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TEMAP2.R: True and Error model analysis program in R

Michael H. Birnbaum∗ Edika G. Quispe-Torreblanca†

Abstract

True and Error Theory (TET) provides a method to separate the variability of behavior into components due to changing true

policy and to random error. TET is a testable theory that can serve as a statistical model, allowing one to evaluate substantive

theories as nested, special cases. TET is more accurate descriptively and has theoretical advantages over previous approaches.

This paper presents a freely available computer program in R that can be used to fit and evaluate both TET and substantive

theories that are special cases of it. The program performs Monte Carlo simulations to generate distributions of test statistics

and bootstrapping to provide confidence intervals on parameter estimates. Use of the program is illustrated by a reanalysis of

previously published data testing whether what appeared to be violations of Expected Utility (EU) theory (Allais paradoxes)

by previous methods might actually be consistent with EU theory.
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1 Introduction

When testing theories of psychology, it is often important

to determine whether or not two experimental conditions

are behaviorally equivalent. This issue is often approached

via a statistical test of the hypothesis that the probability of

a certain response is the same in both cases. One asks if

two response proportions may have plausibly arisen from

the same underlying probability. In this paper, we will ar-

gue that commonly used statistical procedures to address this

question might lead to wrong substantive conclusions if cer-

tain plausible behavioral theories of error are involved. An

alternative method for answering the substantive questions

(despite the presence of error) will be presented, along with

a computer program that calculates relevant statistics for this

method.

According to Birnbaum’s (2018) new extension of true and

error theory (TET), response variation arises from several

sources: true differences among people, true changes of

mind within an individual, and from random error that can

occur when the same person responds to the same situation

on two occasions close together in time. Error rates may
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differ between situations, between persons, and might even

depend within a person on that person’s true state of mind.

TET models are testable, given appropriate experimen-

tal designs, and lead to different statistical tests from those

that have been used in the past. TET does not imply (and

typically violates) assumptions of independently and identi-

cally distributed (iid) responses [required in certain previous

approaches, such as random preference models (Birnbaum,

2011, 2012)]. Further, there is now a growing body of strong

empirical evidence that these iid assumptions are systemat-

ically violated, as predicted by TET models (Birnbaum &

Bahra, 2012a, 2012b; Birnbaum & Diecidue, 2015; Birn-

baum, 2013). Further, when iid is not empirically descrip-

tive, it can be shown that certain analyses based upon iid can

easily lead to wrong substantive conclusions regarding both

descriptive conclusions and statistical inferences (Birnbaum,

2013).

This paper describes a free computer program that is avail-

able for statistical analysis of choice problems using True and

Error theory (TE). True and error models are special cases

of a family of models known as multinomial processing tree

models (Batchelder & Riefer, 1999; Erdfelder, Auer, Hilbig,

Aßfalg, Moshagen & Nadarevic, 2009; Hilbig & Moshagen,

2014), for which general purpose software has been devel-

oped (Moshagen, 2010; Singmann & Kellen, 2013).

The program, TEMAP2, is a special purpose program in

which the TE equations are already built in and ready to use,

so the program can be used immediately by persons without

any programming knowledge who wish to use it to compare

two situations that should be behaviorally equivalent. At

the same time, like that of Singmann and Kellen (2013),

it is an open source program in R, so it can potentially be

built upon, modified, and extended by programmers. In this

paper, it will be illustrated for a test of the Allais paradox
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(Allais, 1953, 1979), in which two decision problems should

be behaviorally equivalent, according to Expected Utility

(EU) theory.

Example: Allais Paradox

Each decision problem might be described as a

choice between two urns, each of which contains

exactly 100 marbles; a single marble will be drawn

at random from the chosen urn, and the color of

marble drawn will determine the cash prize won

by the decision maker. Choice Problem 1 might

be displayed as follows:

Problem 1 S: 20 blue marbles to win $48

80 black marbles to win $4

Or:

R: 10 red marbles to win $96

90 black marbles to win $4

Choice Problem 1 will be denoted: S = ($48, 0.2;

$4, 0.8) versus R = ($96, 0.1; $4, 0.9).

Now consider a second choice problem, added to

Problem 1:

Choice Problem 2: S′ = ($96, 0.8; $48, 0.2) versus

R′ = ($96, 0.9; $4, 0.1).

1.1 Expected Utility Theory

According to Expected Utility (EU) theory, a person should

choose S over R (in Choice Problem 1) if and only if she

chooses S′ over R′ (in Choice Problem 2), as shown for

example in the proofs by Birnbaum (2004, p. 88). That

means no one should choose S and R′ or choose R and S′,

apart from “error”. When a person exhibits violations of EU,

the behavior has been called “paradoxical” because EU was

considered by many people (but not Allais) to be rational.

These problems illustrate a variation of the “constant

consequence” paradox of Allais developed by Birnbaum

(2004).1

1.2 Hypothetical Results

Suppose a large number of participants were each asked

these two questions, perhaps included among other choice

problems. Table 1 presents four hypothetical outcomes of

such an experiment, where the number in each cell represents

the percentage of participants showing that combination of

preferences. In Case A, it is the case that everyone conformed

to the implication of EU; however, in the other cases, the

1The original form of the paradox involved large, hypothetical conse-

quences and used choices in which a “sure thing” was one of the options.

