
14 Collision and Detector Modeling

In particle and nuclear physics, Monte Carlo simulations are used for a wide variety of
purposes, including prediction and interpretation of results, studies of the performance of
detectors and their components, as well as corrections of measured data to obtain accurate
outcomes that are independent of experimental or instrumental effects. A detailed cov-
erage of all the types of simulations used by particle and nuclear physicists is thus well
beyond the scope of this text. We focus our discussion, in §14.1, on basic techniques used
in the simulation of simple physics observables, such as momentum spectra or correlation
functions, while in §14.2, we present simple techniques used in the simulation of detector
performance and data correction for smearing and efficiency effects.

14.1 Event Generators

Simulations of particle production by elementary particles or nuclei collisions are based
on phenomenological and theoretical models of varying complexity. A large variety of
models predicated on a wide range of assumptions are described in the literature and used
as practical event generators by theoreticians and experimentalists to describe and inter-
pret measured results or analyze the performance of particle detectors. Commonly used
event generators for the simulation of proton–proton collisions include JETSET [174],
PYTHIA [175], HERWIG [66], PHOJET [52], EvtGen [133], and several others. There
is an even greater variety of models for the generation and simulation of heavy-ion colli-
sions. Early models used in the simulation of AGS, SPS, and RHIC collisions include HI-
JING [188], RQMD [176], URQMD [29], AMPT [137], VENUS [191], and EPOS [192].
More recent developments for the study of the interaction of jets within the medium pro-
duced in heavy-ion collisions include Martini [169], Jewel [198], Cujet [61], YaJEM [164],
and many others. As noted earlier, we restrict the scope of our discussion to a small selec-
tion of phenomenological and theoretically motivated models, which illustrate how more
complex generators are built and can be used to carry out simple simulations and analyses.

14.1.1 Basic Particle Generators

Basic simulations of particle production in elementary particle collisions often assume
that produced particles are uncorrelated and have a kinematical distribution determined by
a specific PDF. The choice of PDF used in a particular simulation is dictated by the goals of
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664 Collision and Detector Modeling

the study and the needs for realistic reproduction of the attributes of collisions of interest.
We focus our discussion on a few illustrative examples.

Isotropic Exponential Distribution

We first consider the simulation of isotropic particle production according to an exponential
momentum distribution

dN

d p
= 1

λ
e−p/λ (14.1)

over the momentum range [pmin, pmax].
The generation of random momentum vectors requires three random numbers, r1, r2,

and r3, in the range [0, 1]. Isotropic emission is achieved by generating polar and azimuth
angles according to

φ = 2πr1 (14.2)

cos θ = 2r2 − 1,

whereas the generation of particle momenta according to the exponential distribution,
Eq. (14.1), can be accomplished using the inversion technique, Eq. (13.22), introduced
in §13.3.3:

p = −λ ln (r3 exp(−pmax/λ) + (1 − r3) exp(−pmin/λ)) , (14.3)

where pmin and pmax define the range over which the momentum spectrum is to be gener-
ated.

Power-Law Distribution

Particle production, particularly at high momentum, can often be described as a power law
over a restricted momentum range.

Strictly speaking, a power-law distribution is a function characterized by a scale invari-
ance. For instance, a function of the type f (x) = axk is invariant in form under scaling of
the argument x by a constant factor c:

f (cx) = a (cx)k = ck f (x) ∝ f (x). (14.4)

Indeed, scaling the argument by a factor c only multiplies the amplitude of the function
by a constant value. This behavior is in principle readily identified graphically, with data,
by plotting the logarithm of the dependent variable f as a function of the logarithm of the
independent variable x. The end result is a straight line with a slope equal to the exponent
of the power law:

ln( f ) = ln(axk ) = k ln(x) + ln(a). (14.5)

Approximate power-law behaviors have been identified in several areas of science (e.g.,
scale of earthquakes, sizes of moon craters, wealth of individuals, etc.). In particle physics,
one observes that the production of high-momentum particles can be described with a
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665 14.1 Event Generators

steeply decreasing power law originating from the approximate self-similar behavior asso-
ciated with parton fragmentation.

Power-law probability distributions are often extended by adding a slowly varying coef-
ficient S(x):

f (x) ∝ S(x)x−α, (14.6)

where α > 1, and S(x) is required to satisfy limx→∞ S(tx)/S(x) = 1 for an arbitrary con-
stant t > 0. Obviously, for S(x) = c, with c a constant, the power law holds for all positive
values of x. If S(x) is not exactly constant but varies very slowly, it may possible to find a
minimum value xmin beyond which the power law takes the form

ppl(x) = α − 1

xmin

(
x

xmin

)−α
, (14.7)

where the coefficient (α − 1)/xmin defines the PDF’s normalization.
Moments μn of the power-law function ppl(x) above the cutoff value xmin are obtained

by direct integration. One finds (see Problem 14.1):

μn =
∫ ∞

xmin

xn ppl(x) dx = α − 1

α − 1 − n
xn

min, (14.8)

which is strictly defined only for n < α − 1. One readily verifies that moments n ≥ α − 1
indeed diverge. For instance, for α < 2, the mean and all higher moments are infinite while
for 2 < α < 3, the mean exists but all other moments (including the variance) do not.

Power-law behaviors are typically observed over a finite range of the independent vari-
able x beyond which they break down. For instance, in particle physics a strict power-law
behavior as a function of the momentum (or transverse momentum) of the produced par-
ticles would imply that particles with arbitrarily large momenta can be produced. Such a
behavior is clearly impossible because it would violate conservation of energy: given a
system with a specific collision energy, there is an energy bound beyond which individual
particles cannot be produced. This problem can be solved or at the very least suppressed
with the introduction of a power law with exponential cutoff:

fplc(x) ∝
(

x

xmin

)−α
e−λx, (14.9)

where the exponential e−λx dominates the power law at very large values of x. Strictly
speaking, this function does not globally scale as and is not asymptotically a power law,
but it does exhibit approximate scaling behavior between the minimum xmin and an upper
cutoff determined by the exponential.

