, that $h(X) \leq \mathfrak{m}$ and hence $\psi(X) \leq \mathfrak{m}$. For simplicity we show $d(X) \leq \mathfrak{m}$. (A similar argument can be used to show $z(X) \leq \mathfrak{m}$.) The technique we use is due to Ponomarev [19]. Suppose $d(X) > \mathfrak{m}$. Then there is a subset $Y = \{x_{\sigma}: 0 \leq \sigma < \mathfrak{m}^+\}$ of Xsuch that for all $\sigma < \mathfrak{m}^+$, $x_{\sigma} \notin \{x_{\tau}: 0 \leq \tau < \sigma\}^-$. For each $\sigma < \mathfrak{m}^+$ let $\{V(\sigma, \rho): 0 \leq \rho < \mathfrak{m}\}$ be a collection of open neighborhoods of x_{σ} such that $\bigcap \{V(\sigma, \rho): 0 \leq \rho < \mathfrak{m}\} = \{x_{\sigma}\}$ and $V(\sigma, \rho) \cap \{x_{\tau}: 0 \leq \tau < \sigma\} = \emptyset$ for all $\rho < \mathfrak{m}$. Let

 $\mathscr{S} = \{ V(\sigma, \rho) \cap Y : 0 \leq \sigma < \mathfrak{m}^+, 0 \leq \rho < \mathfrak{m} \}.$

Then \mathscr{S} is a separating open cover of Y such that $\operatorname{ord}(x_{\sigma}, \mathscr{S}) \leq \mathfrak{m}$ for all $\sigma < \mathfrak{m}^+$. Now $\Delta(Y) \cdot \Sigma(Y) \leq \mathfrak{m}$, and so by Proposition 4.2 we have $n(Y) \leq \mathfrak{m}$. This is a contradiction.

PROPOSITION 4.6. Let X be a regular space, let $\Delta\Delta(X) \cdot \Sigma\Sigma(X) \leq \mathfrak{m}$. Then the number of compact subsets of X is $\leq 2^{\mathfrak{m}}$.

Proof. First, $h(X) \leq \mathfrak{m}$, and so every closed subset of X is the intersection of $\leq \mathfrak{m}$ open sets. By Proposition 4.5, $d(X) \leq \mathfrak{m}$, and so by a well known result $w(X) \leq 2^{\mathfrak{m}}$. (See [12, p. 10].) Let \mathscr{B} be a base for X with $|\mathscr{B}| \leq 2^{\mathfrak{m}}$, let \mathscr{V} be all finite unions of elements of \mathscr{B} , and let \mathscr{W} be all intersections of $\leq \mathfrak{m}$ elements of \mathscr{V} . Note that $|\mathscr{W}| \leq 2^{\mathfrak{m}}$. Now let K be any compact subset of X, and let us show that $K \in \mathscr{W}$. First, $K = \bigcap \{ U_{\sigma} : 0 \leq \sigma < \mathfrak{m} \}$, where each U_{σ} is an open set. For each $\sigma < \mathfrak{m}$ there exists V_{σ} in \mathscr{V} such that $K \subseteq V_{\sigma} \subseteq U_{\sigma}$. Hence K is the intersection of $\leq \mathfrak{m}$ elements of \mathscr{V} , and so $K \in \mathscr{W}$.

The following set-theoretic lemma extends the result found in [13, Chapter 3, § 40, Lemma 2]. The proof is similar and so is omitted.

LEMMA 4.7. Let X be a set, let m be an infinite cardinal, and let $\{K_{\sigma}: 0 \leq \sigma < n \leq m\}$ be a collection of subsets of X such that $|K_{\sigma}| = m$ for all $\sigma < n$. Then there is a subset Z of X such that $Z \cap K_{\sigma} \neq \emptyset$ and $(X - Z) \cap K_{\sigma} \neq \emptyset$ for all $\sigma < n$.