Birnbaum’s modifications showed that the paradoxical behavior persists

when small prizes that can actually be granted in a study are offered, and

also showed that the paradox does not depend on the use of a “sure thing”.

Table 1: Four examples of hypothetical data for a 2-choice

study. Each entry is the percentage of participants with each

combination of preferences on Problem 1 (Rows) and Prob-

lem 2 (Columns).

Case A Case B

R′ S′ R′ S′

R 40 0 40 R 30 10 40

S 0 60 60 S 10 50 60

40 60 40 60

Case C Case D

R′ S′ R′ S′

R 28 20 48 R 25 40 65

S 7 45 52 S 10 25 35

35 65 35 65

violations may or may not be due to “random error” or to

“true” violations of EU.

In many studies of the past (e.g., Kahneman & Tversky,

1979; Conlisk, 1989), EU was evaluated by testing the hy-

pothesis that the probabilities of choosing the safe option are

equal in both choice problems, P(S) = P(S′). By that stan-

dard, case B would be regarded as acceptable to EU theory,

and Cases C and D regarded as evidence against EU. In Cases

C and D, if the proportion that prefers RS′ is significantly

greater than the proportion that prefers SR′, it would mean

that we can reject the hypothesis that P(S) = P(S′).

Some researchers set a higher standard: they argued that

only if the choice proportions were significantly different

from 0.5, and in opposite directions, should one reject EU.

By that standard, only Case D would require rejection of

EU. Note that in case D, the proportion choosing R over S

is greater than 0.5, and the proportion choosing R′ over S′

is less than 0.5. When these proportions are significantly

different from 0.5, one would reject EU.

However, according to TET, any of Cases B, C, and D

might be either acceptably compatible with or significantly

in violation of EU, depending on a deeper analysis. That

is, based on the evidence of Table 1 alone, no definitive

conclusion can be reached regarding EU in cases B, C, and

D, even if these standard statistical tests were significant.

In Case B, the response proportions show that one can

retain the hypothesis that P(S) = P(S′), yet EU might still

be demonstrably false. And even in Case D, EU might be

compatible with the results, if we allow TET (Birnbaum,

2018). In other words, these standard significance tests (as

used in Kahneman & Tversky, 1979 or Conlisk, 1989, as

well as by many others, including ourselves) do NOT really

test whether or not EU is acceptable, once one allows that

random error compatible with TET may exist.
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In order to answer the question of whether or not EU can

be retained or must be rejected in the TET model, we need

more information than is provided in Table 1. In particular,

we need to replicate each choice problem in order to estimate

error rates. That is, we must present each person with each

of the choice problems at least twice.

This requirement to replicate means that experimenters

must do more elaborate experiments than those done in stud-

ies like those of Kahneman and Tversky (1979) and many

others. This requirement (that experimenters should repli-

cate their results within an experiment) does not seem to us

to be too great a burden, because replication provides the

information needed to estimate error rates. And knowing

the error rates allows us to answer the substantive questions

more definitively.

1.3 Experimental Paradigm and Response

Patterns

There are two choice problems: (i) Do you prefer S or R?

and (ii) Do you prefer S′ or R′ ? Each person responds to

each choice problem twice in each session. There are two

ways in which the study could be done and analyzed, and it is

helpful to distinguish individual analysis (of a single person’s

behavior) from group analysis (of data from a combination

of individuals).

The term individual True and Error Theory (iTET) refers

to separate analysis of data collected from a single person

who is tested on many sessions (blocks of trials), but in each

session there are at least two replications of each of the choice

problems. The term replication is used here to denote two

presentations of the same choice problem to the same person

within a session, and the term sessions (or blocks) is distin-

guished from replications. In a real application, there would

be many choice problems designed to test various properties

implied by different theories. These various choice problems

would be intermixed along with “filler” trials and presented

in random order in each session to the participant. The

participant would participate for several sessions (blocks of

trials), which might occur on different days, for example, but

within each session, each choice problem would be presented

at least twice on trials separated by filler trials. Thus, iTET

data corresponding to Table 1 would represent percentages

within a single person who served in many sessions, rather

than percentages aggregated over many people who served

in a single session.

The term group True and Error Theory (gTET) refers

to analysis of data from many individuals, each of whom

serves in at least one session and responds at least twice to

each of the choice problems, presented intermixed among

many other choice problems. Data corresponding to Table 1

in this case would be aggregated over people.

For the analysis that follows, it is important to make an-

other distinction: we must distinguish single responses and

single response proportions from response patterns and pat-

tern proportions. An example of a single response is a

preference for S over R in the first choice problem. One can

compute a single, binary response proportion representing

the proportion of trials on which S is chosen over R. Such an

individual response proportion can be used to estimate sin-

gle (binary) choice probability, P(S). Whether aggregated

over sessions within an individual (iTET) or aggregated over

individuals (gTET), these single response proportions must

be distinguished from proportions representing response pat-

terns.