Generation of random numbers according to the power law Eq. (14.7) is readily achieved
with the transformation method (§13.3.3) since the function fpl(x) is integrable. One finds
(see Problem 14.2) that random continuous values of x distributed according to fpl(x) can
be obtained with

x = xmin (1 − r)
1

1−α , (14.10)
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666 Collision and Detector Modeling

where r is a uniformly distributed random number in the range [0, 1]. Note that for ap-
plication in high energy physics, one may substitute either the momentum p or transverse
momentum pT of the particle for x, as we discuss in the next section.

Flat Rapidity Distribution

The production of particles in high-energy collisions, either proton–proton or nucleus–
nucleus, is hardly isotropic and is typically better described with an approximately flat
rapidity distribution – particularly in the central rapidity region, i.e., y ≈ (ybeam + ytarget)/2.
The invariant cross section Eq. (8.73) may then be modeled according to a function of the
form

E
d3σ

d p3
= d2σ

πd p2
T dy

= k f (pT ), (14.11)

where k = dσ/dy is assumed to be constant in the kinematical range of interest, and f (pT )
is a suitably chosen model for the transverse momentum spectrum of produced particles.
Depending on the pT range of interest, f (pT ) can be chosen to be an exponential function
(as in §14.1.1), a power-law distribution (§14.1.1), a Maxwell–Boltzmann momentum dis-
tribution (§14.1.1) or other appropriate functions. For illustrative purposes, let us consider
the generation of particles with a flat rapidity distribution and a power-law distribution in
pT , which should be suitable (approximately) for the simulation of high pT particles or
jets.

The azimuth angle is assumed to be distributed uniformly and is generated according to

φ = 2πr1, (14.12)

where r1 is a uniformly distributed random number in the range [0, 1]. The rapidity distri-
bution is assumed to be flat in a range [ymin, ymax] and is thus generated with

y = ymin + r2 (ymax − ymin) , (14.13)

where r2 ∈ [0, 1]. Finally, the pT of the particle is produced according to

pT = pT,min (1 − r3)
1

1−α , (14.14)

with r3 ∈ [0, 1], a preset minimum transverse momentum pT,min, and a suitably chosen
value of α. The energy and moment components of the particle may then be obtained
according to Eqs. (8.39 and 8.41):

E = mT cosh y, (14.15)

px = pT cosφ, (14.16)

py = pT sinφ, (14.17)

pz = mT sinh y, (14.18)

with mT =
√

p2
T + m2, where m is the mass of the particle.
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667 14.1 Event Generators

In certain situations, it might be desirable to produce particles according to a flat pseu-
dorapidity, η, distribution. One then generates η according to

η = ηmin + r2 (ηmax − ηmin) . (14.19)

The polar angle θ of the particle is obtained by inverting Eq. (8.31)

θ = 2 tan−1 [exp(−η)] , (14.20)

and the momentum components are

px = pT cosφ sin θ, (14.21)

py = pT sinφ sin θ, (14.22)

pz = pT cos θ, (14.23)

while the energy is

E =
√

p2
x + p2

y + p2
z + m2. (14.24)

Maxwell–BoltzmannMomentum Distribution

The Maxwell–Boltzmann distribution, introduced in §3.16, describes the momentum dis-
tribution of molecules of nonrelativistic systems in (near) thermodynamic equilibrium. It
is often used to model thermalized particle production in heavy-ion collisions.

It is convenient to express the Maxwell–Boltzmann distribution as

fMB(�p) =
(

1

2πmkT

)3/2

exp

(
− p2

x + p2
y + p2

z

2mkT

)
, (14.25)

which may also be written

fMB(�p) = 1

N

d3N

p2d pd cos θdφ
= f1D(px|T ) f1D(py|T ) f1D(pz|T ), (14.26)

with

f1D(pi|T ) =
(

1

2πmkT

)1/2

exp

(
− p2

i

2mkT

)
. (14.27)

One can then generate momenta distributed according to a Maxwell–Boltzmann distribu-
tion using three random Gaussian deviates px, py, and pz determined by

P(pi) ∝ exp

(
− p2

i

2σ 2

)
, (14.28)

with σ = mkT . The generation of px, py, and pz as Gaussian deviates produces an isotropic
distribution. In order to obtain particles with a flat rapidity distribution and a Maxwell–
Boltzmann transverse profile, it suffices to generate px and py according to the preceding
PDF and the rapidity according to Eq. (14.13). The pz component of the momentum and
the energy are then obtained with Eqs. (14.18) and (14.15), respectively.
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Fig. 14.1 Definition of kinematic variables required for the simulation of two-body decays. (a) Rest frame of the parent particle.
(b) Laboratory frame.

14.1.2 Simulation of Resonance Decays

Corrections for detection efficiencies, acceptance, and other instrumental effects require
that one can accurately model the decay of short-lived particles and take into account both
kinematical and instrumental effects. We first consider the decay of narrow-width reso-
nances, which can be represented by a fixed mass value. Decay simulations involving finite
widths are considered next, as are examples of three-body decay that may be represented
as a succession of two-body decays.

Fixed-Mass Two-Body Decays

The generation of two-body decays involves (1) the generation of the two daughter particles
in the rest frame of the parent, (2) generation of the kinematic parameters of the parent in
the laboratory reference frame, and (3) boost of the two daughter particles according to the
speed and direction of the parent. The relevant variables are defined in Figure 14.1.

In the rest frame of the parent, the two daughter particles have momenta of equal mag-
nitude, p∗, but in opposite directions. It is thus sufficient to generate the momentum vector
of the first particle �p ∗

1 , and the momentum of the second particle is simply �p ∗
2 = −�p ∗

1 .
The magnitude of the momentum is determined by the mass M of the parent, as well as the
masses m1 and m2 of the daughter particles according to Eq. (8.165):

p∗ = 1

2M
{[M2 − (m1 − m2)2][M2 − (m1 + m2)2]}1/2. (14.29)

The generation of the polar and azimuth angles of particle 1 are carried out according to

φ∗
1 = 2πr1, (14.30)

cos θ∗
1 = 1 − 2r2, (14.31)
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669 14.1 Event Generators

where r1 and r2 represent random numbers in the range [0, 1] generated for each decay.
The CM momentum �p ∗

1 and energy E∗
1 of particle 1 is thus

p∗
1,x = p∗ sin θ∗

1 cosφ∗
1 , (14.32)

p∗
1,y = p∗ sin θ∗

1 sinφ∗
1 , (14.33)

p∗
1,z = p∗ cos θ∗

1 , (14.34)