PROPOSITION 4.8. Let m be an infinite cardinal, let X be a regular space such that $\Delta\Delta(X) \cdot \Sigma\Sigma(X) \leq m$, and assume that every compact subset of X has cardinality $\leq m$. Then $n(X) \leq m$.

Proof. Let $\{\mathscr{F}_{\alpha}: \alpha \text{ in } A\}$ be a strong Σ -net for X with $|A| \leq \mathfrak{m}$, and let \mathscr{H} be all finite intersections of elements of $\bigcup \{\mathscr{F}_{\alpha}: \alpha \text{ in } A\}$. As noted before, $|\mathscr{H}| \leq \mathfrak{m}$. By Proposition 4.4, $h(X) \leq \mathfrak{m}$, and so every closed subset of X is the intersection of $\leq \mathfrak{m}$ open sets. For each H in \mathscr{H} let $\{W(H, \sigma): 0 \leq \sigma < \mathfrak{m}\}$ be a collection of open sets such that $H = \bigcap \{W(H, \sigma): 0 \leq \sigma < \mathfrak{m}\}$, and let

$$\mathscr{S} = \{X - H \colon H \text{ in } \mathscr{H}\} \cup \{W(H, \sigma) \colon H \text{ in } \mathscr{H}, 0 \leq \sigma < \mathfrak{m}\}.$$

Note that $|\mathcal{S}| \leq \mathfrak{m}$.

The idea of the proof is to express X as the union of $\leq \mathfrak{m}$ subspaces, say $X = \bigcup \{ Y_{\tau} : 0 \leq \tau < \mathfrak{m} \}$, in such a way that \mathscr{S} , when relativized to each Y_{τ} , is a separating open cover. Suppose, for a moment, that this is accomplished. Then for each $\tau < \mathfrak{m}$, $\Delta(Y_{\tau}) \cdot \Sigma(Y_{\tau}) \cdot psw(Y_{\tau}) \leq \mathfrak{m}$, and so by Proposition 4.2 $n(Y_{\tau}) \leq \mathfrak{m}$. It then follows that $n(X) \leq \mathfrak{m}$.

The proof is complete if we can construct the required subspaces of X. Define a relation \sim on X as follows: $p \sim q$ if and only if $p \in C(q, \mathscr{H})$ and $q \in C(p, \mathscr{H})$. Now \sim is an equivalence relation on X, so there is a cover $\{E_t:t \text{ in } T\}$ of X by non-empty sets such that (1) $E_s \cap E_t = \emptyset$ whenever s and t are distinct elements of T; (2) for any two points p and q in X, $\{p, q\} \subseteq E_t$ if and only if $p \sim q$. Now for each t in T, $|E_t| \leq \mathfrak{m}$. (Let p be any point of E_t . Then E_t is a subset of the compact set $C(p) = \bigcap \{C(p, \mathscr{F}_a): \alpha \text{ in } A\}$, and $|C(p)| \leq \mathfrak{m}$ by hypothesis.) Let $E_t = \{x(t, \tau): 0 \leq \tau < \mathfrak{m}\}$, and for each $\tau < \mathfrak{m}$ let $Y_\tau = \{x(t, \tau): t \text{ in } T\}$. Note that $X = \bigcup \{Y_\tau: 0 \leq \tau < \mathfrak{m}\}$, and so it remains to show that \mathscr{S} is a separating open cover of each Y_τ . Let $\tau < \mathfrak{m}$ be fixed, and let p and q be distinct points of Y_τ . Then there exist s, t in T, s \neq t, such that $p = x(s, \tau)$ and $q = x(t, \tau)$. Since $s \neq t$, it follows that $p \sim q$ is

R. E. HODEL

false, and hence $p \notin C(q, \mathcal{H})$ or $q \notin C(p, \mathcal{H})$. First suppose $p \notin C(q, \mathcal{H})$. Then there exists H in \mathcal{H} such that $q \in H$, $p \notin H$. Then (X - H) is an element of \mathcal{S} which contains p and not q. Next suppose $q \notin C(p, \mathcal{H})$. Then there exists H in \mathcal{H} such that $p \in H, q \notin H$. Since $q \notin H$, there exists $\sigma < \mathfrak{m}$ such that $q \notin W(H, \sigma)$. Hence $W(H, \sigma)$ is an element of \mathcal{S} which contains p and not q.