The term, response pattern refers to a conjunction of in-

dividual responses. With two choice problems and two rep-

etitions of each choice problem per session, each choice

pattern is a combination of four responses. For example, the

response pattern RS′RS′ represents preference for R over S

in the first and second replications of the first choice prob-

lem and preference for S′ over R′ in both replications of the

second choice problem. The pattern, SS′SR′, represents a

combination of responses in which the person chose S over

R in the both replicates of the first choice problem, but chose

S′ over R′ on one replicate of the second choice problem

and chose R′ over S′ in the other replication of the second

choice problem. Again, these pattern proportions might be

computed by aggregating over many sessions within a per-

son, or aggregated over many persons for a single session,

but they are not aggregated over the two repetitions because

the response patterns to repeated presentations will allow us

to estimate the error components, to test the TE models, and

also to test a rival family of error models that imply response

independence.

1.4 Response Independence

Some probabilistic choice models assume response inde-

pendence; that is, they assume that the probability of

any response pattern is the product of the probabilities of

the individual responses that make up the pattern. In-

dependence implies, for example, that P(RS′ RS′) =

P(R) P(S′) P(R) P(S′), and that P(RS′) = P(R) P(S′). All

four cases in Table 1 violate response independence. For

example, the percentage for RS′ for Cases A and B of Table

1 is predicted to be 24, according to independence, because

(0.4)(0.6) = 0.24. Instead, it is 0 in Case A and 10 in Case

B.

The TET models neither assume nor imply response in-

dependence, and in the general case where behavior may

be the result of a mixture of true patterns, response inde-

pendence will be systematically violated in TET (Birnbaum,

2011, 2013).

Empirical analyses of a number of sets of data have ob-

served large and significant violations of response indepen-

dence not only when data are combined across individuals

but also when data are analyzed separately for each person
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(Birnbaum & Bahra, 2012a, 2012b). Reanalysis of data from

Regenwetter et al. (2011) has shown that iid is significantly

violated even in data that had been previously analyzed under

iid assumptions (Birnbaum, 2011, 2012, 2013).

The systematic violations of independence can be de-

scribed as follows: people are more consistent with their

previous responses to the same choice problems than re-

quired by the theory that responses are independent; in addi-

tion, people are more consistent with their previous behavior

when tested close together in time than when more time

elapses between two occasions to make the same decision.

2 TE Theory

2.1 Individual versus Group Analysis

The mathematical analysis (and the application of the com-

puter programs) is the same for iTET and gTET; however,

theoretical interpretations differ. In the case of iTET, it

is assumed that a mixture of true preference patterns can

arise over the course of many sessions because a person may

change personal parameters over time between sessions. Per-

haps these parameters change as a result of internal factors

(thinking about the task, momentary biological variations

producing changes in optimism, mood, etc.) or as the result

of external factors (information acquired between sessions,

experiences and events that occur between sessions, etc.).

In gTET, it is assumed that a mixture of true preference

patterns can arise from individual differences among people,

who may have different parameters or different decision rules

for making the choices. Such differences could arise from

genetic differences or differential experiences that affect per-

sonality, risk-taking attitudes, or other individual difference

factors.

In both iTET and gTET, it is assumed that variation in re-

sponse to the same choice problem by the same person in the

same brief session (block of trials) is due to random error. In

order to give the same response to the same choice problem

in the same session, a person must make no errors in reading

and remembering the information, evaluating the probabili-

ties and prizes, aggregating the information, comparing the

alternatives, remembering the decision, and physically exe-

cuting the proper motor response to indicate the decision.

It is reasonable to allow that error rates might differ be-

tween choice problems. For example, “simpler” choice prob-

lems, such as “would you prefer $50 or $20?” seem cases

where it is “easier” to be consistent than in more “complex”

choice problems, such as “would you prefer a 30% chance

to win $100 otherwise receive $1 or instead a 40% chance

to win $40 and otherwise receive $20?” Although it seems

intuitively reasonable that increasing the amount of informa-

tion to read, to remember, and to aggregate should increase

the rates of error, such intuitions are not assumed into the

model. The model allows such hypotheses to be investigated

empirically.

In addition to allowing different error rates for different

choice problems, it is also possible that the likelihood of an

error may depend on a person’s mental state at the moment

of decision (Birnbaum, 2018). For example, in iTET, the

individual who momentarily becomes a risk-seeker may also

become impulsive and thus have a higher error rate when

in a risk-seeking state than when in a risk-averse state of

mind. In gTET, those people who truly prefer “risky” options

might be people with different personalities who have higher

error rates than those risk-averse people who prefer “safe”

alternatives.

In previous applications of TE models, it has been as-

sumed that the likelihood of an error is independent of a

person’s true preference state (e.g., Birnbaum, 2007). Thus,

the “new” TET models used here are more general than mod-

els used in some previous research, but they include the older

models as special cases. It would be a mistake to confuse

these newer extensions with their special cases.