E∗
1 =

√
(p∗)2 + m2

1, (14.35)

and for particle 2, one has

p∗
2,x = −p∗

1,x, (14.36)

p∗
2,y = −p∗

1,y, (14.37)

p∗
2,z = −p∗

1,z, (14.38)

E∗
2 =

√
(p∗)2 + m2

2. (14.39)

Boosting the daughter particles in the laboratory frame requires knowledge of the direction
and speed of the parent particle. In turn, generation of the momentum vector of the parent
�pP requires a specific production scenario or model such as those discussed in prior sec-
tions. Let us here assume that the momentum of the parent �pP is known. Its velocity vector
may then be calculated according to

�βP = �pP

EP
. (14.40)

The daughter particles i = 1, 2 can thus be boosted in the laboratory frame (Problem 14.3)
according to

�p lab
i = �p ∗

i + [(γP − 1)�p ∗
i · β̂P + γPE∗

i ]β̂P, (14.41)

where γ = (1 − β2
P)−1/2.

Finite-Width Resonance Two-Body Decays

While energy-momentum conservation constrains the energy and momenta of particles
produced in elementary particle collisions, it does not uniquely specify the mass of short-
lived particles, which can then nominally be produced event by event with values deter-
mined by a Breit–Wigner distribution (§3.15). Simulations of the decays of short-lived
(i.e., finite width) resonances thus requires generation of a mass value M for the parent
according to

fBW (M |M0, �) = 1

π

�/2

�2/4 + (M − M0)2 , (14.42)

where M0 and � are the nominal mass and width of the parent particle, respectively. Note
that since the Breit–Wigner distribution has no a priori bounds, imposing an artificial
upper-value cut to account for kinematical limitations encountered in finite beam energy
experiments may be required. A lower cut must de facto be imposed to account for the
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Laboratory reference frame

x,y

θ,ϕ

pM

p23

p1

p2

p3 θ23

θ1,23

1

2

3

Fig. 14.2 Three-body decays as sequential two-body decays. In general, the two decays do not occur in the same plane.

finite masses of the particles and the need for |�p∗| > 0. With the mass in hand, the gener-
ation of daughter particles proceeds in the same manner as for a fixed mass covered in the
previous paragraph.

Three-Body Decays Involving Sequential Two-Body Decays

A number of three-body decays may be described as a sequence of two-body decays, as
illustrated in Figure 14.2.

Simulations of the decay of a parent particle in terms of a sequence of two-body decays
proceeds quite similarly as the simpler case of a single two-body decay. Given the mass
M of the parent particle, one generates the first decay into particles of mass m1 and m23

according to the two-body decay algorithm. If the mass m23 is not fixed, one must first
determine its value according to an appropriate PDF such as a Breit–Wigner distribution.
Once the momentum �p23 is determined, one can then proceed to decay the particle into
particles 2 and 3 using the two-body decay algorithm.

14.1.3 Simple Event Generators

The generation of collision events with large numbers of particles of different species re-
quires specific assumptions be made concerning the relative probabilities of emission of
each type of particle and their momentum distributions. In this section, we first describe a
rudimentary technique that neglects energy and momentum conservation, and in the next
section, we show how one can modify the technique to achieve particle generation that
conserves energy and momentum event by event.

For illustrative purposes, let us assume the number m of particles in an event can be mod-
eled ab initio with a PDF Pm(m) which we choose to be uniform in the range [mmin,mmax],
while the production of n different particle species of mass mi, charge qi, are specified by
probabilities pi, with i = 1, . . . , n such that

n∑
i=1

pi = 1. (14.43)
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671 14.1 Event Generators

Let us further assume that all particle species can be characterized by a flat rapidity dis-
tribution in the range [ymin, ymax] and Maxwell–Boltzmann distributions in the transverse
plane, with temperatures Ti.

Before one begins with the generation of particles, it is convenient to define the cumu-
lative sum of probabilities Pi, for i = 0, . . . , n, according to

P0 = 0 for i = 0, (14.44)

Pi =
i∑

k=1

pk for 1 ≤ i ≤ n, (14.45)

with P1 = p1, P2 = p1 + p2, and so on, up to Pn = 1 by virtue of Eq. (14.43).
The generation of events can then be accomplished according to the following algorithm:

1. For each event, . . .
a. Determine the multiplicity (number of particles) of the event on the basis of uniform

PDF Pm(m):

m = int [mmin + r1 (mmax − mmin)] , (14.46)

where the notation int [O] indicates one needs to round the number O to the nearest
integer.

b. For each particle,

i. Generate a random number r2 in the range [0, 1] to determine the species (mass
mi, charge qi, and emission temperature Ti) of the particle. The species of the
particle is specified by the integer i that satisfies Pi−1 ≤ r2 < Pi.

ii. Generate the momentum vector of the particle assuming a mass mi and tem-
perature Ti with a flat rapidity distribution and transverse Maxwell–Boltzmann
distribution based on the techniques presented in earlier sections.

Note that if some of the produced particles are short-lived resonances, one can apply
the techniques presented in §14.1.2 to simulate their decay and the generation of daughter
particles.

The aforementioned event-generating technique is quite simple but somewhat ad hoc. It
provides a simple method for fast generation of particles and simple modeling of the pro-
duction of particles in elementary collisions, but given it is based on simplistic and purely
phenomenological models, it should not be expected to provide a very accurate account of
particle production cross sections and correlations. Although it can be readily modified to
use a more realistic multiplicity distribution or particle momentum distributions, it features
an intrinsic flaw that cannot be fixed by substitutions of more realistic PDFs: the events
produced do not have a specific total energy or net momentum and, as such, do not satisfy
laws of energy–momentum conservation. This may be appropriate as long as the particles
generated are meant to represent only a fraction of all observable particles produced by
actual collisions. But if the generated particles are meant to be representative of whole
events, one must use a slightly modified technique to ensure that the total momentum and
the total energy of the particles are produced with predefined values; in other words, the
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particle generation must obey laws of energy–momentum conservation. It is in principle
also necessary to account for the conservation of other conserved quantities (quantum num-
bers) such as electric charge, strangeness, baryon number, and so on. A particle generation
technique that accounts for global energy and momentum conservation is presented in the
next section. Better modeling of collisions still can be achieved with computer codes based
on comprehensive theoretical frameworks of particle interaction and particle production,
such as those already cited [29, 52, 61, 66, 133, 137, 169, 174, 175, 176, 188, 191, 192,
198].

