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LEITERS TO THE EDITOR

ON THE JOINT DISTRIBUTION OF THE NUMBER OF UPPER AND
LOWER RECORDS AND THE NUMBER OF INVERSIONS IN A
RANDOM SEQUENCE

W. KATZENBEISSER,* Institute of Statistics, Vienna

1. Introduction

Let Xl' X 2 , ••• , X; be a sequence of independent and identically distributed (i.i.d.)
random variables with continuous distribution function F(x). To this sequence the random
variables Ui, Ln and In can be associated, where

Un = [number of upper records of the X's],

L; = [number of lower records of the X's],

In = [number of inversions among the X's].

The random variable Xi is called an upper record, if Xi> max {Xh ••• , X i- l}; equi
valently, X, is called a lower record, if X, < min {Xh • •• , Xi-l}. By convention, Xl is an
upper record only. Therefore the support of the random variable Un is the integers
1, 2, . · . , n whereas the support of the random variable L; is the integers 0, 1, ... , n - 1.
The pair (Xi' Xi) constitutes an inversion of the X's if Xi> Xi for i <j; the support of this

random variable is the integers 0, 1, · · · , (;).

Distributional properties of the random variables Un, Li, and In are extensively studied in
the literature. For the record variables see, for example, Sparre Anderson (1954), Renyi
(1962), Haghighi-Talab and Wright (1973), Resnick (1973), the series of papers by Shorrock
(1972), (1973), (1974) and Pfeifer (1989). The application of the record variables as test
statistics for tests against trend is discussed in Foster and Stuart (1954) and Brunk (1960).
Some properties of the random variable In are given in, for example, Comtet (1972). Of

course, I" is related to Kendall's 1:, i.e., 1: = 1- 21" / (;); distributional properties for 1: can

be found in any textbook on non-parametric statistical methods. Moreover, this random
variable has some importance in the analysis of algorithms; see, for example, Knuth (1969),
Kemp (1984) and Panny (1986). The bivariate distribution of (Un, L n) and some related
distributions are discussed in Foster and Stuart (1954) and in David and Barton (1962); those
of (Un, In) are derived in Katzenbeisser (1988), respectively. However, the joint distribution
of all three random variables Un, Li, and In has not so far been discussed in the literature.

The purpose of this paper is therefore to derive the joint probability generating function of
Ui, L; and In. This function will then be used to derive the first two moments, the covariances
and the correlation coefficients between these random variables.
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2. The joint distribution of o.. t.; In

In this section the joint probability generating function (p.g.f.) of the random variable
(Un, Li, In), denoted by Gn(x, y, z), will be derived, where

Gn(x, y, z):= L L L xkylzmpn(k, I, m),
k&:O I~O m&:O

with Pn(k, I, m) :=P{ Un = k, L; = I, In = m}. In order to derive this p.g.f. our considerations
will be based on the following well-known fact. Let X b X 2, · .. ,Xn- t be a sequence of
i.i.d. random variables with continuous distribution function F(x) and denote by
Xt,n-h X 2,n-t, ... , Xn-t,n-t the n - 1 order statistics of the X's. Let X; be a further random
variable independent of Xv X 2, ... ,Xn-t, with the same distribution as the X's. Then it
holds that the probability that X; is included in any of the n intervals generated by the n - 1
order statistics of the X's is 1/n. Using this fact the joint p.g.f. can be derived via the
following recurrence relation.

Theorem 1. The joint p.g.f. of the random variables (Un, L n, In) is given by

{

X if n = 1,

Gn(x, y, z) = 1:x(x + yz)(x + z + yz2) · .. (x + z + Z2 + · · ·+ yzn-l), if n 6: 2.
n.

Proof Consider the decomposition of the event exactly k upper records, 1 lower records,
and m inversions among the n X's into disjoint events:

{Un = k, Ln = I, In= m}

= {Un- t = k - 1, Ln- t = I, In- t = m A X; > Xn-t,n-t}
U {Un- t = k, Ln- t = I, In- t = m - 1 A X n"':2,n-t< X; < Xn-t,n-t} U . · ·

U {Un- t = k, Ln- t =1- 1, In- t = m - (n - 1) A X; < Xt,n-t}.

Because of the i.i.d. property of the random variables X b X 2, · · · , Xn- t and X; we obtain
the recursion

(1)

1 1
Pn(k, I, m) =Pn-t(k - 1, I, m) - +Pn-t(k, I, m - 1) - + .. ·

n n
1

+Pn-t(k, 1- 1, m - (n - 1» - ,
n

with initial conditions pt(k, I, m) = 1 if k = 1, 1=m = 0 and zero elsewhere, and Pn(k, I, m) = 0

if kf{1,2,·· ·,n} or If{O, 1," ',n-1} or mf{o, 1"", (~)}, for n 6:2. An applica

tion of the p.g.f. Gn(k, I, m) leads to the recursion

x z
Gn(k, I, m) = - Gn-t(k, I, m) +- Gn-t(k, I, m) + · · ·

n n
zn-2 yzn-f

+- Gn-t(k, I, m) +-- Gn-t(k, I, m)
n n

= x + z + . · . + zn-2 + yzn-t G (k 1 )
n-t "m,n

for n ~ 2, with initial condition Gt(k, I, m) =x. Iteration of this formula yields finally the
expression given in Theorem 1.
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There seems to be no easy way to derive a 'closed form' expression for the Pn(k, I, m),s;
however, they can be calculated recursively using (1). From the p.g.f. one can also see that
the joint distribution may be interpreted as the distribution of the sum of n independent
random variables (~, ~, Zi), i = 1, 2, ... , n, with the individual p.g.f.

{

X if i = 1,
G;(x, y, z) = I. 2 . 1i (X + z + z + ... + yz"' ), otherwise.

The p.g.f. can now be used to derive the (joint) moments of the random variables Un, Li,
and In. Denote by Hn := ~?=l Iii, the nth harmonic number and by H~2) = ~?=l l/i2

, and
further let the vector Y be defined by Y = (Un, Li, In)'; then we have the following.

Theorem 2. The vector of expectations and the variance-covariance matrix E of Yare
given by

1
1- H~2)

n, -H~2)

!(Hn - n) !(Hn - n)

~(H,. - H~2» 3~ G)(2n + 5) ~(H,. - H~2» 3~o-+ 5)

R=

Proof. These expressions follow by straightforward differentiation of the joint p.g.f.

Obviously, the correlation matrix R is given by

1

Asymptotic approximations for the moments of U; and L; can now easily be derived. An
application of the well-known facts (i) H; =lnn + r+o(n-1), as n~oo, where r denotes
Euler's constant, and (ii) limn_co H<';) = ~(r), where ~(r) denotes Riemann's zeta-function. If r
is an even integer, then we have ~(r) =! IBrl (21'&)r [r), where B, denotes the rth Bernoulli
number. Taking these facts into account we have for example, as n~ 00

E{Un ) = In n + r + o(n-1),

1'&2
var {Un} = var {Ln} = In n + r - 6 + o(n-1),

1'&2

cov {Un, L n} = 1 - 6 '

COV {Un, In} =cov {Ln, In} =! Inn +!r - n +o(n-1).

The first two expressions above are well known and are given for example in Renyi (1962)
and in Knuth (1969) and Kemp (1984), respectively. Moreover, from the asymptotic
approximations we immediately have the following result.

Theorem 3. The random variables Ui, Li, and In are asymptotically uncorrelated.
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