2.2 Parameters of TE Models

With two choice problems, there are four possible true prefer-

ence patterns (RR′, RS′, SR′, and SS′), and sixteen possible

observed response patterns (SS′ SS′, SS′ SR′, . . . , RR′

RR′). We desire to estimate the probabilities of the four true

preference patterns, which are denoted pRR′ , pRS′ , pSR′ , and

pSS′ , respectively, from the observed frequencies of response

patterns. According to EU, no one should have the true pref-

erence pattern RS′ or SR′. Therefore, EU requires that pRS′

= pSR′ = 0. Such a combination of responses could occur in

EU, but only by error.

Let e represent the probability of erroneously responding

“S” given a true preference for R. Similarly, let f represent

the probability of making an error (responding “R”) given

that a person truly prefers S in the S versus R choice problem.

Let e′ and f ′ represent the probabilities of error given that

a person truly prefers R′ or S′ in the S′ versus R′ problem,

respectively. Error probabilities are assumed to fall between

0 and ½, and to be mutually independent.

Figure 1 illustrates how the overt responses depend on

the true states and on random errors that may depend on a

person’s true preference state.

Since there are two choice problems and two error rates for

each problem, there are four error rates in this model. Hence,

in this situation, the model is termed TE-4 . A special case

of this model, denoted TE-2, assumes that e = f and e′ = f ′.

A further special case assumes that all choice problems

have the same error rates; that is, e′ = e, denoted TE-1. TE-1

has sometimes been called the “constant error,” “tremble” or

“trembling hand” model (e.g., Loomes, Moffatt & Sugden,

2002; Conlisk, 1989), since the errors are independent of the
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S ′

R ′
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1 − e ′

e ′

f ′

1 − f ′

Choice Problem 1 Choice Problem 2

True Error Response True Error Response

Figure 1: True and Error model with 2 choice problems and

4 error terms. A true preference for the “Safe” or “Risky” alter-

native (S or R, respectively) may result in an overt response

that contains error. The probabilities of error given a true pref-

erence for R or R′ in Choice Problems 1 and 2 are denoted

e and e′, respectively. The probabilities of error given a true

preference for S or S′ are denoted f and f ′, respectively.

From Birnbaum (2018).

choice problem, as if they can be attributed to error between

the decision and the response.

2.3 True and Error Model Predictions

According to TE-4, the probability to show the RS′ response

pattern on both replications is as follows:

P(RS′, RS′) = pRR′ (1 − e2)(e′)2
+ pRS′ (1 − e2)(1 − f ′)2

+

pSR′ ( f )2(e′)2
+ pSS′ ( f )2(1 − f ′)2 (1)

where P(RS′, RS′) is the theoretical probability to observe

RS′ response pattern on both replications; pSS′ , pSR′ , pRS′ ,

and pRR′ , are the probabilities of the four possible true pref-

erence patterns; and the error rates, e, f, e′, and f ′, are as

defined in Figure 1. Note that in each of the four possible

true preference states, there is a pattern of errors that can

produce the observed response pattern. For example, when

a person has the true pattern of RR′, then that person can

respond RS′ RS′, (RS′on two replications) by making no

error on the two presentations of the choice between R and

S and by making errors on both presentations of the choice

between R′ and S′.

There are 16 equations (including Equation 1) for the 16

possible response patterns. The 16 corresponding observed

frequencies (counts) of these response patterns have 15 de-

grees of freedom (df), because the 16 frequencies sum to

the total number of response patterns. In gTET with two

replicates in one session, this total is the number of partici-

pants; in iTET, where one individual served in a number of

sessions, it is the number of sessions for that individual.

The four probabilities of the four possible true response

patterns (SS′, SR′, RS′, and RR′) sum to 1 (pSS′ + pSR′ +

pRS′ + pRR′ = 1), so they contain only 3 degrees of freedom

(df).

In TE-4, there are 4 true pattern probabilities (using 3 df)

and 4 error terms, so the parameters of this model consume

7 df, leaving 15 − 7 = 8 df to test the model.

The TE-2 model is the special case of TE-4 in which e = f

and e′ = f ′; In this case, there are 6 parameters that require

5 df, leaving 10 df to test the model.

The TE-1 model is the special case in which it is assumed

that e = f = e′ = f ′. In this case, there are 11 df remaining.

As noted above, EU is a special case of TET, in which

pRS′ = pSR′ = 0. EU-4, EU-2, and EU-1 are special cases

of TE-4, TE-2, and TE-1, respectively. Each of these models

thus has two fewer parameters than the TE model of which

it is a special case.

2.4 Index of Fit

The fit of a model to the 16 observed frequencies can be

assessed by the Chi-Square formula:

χ
2
=

16
∑

i=1

(Oi − Pi)
2

Pi

where Oi and Pi are the observed and predicted frequencies

(counts) of each cell’s response pattern.

The G index (sometimes called G2) is similar to χ2, but

can have theoretical advantages over it:

G = 2

16
∑

i=1

Oiln

(

Oi

Pi

)

The G test is equivalent to a likelihood ratio test, and is also

asymptotically Chi-Square distributed with the same degrees

of freedom as χ2.2

2.5 Testing TE models and Substantive Theo-

ries as Special Cases

The EU-4 model is the special case of TE-4 in which pRS′ =

pSR′ = 0. The difference in fit between EU-4 and TE-4,

χ
2diff = χ2(10) − χ2(8), is theoretically distributed as a

Chi-Square with 2 df. The same property also holds for G.