14.1.4 Multiparticle Generation with Energy–Momentum Conservation

We saw in §8.2.2 that the cross section of a process producing n particles is determined by
the square of the transition amplitude |M| and an n-body phase factor dRn (8.79). It is thus
convenient to define the n-body phase integral Rn as follows:

Rn =
∫

4n
δ(4)

⎛⎝P −
n∑

j=1

p j

⎞⎠ n∏
i=1

δ
(
p2

i − m2
i

)
d4 pi, (14.47)

where P is the total 4-momentum of the n-body system, while pi and mi are the 4-momenta
and masses of the produced particles, respectively. The differential cross section in terms
of a certain kinematical parameter α (particle momentum, emission angle, etc.) may then
be written

dσ

dα
= d

dα

(|M|2 Rn

)
. (14.48)

One can equally sample the entire n-particle phase space by assuming that |M| = 1. This
shall produce differential cross sections (spectra) that are determined exclusively by the
phase-space of the n outgoing particles, that is, cross sections corresponding to a uniform
n-body phase space. One notes that by virtue of the factor δ(4)(P −∑n

j=1 p j ), generation
according to Rn shall automatically conserve both energy and momentum. Additionally,
given that

δ
(
p2

i − m2
i

)
d4 pi = p2

i

Ei
d pid cos θidφi, (14.49)

it should also produce particles in proportion to the density of states: events with a higher
density of states should be more probable. It is also worth mentioning that Rn leads to an
intrinsic n-body particle correlation determined solely by energy–momentum conservation.
This type of correlation is to be distinguished from those implied by the production process
embodied in the amplitude |M|. Separating these two sources of correlation experimentally
is unfortunately a rather nontrivial task. Finally, consider that if a flat spectrum in n-body
phase-space is not appropriate, one can always assign a weight to generated events based
on the desired transition amplitude |M| after an n-body event has been produced according
to Rn.

The notion of using a Monte Carlo method to calculate the Rn integral was first dis-
cussed by Kopylov [130], while Srivastava and Sudarshan [177] derived the covariant form,

https://doi.org/10.1017/9781108241922.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108241922.018


673 14.1 Event Generators

Eq. (14.47), which lends itself to a recursive calculation of the integral. We here follow the
M-generator algorithm presented by James [113].

The integral Eq. (14.47) may be written

Rn(P; m1, . . . ,mn) =
∫

4n

⎡⎣δ(4)

⎛⎝P − pn −
n−1∑
j=1

p j

⎞⎠ n∏
i=1

δ
(
p2

i − m2
i

)
d4 pi

⎤⎦ (14.50)

× δ (p2
n − m2

n

)
d4 pn,

where the expression in square brackets is Rn−1(P − pn; m1, . . . ,mn−1). One can thus in-
deed calculate Rn(P; m1, . . . ,mn) recursively

Rn(P; m1, . . . ,mn) =
∫

4n
Rn−1(P − pn; m1, . . . ,mn−1)δ

(
p2

n − m2
n

)
d4 pn. (14.51)

Making use of Eq. (14.49), Eq. (14.51) may be written

Rn(P; m1, . . . ,mn) =
∫

4n
Rn−1(P − pn; m1, . . . ,mn−1)

d3 pn

2En
, (14.52)

which in principle provides a basis for the calculation of Rn since it is expressed in terms of
a Lorentz invariant and can thus be calculated recursively in arbitrary frames of reference.
The problem resides in the choice of efficient bounds of the momentum pn. It turns out
to be more efficient and practical to modify the preceding recursion formula to obtain an
expression in terms of particle masses. This is accomplished by noting that

δ(4)

⎛⎝P −
n∑

j=1

p j

⎞⎠ =
∫
δ(4)

⎛⎝P − Pl −
n∑

j=l+1

p j

⎞⎠ δ(4)

(
Pl −

l∑
k=1

pk

)
d4Pl, (14.53)

which enables us to write

Rn (P; m1, . . . ,mn) =
∫
δ(4)

⎛⎝P − Pl −
n∑

j=l+1

p j

⎞⎠ n∏
j=l+1

δ
(

p2
j − m2

j

)
d4 p j (14.54)

×
∫
δ(4)

(
Pl −

l∑
k=1

pk

)
l∏

j=1

δ
(

p2
j − m2

j

)
d4 p jd

4Pl .

Noting that

1 =
∫ ∞

0
δ
(
P2

l − M2
l

)
dM2

l , (14.55)
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one can then express Rn as

Rn (P; m1, . . . ,mn) =
∫ ∞

0

⎡⎣∫ δ(4)

⎛⎝P − Pl −
n∑

j=l+1

p j

⎞⎠ (14.56)

×
n∏

j=l+1

δ
(
p2

j − m2
j

)
δ
(
P2

l − M2
l

)
d4 p jd

4Pl

×
∫
δ(4)

(
Pl −

l∑
k=1

pk

)
l∏

j=1

δ
(
p2

j − m2
j

)
d4 p j

⎤⎦ dM2
l ,

which gives us

Rn (P; m1, . . . ,mn) =
∫ ∞

0
Rn−l+1 (P; Ml,ml+1, . . . ,mn) (14.57)

× Rl (Pl; m1, . . . ,ml ) dM2
l .

One can show that repeated applications of this “splitting” relation, starting with l = 2,
yields the recurrence relation

Rn =
∫

dM2
n−1 . . .