THEOREM 4.9. Assume GCH. Then $n(X) = \Delta \Delta(X) \cdot \Sigma \Sigma(X)$ for any regular space X.

Proof. Clearly $\Delta\Delta(X) \cdot \Sigma\Sigma(X) \leq n(X)$. Assume, then, that $\Delta\Delta(X) \cdot \Sigma\Sigma(X) = \mathfrak{m}$, and let us show $n(X) \leq \mathfrak{m}$. By Proposition 4.6, the number of compact subsets of X is $\leq 2^{\mathfrak{m}}$. Note also that $|X| \leq 2^{\mathfrak{m}}$. Let $\mathscr{H} = \{K_{\sigma}: 0 \leq \sigma < \mathfrak{n} \leq 2^{\mathfrak{m}}\}$ be all compact subsets of X of cardinality $2^{\mathfrak{m}}$. By Lemma 4.7, there is a subset Z of X such that $Z \cap K_{\sigma} \neq \emptyset$ and $(X - Z) \cap K_{\sigma} \neq \emptyset$ for all $\sigma < \mathfrak{n}$.

Let us show that $n(Z) \leq m$. A similar argument establishes $n(X - Z) \leq m$, from which it follows that $n(X) \leq m$. To show $n(Z) \leq m$, it suffices, by Proposition 4.8, to show that every compact subset of Z has cardinality $\leq m$. So let K be a compact subset of Z, but suppose |K| > m. Now $K \subseteq X$ and $|X| \leq 2^m$ so $|K| \leq 2^m$. By GCH, we conclude that $|K| = 2^m$. Now K is a compact subset of X, so $K = K_{\sigma}$ for some $\sigma < n$. But then $K \cap (X - Z) \neq \emptyset$, a contradiction. Hence we have $|K| \leq m$, and the proof is complete.

Remark 4.10. Consider the above proof for the special case $\mathfrak{m} = \aleph_0$. It is well known (see [12, p. 33]) that every compact Hausdorff space in which every point is a G_{δ} has cardinality $\leq \aleph_0$ or 2^{\aleph_0} . Consequently the continuum hypothesis is not needed to prove that $|K| = 2^{\aleph_0}$ under the assumption $|K| > \aleph_0$. This leads to the following corollary of 4.9.

COROLLARY 4.11. Let X be a regular space which is hereditarily an \aleph_1 -compact strong Σ -space. Then X has a countable net.

COROLLARY 4.12. Let X be a regular space. Suppose that X is hereditarily a strong Σ -space and hereditarily satisfies the countable chain condition. Then X has a countable net.

COROLLARY 4.13. Let X be a regular space which is hereditarily a Lindelöf Σ -space. Then X has a countable net.

5. Arhangel'skii's Problem. In [4] Arhangel'skii proved that every regular space which is hereditarily a paracompact p-space and satisfies the countable chain condition has a countable base. He then asked if this result can be generalized in the following natural way.

Problem [4]. Let X be a regular space which is hereditarily a paracompact p-space. Is it true that c(X) = w(X)?

In this section we show that the answer is "yes" under the assumption of

GCH. We begin by extending to higher cardinality Arhangel'skii's result that a regular space has a countable base if it is hereditarily a Lindelöf *p*-space.

LEMMA 5.1. Let X be a regular space, let $\{\mathscr{F}_{\alpha}: \alpha \text{ in } A\}$ be a collection of locally finite closed covers of X with $|A| \leq m$, and let Γ be all finite subsets of A. Assume the following hold for each p in X:

(a) $C(p) = \bigcap \{ C(p, \mathcal{F}_{\alpha}) : \alpha \text{ in } A \}$ is compact; (b) $\{ \bigcap_{\alpha \in \gamma} C(p, \mathcal{F}_{\alpha}) : \gamma \text{ in } \Gamma \}$ is a "base" for C(p). Then $\Sigma(X) \leq m$.