2The χ
2 formula was developed as an approximation to G, because it

was easier to calculate without a computer, and it is still found in most

introductory statistics books. Although many statisticians favor G over χ2,

some have called attention to cases favoring χ
2 (e.g., Berkson, 1956). The

TEMAP2 program allows the user to choose to use either χ2 or G.
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Table 2: Data used to illustrate the model and program.

From Birnbaum, Schmidt & Schneider (2017, Experiment 2,

Sample 2).

Responses on

Replicate 1

Response Pattern on Replicate 2

RR′ RS′ SR′ SS′

RR′ 4 8 2 0

RS′ 4 43 2 8

SR′ 1 0 2 4

SS′ 1 10 0 18

Similarly, difference between the fit of TE-2 and EU-2 is also

theoretically Chi-Square with 2 df, as is the difference in fit

between TE-1 and EU-1.

EU-4 might provide a means by which the EU model might

be saved from data that might otherwise seem to refute it.

In particular, when four error parameters are allowed, it is

possible that EU can imply that P(S) > .5 AND P(S′) < .5,

or vice versa; thus, it could potentially account for data such

as in Case D of Table 1 (Birnbaum, 2018).

Previous studies used TE-2, which led to the rejection of

EU and CPT (e.g., Birnbaum, 2008). However, by allowing

four error terms in TE-4, one might be adopting a more

complex error model as a way to rescue a “simpler” or more

“rational” model of decision-making. Because TE-2 and

EU-4 have the same number of degrees of freedom, one

is tempted to compare these to see if EU with four errors

might come off better than a model that has fewer errors but

rejects EU. Of course, making a scientific decision to prefer

one theory over another should depend on more than just

comparing indices of fit and numbers of parameters.

But if EU-4 can be rejected in the context of TE-4 it means

that one cannot save the simpler decision model even with

the extra parameters. Thus, allowing a greater number of

parameters to the EU model might (potentially, if the data

warrant) either allow the model to be salvaged or (potentially)

provide a stronger refutation of it.

2.6 Example: Data for Reanalysis

Table 2 shows the frequency of each response pattern for

107 participants of Birnbaum, Schmidt and Schneider (2017,

Experiment 2, Sample 2), each of whom responded twice to

each of Choice Problems 1 and 2 above. These data will

be used to illustrate the program and some of the output it

generates.

3 Computer Program: TEMAP2.R

The R-program, TEMAP2.R, fits TE models to the data; it

can be downloaded freely from the companion Website to

this article.

The programming language R is free. See Li and Baron

(2011) for an introduction to R with examples of data anal-

ysis in psychology. The R package can be downloaded and

installed from URL: https://cran.r-project.org/

In addition to the standard installation (current version is

3.4.4), several packages need to be installed: “scales” is used

to draw graphs, “boot” is for bootstrapping, and “readxl”

allows the use of an Excel file for input. To add these to your

installed version of R, start R and type the following at the

prompt:

> install.packages("scales")

You will be asked to select a CRAN mirror site. Choose

one near you. Next, install “boot”, “devtools”, “readxl”,

“data.table”, and “ggplot2” as follows:

> install.packages("boot")

> install.packages("devtools")

> install.packages("readxl")

> install.packages("data.table")

> install.packages("ggplot2")

Next, create a folder (i.e., a directory) called

TE, creating a path (e.g., in Windows) such as:

C:/Users/Name/Docs/TE, which will be the working

folder for your input (data) and output (results) of the pro-

gram. Download the program, TEMAP2.R, from the sup-

plements to this article, and save it in this working folder.

Download the Excel file, Example.xlsx, and save it in the

same folder.

In R, set the folder containing the program to be the work-

ing directory, with the appropriate path to your folder, such

as:

> setwd("C:/Users/Name/Docs/TE")

3.1 Running the Program

After checking to ensure that the program, TEMAP2.R, and

the data file, Example.xlsx, are in the same directory (set

as the working directory), run the program. This can be done

(with the appropriate path) by the command:

> source("C:/Users/Name/Docs/TE/TEMAP2.R")

As set up in the example file, the program will run for several

minutes and create 41 new files that contain output from the

program.

Three files created by the program contain the original

data for each case, parameter estimates of the three TE mod-

els (TE-1, TE-2, and TE-4), best-fit predicted values of those

data, best-fit Chi-Square index of fit, and the conventional

p-value for this value of Chi-Square. A fourth file contains

the same information for the assumption of response inde-

pendence (which can be violated according to TE models
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when there is a mixture of true preferences within a group

of people or within an individual).

The next three files contain Monte Carlo simulated p-

values for the three TE models by means of the conservative

and refit simulation methods. For each model, the conserva-

tive method uses best-fit parameters to the observed data (ei-

ther maximum likelihood, minimizing G or minimum χ2).

These original parameters are used for both simulation of

new samples (from the theory) and to calculate the index of

fit in each new simulated sample.