∫
dM2

2

n−1∏
i=1

R2 (Mi+1; mi,mi+1) , (14.58)

where

R2 (Mi+1; Mi,mi+1) = 2π

Mi+1

√√√√M2
i+1 +

(
M2

i − m2
i+1

Mi+1

)2

− 2
(
M2

i+1 + m2
i+1

)
. (14.59)

Transforming the integrals dM2 into 2MdM , one obtains

R2 = 1

2m1

∫ ∫ n−1∏
i=1

2MiR2 (Mi+1; Mi,mi+1) dMn−1 · · · dM2, (14.60)

which is pictorially represented in Figure 8.12.
One can then proceed to the generation of n-body processes as if they were a succes-

sion of two-body decays. One only needs to apply a two-body phase-space factor for each
“decay vertex.” The boundaries of integration are a tricky issue. Nominally, one might be
tempted to write

Mj−1 + mj < Mj < Mj+1 − mj+1. (14.61)

But this implies the boundaries of jth integral depend on other integrals, which leads to
incorrect sampling of the phase space in a Monte Carlo integration. The masses can, how-
ever, be chosen according to the less restrictive condition

j∑
i=1

mi < Mj < Mn −
n∑

i= j+1

mi, (14.62)
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675 14.1 Event Generators

using the generating technique

Mj = r j

⎛⎝Mn −
n∑

i= j+1

mi

⎞⎠+
j∑

i=1

mj, (14.63)

where r j are random numbers in the range [0, 1]. One verifies that the Mj generated with
the preceding expression will satisfy the boundaries Eq. (14.61) provided

0 < r1 < · · · < r j < · · · < rn−2 < 1. (14.64)

For the generation of an event with n particles, it thus suffices to generate n − 2 ran-
dom numbers and sort them in ascending order for the calculation of the masses using
Eq. (14.63). However, one more step is required at each decay vertex. Indeed the aforemen-
tioned condition specifies the mass Mi but it does not dictate the direction of the produced
pair. One must then randomly choose, for each decay, a direction for the mass Mj.

φ j = 2πr j′ , (14.65)

d cos θ j = −1 + 2 × r j′′ , (14.66)

where r j′ and r j′′ are random numbers in the range [0, 1]. It is important to note that
isotropic emission is only expected in the rest frame of the mass Mj. To obtain the required
Lorentz invariance, one must generate two-body decays successively in the rest frame of
each mass Mj. This means one must successively Lorentz-transform each momentum into
the group of particles preceding it.

This algorithm was first made available as a program named GenBod in CERN software
libraries but is now available within the ROOT framework [59] as class TGenPhaseSpace.

14.1.5 Correlated Particles Generators

A variety of techniques may be used to generate correlated particles. At the outset, note
that the production of daughter particles resulting from a two- or three-body decay and
boosted in the laboratory frame according to the speed and direction of their parent particle
produce correlated particles: for a high-velocity parent particle, the daughter particles tend
to be separated by a small angle that decreases for increasing velocity (momentum) of the
parent. Similarly, the production of a finite number m of particles with the multiparticle
generation technique presented in §14.1.4 also results in net or global correlations between
all particles produced [54, 55]. Correlations shall also result from conservation laws such
as (electric) charge, strangeness, baryon number conservation, and so on.

Kinematically correlated particles may be generated if they can be produced by means
of hierarchical processes, such as sequential two-body decays or successive particle gen-
eration accounting individually for energy and momentum conservation. Correlations may
also be achieved, for instance, by shifting (§14.1.5) or boosting the momentum of groups
of correlated particles [162]. In general, it may be cumbersome or technically difficulty to
impart elaborated correlations between generated particles. Fortunately, it is always pos-
sible to generate particles independently and assign events or particle n-tuplets a weight
according to a correlation function ansatz (§14.1.5).
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Anisotropic Particle Generation

Anisotropic flow, relative to an event plane, may be represented according to a Fourier
decomposition

1

N

dN

dφ
∝ 1 + 2

nmax∑
n=1

vn cos (n(φ −"n)) (14.67)

where "n represent the orientation of the event plane of order n (see §11.1.1).
Generation of random angles according to the preceding expression with the inversion

method is not possible because its integral cannot be inverted, while the use of the accep-
tance/rejection method is somewhat inefficient. On the other hand, the integrated histogram
method is simple and reasonably efficient. It suffices to produce a finely binned histogram
of the distribution Eq. (14.67) and apply the histogram method presented in §13.3.5.

In some situations, one may wish to introduce flow artificially after the fact, that is,
after particles have been generated by some third-party event generator. Use of the accep-
tance/rejection method would be a bad choice in this case because it would change the
integrated particle production cross section (i.e., the integral of the momentum distribu-
tion). While the aforementioned Fourier decomposition cannot be achieved from scratch,
a reasonable approximation may be obtained by shifting particles in the transverse plane
according to

px
′ = px ×

(
1 + 2

nmax∑
n=1

vn cos(n"n)

)
, (14.68)

py
′ = py ×

(
1 + 2

nmax∑
n=1

vn sin(n"n)

)
,

where the event plane angles "n are chosen randomly event by event in the range [0, 2π ].
The flow coefficients vn can be arbitrary constants or even functions of the transverse mo-
mentum of the particles. The above “shift” of the pair (px, py) does not change the integral
of the momentum distribution, provided that the angles "n are generated as uniform de-
viates in the range [0, 2π ], since integrals of the sine and cosine functions in this range
vanish. The shift also conserves momentum in the transverse plane. Indeed, if the original
events were generated with momentum conservation, that is, such that

m∑
i=1

px,i = 0, (14.69)

m∑
i=1

py,i = 0, (14.70)

where m is the number of particles in the event, then a random shift of all particles of an
event according to a specific set of angles "n and fixed vn coefficients (i.e., common to all
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particles of an event) yields

m∑
i=1

�p′
x,i =

(
m∑

i=1

px,i

)
×
(

1 + 2
nmax∑
n=1

vn cos(n"n)

)
= 0, (14.71)

m∑
i=1

�p′
y,i =

(
m∑

i=1

py,i

)
×
(

1 + 2
nmax∑
n=1

vn sin(n"n)

)
= 0, (14.72)

and thus conserves momentum in the transverse plane. Note, however, that this simple
factorization breaks down if the flow coefficients are functions of the momentum of the
particles. The introduction of flow after the fact, with this technique, thus does not strictly
conserve momentum if the coefficients vn are functions of pT and/or rapidity. It may prove
adequate, nonetheless, for simulations of the performance of large detectors that include
particle losses and resolution smearing.

Simulation of Correlations with Weights

Simulations of correlated particles production can be achieved by applying an ad hoc
weight to particle pairs, n-tuplets, or events after their production based on some function
of the particle momenta and energies. This enables the simulation of correlated particles
based on the generation of particles using simple algorithms that nominally produce inde-
pendent and uncorrelated particles.