Proof. For each γ in Γ let $\mathscr{H}_{\gamma} = \wedge \{\mathscr{F}_{\alpha}: \alpha \text{ in } \gamma\}$. Then each \mathscr{H}_{γ} is a locally finite closed cover of X, and it is easy to check that $\{\mathscr{H}_{\gamma}: \gamma \text{ in } \Gamma\}$ is a strong Σ -net for X.

PROPOSITION 5.2. Let X be a regular space. Then $\Sigma(X) \leq L(X) \cdot p(X)$.

Proof. Let $L(X) \cdot p(X) = \mathfrak{m}$. Then there is a pluming $\{\mathscr{G}_{\alpha}: \alpha \text{ in } A\}$ for X such that $|A| \leq \mathfrak{m}$ and $|\mathscr{G}_{\alpha}| \leq \mathfrak{m}$ for all α in A. Let \mathscr{H} be all finite intersections of elements of $\bigcup \{\mathscr{G}_{\alpha}: \alpha \text{ in } A\}$, and note that $|\mathscr{H}| \leq \mathfrak{m}$. For each H in \mathscr{H} let $\mathscr{F}(H) = \{\overline{H}, X\}$. By the lemma above, the proof is complete if we can show that for each p in X:

(a) $C(p) = \bigcap \{ C(p, \mathcal{F}(H)) : H \text{ in } \mathcal{H} \}$ is compact;

(b) if W is open and $C(p) \subseteq W$, then there exist H_0, H_1, \ldots, H_k in \mathscr{H} such that $\bigcap_{i=0}^k C(p, \mathscr{F}(H_i)) \subseteq W$.

First note that $C(p, \mathscr{F}(H)) = \overline{H}$ whenever $p \in \overline{H}$, and that $C(p) = \bigcap \{\overline{H}: H \text{ in } \mathscr{H}, p \in \overline{H}\}$. For each α in A choose G_{α} in \mathscr{G}_{α} such that $p \in G_{\alpha}$. Now $\bigcap \{\overline{G}_{\alpha}: \alpha \text{ in } A\} = C^{*}(p)$ is compact and contains C(p), so (a) is proved. To prove (b), let W be an open set with $C(p) \subseteq W$. Set $Z = C^{*}(p) - W$. Now Z is compact, and $\{X - \overline{H}: H \text{ in } \mathscr{H}, p \in \overline{H}\}$ covers Z, so there exist H_{1}, \ldots, H_{k} in \mathscr{H} with $p \in \overline{H}_{i}, i = 1, \ldots, k$, such that $Z \subseteq \bigcup_{i=1}^{k} (X - \overline{H}_{i}) = V$. Let $R = V \cup W$. Then R is an open set containing $C^{*}(p)$, so there is a finite subset F of A such that $\bigcap_{\alpha \in F} \overline{G}_{\alpha} \subseteq R$. Let $H_{0} = \bigcap_{\alpha \in F} G_{\alpha}$. Note that $H_{0} \in \mathscr{H}$ and $p \in \overline{H}_{0}$. For $i = 0, 1, \ldots, k$, $C(p, \mathscr{F}(H_{i})) = \overline{H}_{i}$, and since $\bigcap_{i=0}^{k} \overline{H}_{i} \subseteq W$, the proof of (b) is complete.

THEOREM 5.3. Assume GCH. Then $w(X) = h(X) \cdot pp(X)$ for any regular space X.

Proof. Let $h(X) \cdot pp(X) = \mathfrak{m}$, and let us show $w(X) \leq \mathfrak{m}$. By the previous result $\Sigma\Sigma(X) \leq \mathfrak{m}$, and since $\Delta\Delta(X) \leq h(X) \leq \mathfrak{m}$, it follows from Theorem 4.9 that $n(X) \leq \mathfrak{m}$. Clearly $psw(X) \leq n(X)$ for any regular space X, and so we have $w(X) = L(X) \cdot p(X) \cdot psw(X) \leq \mathfrak{m}$. (See [9].)