The refit procedure uses these same, best-fit parameters to

the original data to generate simulated samples; however, it

estimates best-fit parameters in each new simulated sample

before calculating the index of fit in each sample. The re-fit

method always yields the same or better fits in the simulated

samples, and therefore leads to smaller estimated p-values;

it is thus more likely to reject the null hypothesis (Birnbaum,

et al., 2016).3

Three files contain results of bootstrapping for the three TE

models; these list the lower and upper values corresponding

to (bootstrapped) 95% confidence intervals on the estimated

parameters for the (restricted) model specified in the data file.

Fourteen pdf files are also created for the first case, which

graph bootstrapped sampling distributions of the parameters

of the restricted model in TE-4 and TE-2. When confidence

intervals are desired for the full model as well, one can run

the program again with all parameters free, in order to get

bootstrapping results for full (unrestricted) models.

Three files contain results of Monte Carlo simulations of

the distribution of differences in Chi-Square (or G) com-

paring the full model to the restricted model for the three

TE models. These files contain separate Chi-Squares for

full and restricted models, the difference, the conventional

p-value for this difference, and the Monte Carlo simulated

p-value. Figures of the Monte Carlo simulated distributions

(pdf) are also saved for the TE-2 and TE-4 models for the

first case.

When a restricted model is specified, as in the example

file, three files are produced that summarize predictions and

index of fit for both full and restricted models. In addition,

3Each of these methods is “correct” but they are correct answers to

slightly different questions: the conservative procedure simulates the sam-

pling distribution of the statistic under the assumption that the model and

its estimated parameters are correct; all of the variability in this distribution

arises from sampling from the theory. The refit procedure contains an addi-

tional source of variation because new parameters are selected within each

new sample, which pulls the distribution in towards zero. The refit pro-

cedure tends to yield p-values closer to those produced by the Chi-Square

distribution for the degrees of freedom remaining in the data. We think

it reasonable to use the refit method for deciding whether or not a single,

stand-alone model is acceptable. We think the conservative method de-

serves consideration in cases where the TE model will be assumed as a

statistical framework (analogous to the ANOVA model) for testing special

cases; in this case, violation of the general TE model by the conservative

test should be taken as a warning concerning its use for testing special cases.

a text file containing a summary of the main results of the

analysis is generated.

3.2 Data Input in Excel File

The Excel file used for input to the program contains three

worksheets. The “READ ME” sheet contains information

on how to organize the data and how to specify the inputs.

The “Inputs” worksheet contains values that can be adjusted

by the user to request that the program analyze one or more

of TE-4, TE-2, or TE-1, to specify either G or χ2, to allow

parameters to be free or fixed, to request Monte Carlo simu-

lations, and to request bootstrapping analysis. The notation

in the program is a bit different from the notation used here

for the example of the Allais paradox: The notations 0 and

1 are used to denote first or second responses, respectively,

which in this example are choice of the “risky (R)” or “safe

(S)” alternatives. The notations, a_00, a_01, a_10, and a_11

in the program correspond to pRR′ , pRS′ , pSR′ , and pSS′ ,

respectively. To set up EU, fix the values of a_01 and a_10

to 0.

The “participant responses” worksheet contains the data:

response frequencies (counts) for the 16 possible response

patterns. The first column is the case number. The first

case of Example.xlsx contains the data of Table 2. Several

cases can be analyzed in the same computer run. Each line

represents a different case, which may represent aggregated

data for a group of participants (for gTET) or for an individual

(iTET).

The R-program is documented by many comments, state-

ments on a line following #. The section beginning with line

2330 is used to create the output of the program, and this

section should be easiest to modify by those familiar with

R. Comments include suggestions for revising this section to

access additional information generated by the program.

The example file, Example.xlsx, has been configured to

request only 100 samples to illustrate the program. Once

the program is running properly, the 100 on the “Inputs”

worksheet of Example.xlsx can be changed to a higher

value for better accuracy of Monte Carlo simulation and

bootstrapping. Sample results in the next section are based

on the setup in Example.xlsx, for the first case (the data in

Table 2), except using 10000 instead of 100.

3.3 Selected Results

Table 3 presents the parameter estimates and the index of fit

for six models to the data of Table 2, based on minimizing

χ
2 index of fit. The data, best-fit predictions, and parameter

estimates are found in the files named “restricted and unre-

stricted models. . . ”. The Example.xlsx file has been set up

so that the “restricted” model in each case is EU, in which

a_01 and a_10 are fixed to zero; i.e., pRS′ = pSR′ = 0; in the

“unrestricted” models (TE), all parameters are free.
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Table 3: Parameter estimates and index of fit of six models to the data of Table 2. TE-4, TE-2, and TE-1 are True and Error

models with 4, 2, and 1 error rate parameters. EU-4, EU-2, and EU-1 are their respective special cases in which violations of

EU are assumed to have zero probability. Entries shown in parentheses are either fixed or constrained.