Let us consider, as an example, the generation of particles with a peaked correla-
tion in relative azimuth and rapidity. One can generate events with uncorrelated parti-
cles as in §14.1.3. Correlation may, however, be simulated with the use of weights. For
instance, in order to simulate a two-particle correlations of the form

w(�η,�φ) = 1 + A
1

2πσησφ
exp

(
−�η

2

2σ 2
η

)
exp

(
−�φ

2

2σ 2
φ

)
, (14.73)

it suffices to generate independent particles with, say, flat rapidity distributions and assign
each pair a weight w(�η,�φ). To simulate a two-particle cumulant, one may generate two
sequences of events with identical multiplicity distributions. Pairs of the first sequence are
given the weight w(�η,�φ) to simulate “real” events, ρ2(�η,�φ), while pair of the sec-
ond sequence are given a unit weight and simulate “mixed” events, ρ1 ⊗ ρ1(�η,�φ). One
next calculates the ratio, bin by bin, of the ρ2(�η,�φ) and ρ1 ⊗ ρ1(�η,�φ) histograms,
and subtract one, to obtain a normalized cumulant, as illustrated in Figure 14.3.

Similarly, Hanbury-Brown Twiss (HBT) type correlations can be simulated with a
weight of the form

w(�p1, �p2) ∝ exp

(
− q2

2σ 2
HBT

)
, (14.74)

with q2 = (�p1 − �p2)2 for pairs of identical particles (e.g., π+ or π−) with momenta �p1 and
�p2. The width σHBT of the correlation functions is known to be inversely proportional to
the size of the emitting source size r.
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678 Collision and Detector Modeling

Fig. 14.3 Simulation of a two-particle correlation function using the weight method. Particle pairs were given the weight
shown for real events and unit weight for mixed events. The simulation included 200,000 events with a multiplicity of
particles in the range 20 < m ≤ 50. The cumulant is calculated asρ2(�η,�φ)/ρ1 ⊗ ρ1(�η,�φ) − 1.

Quite obviously, arbitrarily complex and more sophisticated correlation functions can be
modeled using this weight technique.

14.2 Detector Simulation

Detector simulations are commonly used to (1) understand the performance of a detection
system, (2) determine the acceptance, efficiency, and resolutions of specific measurements,
and (3) obtain response matrices that can be used toward the correction of simulated data.
Such tasks can be best accomplished with detailed and comprehensive studies of the detec-
tor performance carried out within detector simulation environments such as that provided
by the computer code GEANT, introduced in §14.2.4. But since the use of GEANT re-
quires quite a bit of setup and computer coding, and considering that GEANT simulations
can be rather CPU-intensive, performance studies are often conducted with fast simulators
involving simple and sometimes rather primitive models of a detector’s response.

We introduce basic exemplary techniques for the simulation of the effects of finite effi-
ciency, detector resolution, and acceptance determination in §14.2.1, and provide a simple
example of a calculation of a response matrix for jet measurements in §14.2.3.

14.2.1 Efficiency, Resolution, and Acceptance Simulators

Efficiency Simulation

The efficiency of a detection system towards measurement of a specific type of particle (or
range of particle species) may be obtained by means of detailed simulations based on a
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realistic particle production model and a detailed simulation of the detector performance.
Alternatively, one can also embed simulated tracks (or other relevant objects) into actual
events and determine what fraction of the embedded tracks are actually recovered by the
track reconstruction software.

Let us here assume that the detection efficiency for a specific particle species is known
and can be parameterized with a model ε(η, φ, pT ). In some cases, it might be possible to
factorize the efficiency into a product of three functions ε(η, φ, pT ) = ε(η)ε(φ)ε(pT ). It
may even be possible to assume that dependencies on rapidity and azimuth are negligible
and treat ε(η) and ε(φ) as constants. One can then use this model to carry out fast simu-
lations of the effects of the limited detection efficiency on momentum spectra, invariance
mass spectra, correlation functions, or more complex objects such as jets.

While the effect of detection can in principle be trivially determined by multiplying the
efficiency by the production cross section, it is often more convenient to carry out a simu-
lation involving the production model considered and a model ε(η, φ, pT ) of the efficiency.
This has the added benefit of providing a track-by-track account of detector resolution ef-
fects. In such simulations, it can often be assumed that the detection efficiency for two or
more particles factorizes and that one can apply the function ε(η, φ, pT ) for each particle
independently. A simulation may be based on a simple home-brewed particle generator or
more sophisticated and theoretically motivated event generators whose events are either
generated on the fly (event-by-event) or read from stored files. A typical simulation thus
proceeds as follows:

1. Generate or read an event from file.
2. Efficiency/smearing: For each particle of an event

a. Decide whether the particle should be accepted.
b. Smear kinematical parameters of the particle (if needed/desired).
c. Store smeared parameters.

3. Analysis: Carry out the required analysis of the generated event based on accepted (and
smeared) particles. Optionally carry out the analysis on all generated and unsmeared
particles to obtain a “perfect detection” reference.

The decision whether to accept a particle is based on three steps: (1) given the (un-
smeared) kinematical parameters of the particle (η, φ, pT ), calculate the efficiency of de-
tection ε(η, φ, pT ); (2) generate a random number r with a uniform distribution in the
range [0, 1]; and (3) accept the particle if r ≤ ε(η, φ, pT ).

Figure 14.4 presents an example of the application of an efficiency function ε(pT ) on
a parent distribution f (pT ) = λ−1 exp(−pT /λ). It shows, in particular, that the measured
transverse momentum mean 〈pT 〉 can be significantly altered by the detector’s efficiency
dependence on transverse momentum, ε(pT ).