Remark 5.4. Consider the above proof for $\mathfrak{m} = \aleph_0$. In this case we can use Corollary 4.11 instead of Theorem 4.9, thereby avoiding the continuum hypothesis. Thus we obtain Arhangel'skii's result that every regular space which is hereditarily a Lindelöf *p*-space has a countable base.

R. E. HODEL

COROLLARY 5.5. Assume GCH. If X is a hereditarily paracompact space, then $w(X) = c(X) \cdot pp(X)$. In particular, if X is hereditarily a paracompact p-space, then w(X) = c(X).

Proof. Let $c(X) \cdot pp(X) = \mathfrak{m}$, and let us show $w(X) \leq \mathfrak{m}$. By the above theorem, it suffices to show $h(X) \leq \mathfrak{m}$. So let $Y \subseteq X$ and let us show $L(Y) \leq \mathfrak{m}$. We may assume that Y is open. Let \mathscr{V} be an open cover of Y. Now Y is paracompact, so \mathscr{V} has a σ -disjoint open refinement $\bigcup_{k=1}^{\infty} \mathscr{W}_k$ (see [14]). Since $c(X) \leq \mathfrak{m}$, it follows that $|\mathscr{W}_k| \leq \mathfrak{m}$, $k = 1, 2, \ldots$, and so $|\bigcup_{k=1}^{\infty} \mathscr{W}_k| \leq \mathfrak{m}$. It easily follows that \mathscr{V} has a subcollection of cardinality $\leq \mathfrak{m}$ which covers Y.

References

- 1. G. Aquaro, *Point-countable open coverings in countably compact spaces*, General Topology and Its Relations to Modern Analysis and Algebra II (Academia, Prague, 1966), 39-41.
- 2. A. V. Arhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Amer. Math. Soc. Transl. 2 (1970), 1-39.
- **3.** —— An addition theorem for the weight of spaces lying in bicompacta, Dokl. Akad. Nauk SSSR 126 (1959), 239–241.
- 4. On hereditary properties, General Topology and Appl. 3 (1973), 39-46.
- 5. D. K. Burke, On p-spaces and w∆-spaces, Pacific J. Math. 35 (1970), 285-296.
- 6. W. W. Comfort, A survey of cardinal invariants, General Topology and Appl. 1 (1971), 163-200.
- 7. V. V. Filippov, On feathered paracompacta, Soviet Math. Dokl. 9 (1968), 161-164.
- 8. A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356.
- 9. R. E. Hodel, On the weight of a topological space, Proc. Amer. Math. Soc. 43 (1974), 470-474.
- 10. Extensions of metrization theorems to higher cardinality (to appear in Fund. Math.).
- 11. V. Holsztyński, Hausdorff spaces of minimal weight, Soviet Math. Dokl. 7 (1966), 667-668.
- 12. I. Juhász, Cardinal functions in topology (Mathematical Centre, Amsterdam, 1971).
- 13. K. Kuratowski, Topology, Vol. 1 (Academic Press, New York, 1966).
- 14. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838.
- On Nagami's Σ-spaces and some related matters, Proceedings of the Washington State University Conference on General Topology (1970), 13–19.
- 16. A. S. Miščenko, Spaces with point-countable bases, Soviet Math. Dokl. 3 (1962), 855-858.
- 17. K. Nagami, Σ-spaces, Fund. Math. 65 (1969), 169-192.
- 18. J. Nagata, A note on Filippov's theorem, Proc. Japan Acad. 45 (1969), 30-33.
- 19. V. I. Ponomarev, Metrizability of a finally compact p-space with a point-countable base, Soviet Math. Dokl. 8 (1967), 765-768.
- R. M. Stephenson, Jr., Discrete subsets of perfectly normal spaces, Proc. Amer. Math. Soc. 34 (1972), 605–608.

Duke University, Durham, North Carolina