Sample 2 Estimated Parameters of True and Error Model Fit

Model pRR′ pRS′ pSR′ pSS′ e e′ f f ′ χ
2 df

EU-4 0.33 (0) (0) 0.67 0.26 0.50 0.50 0.05 48.96 10

TE-4 0.02 0.46 0.05 0.48 0.00 0.00 0.33 0.13 8.68 8

EU-2 0.08 (0) (0) 0.92 0.50 0.12 (0.50) (0.12) 63.61 12

TE-2 0.06 0.65 0.03 0.26 0.13 0.12 (0.13) (0.12) 9.11 10

EU-1 0.00 (0) (0) 1.00 0.45 (0.45) (0.45) (0.45) 251.49 13

TE-1 0.06 0.65 0.03 0.26 0.13 (0.13) (0.13) (0.13) 9.39 11

Table 4: Best-fit predictions of EU-4 for data of Table 2,

minimizing χ2.

Responses on

Replicate 1

Response Pattern on Replicate 2

RR′ RS′ SR′ SS′

RR′ 4.8 5.6 1.8 2.5

RS′ 5.6 21.0 2.5 17.9

SR′ 1.8 2.5 0.7 1.4

SS′ 2.5 17.9 1.4 16.8

Table 3 shows that all three of the (unrestricted) TE models

fit acceptably, by conventional standards (p > .1), and that all

of the models in which EU has been imposed can be rejected

(p < .01), comparing the observed χ2 to the Chi-Square

distribution.

TE-4 does not fit much better than TE-2 or TE-1 (the

pairwise differences in fit are theoretically Chi-Square dis-

tributed with 2, 3, or 1 df, and all differences fall well below

the critical thresholds for significance), so there are no rea-

sons to reject TE-1 in favor of TE-2 or TE-4, but keep in

mind that both choice problems used here involve choices

between two similar, two-branch gambles. It might be that

in other research, TE-2 or TE-4 might be required for more

complex choice problems, or cases where one choice prob-

lem is “simpler” than the other.

Appendix A presents comparable results when the index

G is used instead of χ2; all of the main conclusions re-

main the same. Appendix B describes an Excel workbook,

TE_calcs_2_choices.xlsx, which also fits TE models,

and is included in the JDM Website with this article.

Table 5: Best-fit (min. χ2) predictions of TE-2 for data of

Table 2. Predictions of TE-4 are similar and slightly more

accurate.

Responses on

Replicate 1

Response Pattern on Replicate 2

RR′ RS′ SR′ SS′

RR′ 4.6 5.9 1.1 1.3

RS′ 5.9 40.9 1.3 8.9

SR′ 1.1 1.3 2.3 2.5

SS′ 1.3 8.9 2.5 17.3

3.4 Predictions Versus Data

To gain insight into the performance of a model, it is useful

to compare predictions against the empirical data. Tables 4

and 5 show the best-fit predictions of EU-4 and TE-2, which

can be compared to the data in Table 2 (The predictions

of TE-1, TE-2, and TE-4 were very similar to each other).

The most frequent response pattern in Table 2 is the RS′

RS′ response pattern, which has a frequency of 43. EU-4

predicts only 21 for the frequency of this RS′ RS′ response

pattern, whereas TE-1, TE-2, and TE-4 predict 40.9, 40.9,

and 41.5, respectively. Because this pattern can arise only

via combinations of errors in EU-4, EU-2, or EU-1, those

models under-predict its value and are forced to over-estimate

the frequencies of other patterns that involve the same errors

such as RS′ SS′ and SS′ RS′, which are also much better fit

by the TE models.

3.5 Independence Model

The assumption of response independence assumes that the

probability of each of the 16 response patterns is the product

of binary choice probabilities. A standard Chi-Square test of

this independence property is provided. The R-program by

Birnbaum (2012) performs other tests of iid properties (as-
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Table 6: Best-fit predictions of response independence for

data of Table 2 (Birnbaum, et al., 2017, Experiment 2, Sam-

ple 2). This property does not impose EU, nor does it imply

symmetry in the table.

Responses on

Replicate 1

Response Pattern on Replicate 2

RR′ RS′ SR′ SS′

RR′ 1.4 7.9 0.7 4.0

RS′ 5.7 32.2 2.9 16.3

SR′ 0.7 4.0 0.4 2.0

SS′ 2.9 16.3 1.5 8.3

sumed by random preference choice models); that program

should also be run on the data when assumptions of iid are

an issue. The TE models do not imply these independence

properties in either iTET or gTET, except in special cases

(Birnbaum, 2013): in iTET, independence follows when the

individual has only a single true preference pattern, and in

gTET, independence follows when all participants have the

same true preferences and error rates.

Best-fit predictions and index of fit of the response inde-

pendence model are included in the file, “predictions of inde-

pendence. . . ”. The Chi-Square test of independence χ2(11)

= 50.2 for the data of Table 2, which is significant. For com-

parison, TE-1 has the same number of free parameters and,

χ
2(11) = 9.19, ns. The best-fit predictions of independence

(Table 6) imply that the sum of the major diagonal of Table

2 (cases where people are perfectly consistent between repli-

cations) should have been only 42.3, whereas the observed

value of this sum is 67 in Table 2. By comparison, TE-1,

TE-2, and TE-4 predict 65.1, 65.2, or 65.2, so the TE models

give a better fit to the finding that people are more consistent

than allowed by response independence.