Resolution Smearing

Smearing of kinematical parameters is based on models of the detector response. For in-
stance, to simulate instrumental effects (smearing) on a transverse momentum measure-
ment, one requires a PDF f (pT |�θ ) describing fluctuations of the measured pT determined
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Fig. 14.4 Illustration of the effect of efficiency function ε(pT ) on a pT spectrum and measured mean 〈pT 〉. (a) Selected
efficiency response curves. (b) Product of the efficiency curves by the input spectrum (f (pT ) = λ−1 exp(−pT/λ),
withλ = 0.5). (c) Average pT obtained with the selected efficiency curves.

by some set of parameters �θ . The parameters �θ are here assumed to be known a priori.
In practice, they could be obtained from either detailed simulations of the detector per-
formance (§14.2.4) or an explicit measurement. Often times, but not always, the smearing
response of the detection system may be assumed to be (approximately) Gaussian. Speci-
fication of the smearing function f (pT |�θ ) thus reduces to the expression of the mean and
root mean square (rms) of a Gaussian as a function of the true pT of the particles. If the
mean is null, the measurement can be considered without bias, and only fluctuations need
considering. However, note that given particles lose energy (and thus momentum) as they
traverse a detector, the track reconstruction software must compensate for such losses (see
§9.2). The problem arises that at a given momentum, energy losses depend on the mass
(or particle identification, PID) of the particle, which is unknown a priori. Corrections are
thus typically made assuming the PID of the most abundantly produced particle species
(e.g., pions). This invariably leads to a bias (i.e., a systematic shift) in the reconstruction of
the momentum of particles. Such a shift should ideally be accounted for in simulations of
the performance of detection system. Thus for each simulated species production, not only
should the rms be provided as a function of the transverse momentum of the particles but
also a function estimating the momentum bias achieved in a typical event reconstruction.
Additionally, note that the reconstruction of charged particle tracks yield Gaussian fluctu-
ations in the track curvature (C), which is inversely proportional to the pT of the particle.
Fluctuations in pT are thus generally non-Gaussian. However, for simplicity’s sake, we here
illustrate a smearing simulation procedure assuming Gaussian fluctuations.

We assume the fluctuations in momentum measurements are determined by a Gaus-
sian PDF with mean μ ≡ μ(pT,0) and rms σ ≡ σ (pT,0) where pT,0 is the true momentum
of the particles. The bias μ ≡ μ(pT,0) is typically smallest for minimum ionizing parti-
cles and grows approximately in inverse relation of the momentum at small momenta and
proportionally to the momentum at higher momenta. It could thus be modeled accord-
ing to

μ(pT,0) = a−1 p−1
T,0 + a0 + a1 pT,0, (14.75)
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where the coefficients an must be suitably fitted to represent the actual measurement bias
of each particle species. Energy loss fluctuations typically scale with the average energy
loss. Since energy losses have a 1/β2 dependence at low momentum and a logarithmic
rise at higher momenta, one may model the momentum dependency of the fluctuations
accordingly. However, note that the pT resolution becomes exceedingly poor for very small
curvature because the finite granularity of the hit detectors intrinsically limits the position
resolution. One can thus in general model the rms with a low-order power series, such as

σ (pT,0) = b−2 p−2
T,0 + b−1 p−1

T,0 + b0 + b1 pT,0 + b2 p2
T,0, (14.76)

where the coefficients bn must also be suitably fitted to represent the actual fluctuations for
each measured particle species.

Assuming the coefficients an and bn are known, either from a detailed simulation or
actual measurements, one can thus carry out (fast) simulations of the detector response
(smearing) according to the algorithm presented earlier in this section. Smearing requires
calculation track by track of both μ(pT,0) and σ (pT,0) with Eqs. (14.75, 14.76). Smeared
track momenta are then obtained based on

pT = pT,0 + rG[μ(pT,0), σ (pT,0)], (14.77)

where rG[μ(pT,0), σ (pT,0)] represents Gaussian deviates with mean μ(pT,0) and rms
σ (pT,0) calculable according to the algorithm presented in §13.3.7.

A fast simulator including smearing may, for instance, be used to study the effects of
smearing on momentum spectra (Figure 14.5), the reconstruction of short-lived decaying
particles based on the invariant mass technique, or jet measurements.

14.2.2 Kinematic Acceptance of Two-Body Decays

Monte Carlo simulations based on a simple particle generator provide a quick and easy
method to determine the acceptance of a detector toward measurements of momentum
spectra, particularly those of short-lived resonances. Let us consider, as an example, sim-
ulations of the decay of kaons K0

s into a pair π+ + π− detected by invariant mass recon-
struction (§8.5.1).

We will use the algorithm presented in sections §§14.1.1, 14.1.3, and 14.2.1 to generate
K0

s with a Maxwell–Boltzmann distribution in transverse momentum and a uniform pseu-
dorapidity in the range |η| < 3. Kaons are decayed into π+ + π− pairs exclusively. Pions
are assumed detectable with a 100% efficiency if in the ranges 0.2 < pT ≤ 1.5 and |η| < 2.
However, their momenta are smeared according to Eq. (14.76) using resolution parameters
of curve 2 in Figure 14.5.

The simulated invariant mass spectra and K0
s detection efficiency obtained with these

detection conditions are shown in Figure 14.6. One finds that the pion acceptance dramati-
cally shapes the K0

s detection efficiency and acceptance.
More generally, one can use kB functions Bmin /max

i (η, φ, pT ), i = 1, . . . , kB to define the
boundaries within which a specific particle species is considered detectable. For instance,
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Fig. 14.5 Illustration of the effect of resolution smearing on pT spectra. (a) Resolution responses used in the simulations. (b)
Simulation of pT spectrum using a Maxwell–Boltzmann distribution and smearing parameters shown in (a).
(c) Average pT obtained with perfect and finite resolution. (d) Ratio of the smeared spectra to the original spectrum.
Note that a pT threshold of 0.2 GeV has been used to illustrate the joint effects of finite resolution and acceptance.

as illustrated in Figure 14.7, a set of functions pmin /max
T,i (η) can express the minimum and

maximum pT values detectable by an apparatus. A particle with momentum vector �p =
(η, φ, pT ) would be considered detectable if and only if it satisfies the conditions

pmin
T,i (η) ≤ pT ≤ pmax

T,i (η), for all i = 1, . . . , k (14.78)

14.2.3 Response Matrix Determination

We saw in §12.3 that the unfolding of measured distributions requires knowledge of a re-
sponse matrix describing the efficiency and smearing imparted on a measured signal by
instrumental effects. The determination of a response matrix typically requires simulation
of the effects of the instrumentation of the measured particle kinematical parameters, and
their impact on other quantities such as detected particle multiplicities, resonance decays,
or measurements of jets and their properties. Such studies are best conducted based on de-
tailed simulations of the detector performance (§14.2.4) but can often also be accomplished
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Fig. 14.6 Simulation of the decay and reconstruction of K0s → π+ + π− with the invariant mass technique. (a) Generated
(solid line) and reconstructed (dashed line) Maxwell–Boltzmann transverse momentum (pT ) spectra. (b) Generated
and reconstructed pseudorapidity distributions. (c) Reconstructed distribution in pT vs. η. (d) Acceptance and
efficiency vs. pT . (d) Efficiency vs. η; efficiency vs. pT and η; (g) K0s reconstructed mass spectrum. (h) Mass vs.
reconstructed pT . Pions are assumed detectable with a 100% efficiency if in the ranges 0.2 < pT ≤ 1.5 and
|η| < 2. Pion momentum resolution as in curve 2 of Figure 14.5.

using fast simulators such as those already discussed in previous sections. We here illus-
trate the determination of a response matrix toward corrections of measured charged parti-
cle multiplicity spectra.

For the sake of simplicity, we assume the particle multiplicity amounts to an average
value 〈m〉, which we subtract ab initio from the simulated produced and measured distri-
butions. The apparatus is assumed to have an efficiency such that measured multiplicities
are, on average, 2.5 units lower than the actual values, and smeared with a resolution of 0.2
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Fig. 14.7 Acceptance definition with kB boundary functions p
min /max
T,i (η, φ), i = 1, . . . , 6.

units. The response is simulated with a Gaussian distribution

P(mm|mt ) = 1√
2πσm

exp

(
− [mm − mt − μm]2

2σ 2
m

)
, (14.79)

with μm = 2.5, σm = 0.2, and where mt and mm represent the true and measured mul-
tiplicities, respectively. One million events were generated to obtain the response matrix
displayed in Figure 14.8, which was used in §§12.3.7 and 12.3.8 to present examples of
unfolding with the SVD and Bayesian methods, respectively.

More generally, one might wish to account for specificities of the apparatus resolution of
particle momenta as well as a more detailed description of its acceptance. The simulation
could then proceed as follows:

1. Create a response matrix histogram to store event values of produced and measured
multiplicities noted N and n, respectively.
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Fig. 14.8 Response matrix used for examples of SVD and Bayesian discussed in §§12.3.7 and 12.3.8.
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2. Select a large number of events Nev to be produced.
3. Define or select the function ε(η, φ, pT ) to be used in the simulation of detection effi-

ciency.
4. Define or select the conditions Bi(η, φ, pT ), i = 1, k to be used in the simulation of the

experimental acceptance.
5. For each event,

a. Determine the total multiplicity M of the event randomly according to an appropriate
distribution in the multiplicity range or interest (e.g., 10 ≤ M < 1,000).

b. Set particle counters N and n to zero,
c. Generate an event with M particles according to appropriate rapidity and transverse

momentum distributions (e.g., flat rapidity and Maxwell–Boltzmann pT spectrum).
i. Generate particles according to chosen production model,

ii. For each generated particle,
(a) Determine if the particle is within the rapidity, azimuthal angle, and pT

boundaries of the experiment.
(b) If it is, increment true detected multiplicity N by one unit.
(c) Use the efficiency function ε(η, φ, pT ) to determine if the particle is detected.
(d) If it is, smear the momentum and rapidity of the particle and determine

whether the smeared momentum and rapidity fall within the kinematical
boundaries of the experiment.

(e) If it does, increment the measured multiplicity n by one unit.
d. Increment the response function histogram according to the event’s (N, n).

6. Normalize the response function histogram

14.2.4 Detailed Detector Simulations Using GEANT

The de facto standard in particle and nuclear physics for comprehensive simulations of
detector performance is the program GEANT [14]. Specialized computer codes such as
EGS 5 (Electron Gamma Shower)[105] and FLUKA [32] are also available to simulate the
development of electromagnetic and hadronic showers within materials.

GEANT provides a comprehensive computing environment for simulating the passage
of particles through matter. It includes components for modeling detector geometry and
material properties, the propagation of particles through electric or magnetic fields, as well
as the modeling of particle energy loss and deposition in detector materials. GEANT can
thus be used to simulate the detection of arbitrarily complex collisions and study detector
performance attributes such as detection acceptance, efficiency, momentum resolution, and
much more. GEANT, now in its fourth version, provides tools to simulate with high pre-
cision a vast array of particle interactions within detector materials and sensors, including
electromagnetic, hadronic and optical processes, as well as the decay of long-lived parti-
cles. This is accomplished through modeling of electromagnetic and hadronic processes
over a wide energy range starting, in some cases, from 250 eV and extending in others to
the TeV energy range. Written in C++, GEANT was designed and constructed to expose
the physics models utilized, handle complex geometries, and enable its easy adaptation for
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optimal use in different applications. GEANT is the result of a worldwide collaboration of
physicists and software engineers. It has a wide community of users and finds applications
in particle physics, nuclear physics, accelerator design, space engineering, and medical
physics. A detailed discussion of the Monte Carlo techniques and methods used in GEANT
is well beyond the scope of this textbook but can be found in various publications (see ref.
[14] and references therein).

While GEANT enables accurate and detailed simulations of detector performance, its
application for certain tasks such as the description of hadronic showers in calorimeter can
be rather fastidious and slow. Various groups have thus designed fast simulators to achieve
the same goals as GEANT but requiring only a small fraction of its computing time, albeit
with perhaps slightly less accuracy [17, 98].

Exercises

14.1 Derive the expression (14.8) of the moments of the power-law distribution.
14.2 Verify the expression (14.10) for the generation of random numbers according to a

power law of the form (14.7).
14.3 Derive the expression (14.41) for the boost of a vector �p∗ in an arbitrary direction

and velocity �βP. Hint: Decompose the vector �p∗ in terms of components parallel and
perpendicular to the boost direction and use the boost formula, Eq. (8.17), to carry
the boost in the parallel direction.

14.4 Write a Monte Carlo program to calculate the acceptance and detection efficiency of
K0

s decaying into π+ + π−. Assume the K0
s are produced with a Maxwell–Boltzmann

distribution with T = 0.40 GeV. Consider the acceptance for a detector capable of
identifying pions (π±) in the momentum range 0.2 ≤ p ≤ 1.5 GeV. Plot the accep-
tance and efficiency as a function of transverse momentum pT and pseudorapidity η.

14.5 Write a Monte Carlo program using the weight method to simulate the production
of correlated pions according to the HBT effect assuming source sizes of 2, 5, and
15 fm. Additionally assume the pions are produced with a Maxwell–Boltzmann dis-
tribution with T = 0.40 GeV.
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