3.6 Monte Carlo Simulations

When the sample sizes are small, the theoretical Chi-Square

distribution may be only an approximation of the distribution

of the test statistics, χ2 or G. Monte Carlo methods can be

used to simulate these distributions for more accurate p-

values.

Figure 2 shows a histogram of 10,000 simulated test statis-

tics under the null hypothesis of TE-2, using the refit method.

The observed value of χ2(10) = 9.11 for the empirical data,

is shown as the vertical line in Figure 2, which falls well in-

side the distribution; therefore, TE-2 provides a statistically

plausible description of the data. According to the Chi-

Square distribution, the probability to exceed 9.11 is 0.52; in

the conservative and refit simulations, 87% and 46% simu-

lated statistics exceeded this value. All three TE models had

Figure 2: Histogram of Monte Carlo simulated χ2 values for

the data of Table 2, based on TE-2, using 10000 simulated

samples, using the re-fit method. The vertical line at 9.11

shows the empirical value for the original data.

acceptable fits by the Chi-Square distribution and by both

conservative and the refit simulation methods. All three EU

models can be rejected according to p-values from the three

methods; in no case did a simulated value of χ2 exceed the

value observed in the data via the refit method.

Figure 3 shows the simulated distribution of differences in

χ
2 between TE-4 and its special case, EU-4. In theory, this

distribution should be asymptotically Chi-Square distributed

with 2 degrees of freedom. For the empirical data (Table 3),

this difference is 48.96 − 8.68 = 40.28. By the Chi-Square

distribution, this value is significant. This conclusion is

confirmed by Monte Carlo simulations, shown in Figure 3:

not one of the 10,000 simulations exceeded the observed

value, shown as the vertical line in the figure. Therefore, one

can confidently reject EU-4 in favor of TE-4. Similar results

were obtained within each of the other two TE models: the

difference test rejects EU in any of the TE models.

3.7 Bootstrapping

The program uses bootstrapping to estimate 95% confidence

intervals for the parameters by drawing random samples of

the empirical data and refitting parameters in each sample.

The results are in the files, “bootstrapped confidence in-

tervals. . . ” To obtain bootstrapping results for the full TE

models, one must revise the setup in the Example.xlsx file to

let all parameters be free and to specify 10000 samples.

For the TE-2 model, the estimated value of pSR′ is 0.65,

with a 95% confidence interval from 0.53 to 0.76. Figure 4

shows the bootstrapped distribution for this parameter (pSR′)
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Figure 3: Histogram of simulated differences in χ2 between

EU-4 and TE-4, using 10000 simulations via the re-fit method.

None of the simulated samples yielded a value as great as

that observed in the empirical data, shown as the vertical line

at 40.28.

under TE-2. According to EU, pSR′ should be zero; however,

the bootstrapping results provide confidence that it exceeds

53%. If we accept the assumptions of the bootstrapping and

of TE-2, we would conclude with 99% confidence that more

than half of those tested violated EU with this SR′ pattern of

responses.

Efron (2012) has derived theoretical relationships between

bootstrapping distributions and Bayesian posterior distribu-

tions under particular non-informative priors and shown em-

pirical cases where there is good agreement between para-

metric bootstrapping and Bayesian posterior distributions

(given those priors).

A second set of data is also included in the Example.xlsx

file: data from Birnbaum (2007, Experiment 1, Series A)

for 200 participants who chose between S = ($1M, 0.11;

$2, 0.89) and R = ($2M, 0.10; $2, 0.90), and who chose

between S′ = ($1M, 0.10; $1M, 0.01; $2, 0.89) and R′ =

($2M, 0.10; $2, 0.01; $2, 0.89). Note that S′ = S and

R′ = R, except for coalescing (if we combine branches of

the gamble leading to the same consequences by adding

probabilities, the choice problems are equivalent) . These

data had previously been analyzed by Birnbaum (2008, p.

483) using TE-1, with the conclusion that neither CPT nor

EU can account for the results. Reanalysis via TEMAP2.R

shows that the main conclusions do not change when TE-2 or

TE-4 are fit to the data; namely, we can reject CPT because it

implies that people should make the same responses in both

Figure 4: Bootstrapped density function for the parameter,

pRS′ based on TE-2, estimated from 10,000 samples from

the data of Table 2.

choice problems but they apparently do not, even allowing

for 4 error terms. Therefore, the cases against CPT and EU

have been made stronger by the reanalysis.

4 Discussion

In order to test whether two conditions are behaviorally

equivalent one must do a better experiment and a more de-

tailed level of statistical analysis than has been assumed in

the past. One must collect replications of each choice prob-

lem and analyze response patterns, rather than just binary

choice proportions. In return for the extra work of collecting

replications of the data, analysis via the TE models provides

more information than is available from standard practices

used in the past. One can estimate in TE models the prob-

ability distribution of true response patterns in a mixture,

and separate variability in the data into components due to

variation of true preference patterns and components due to

random error (as in Table 3).

In some research, error theory is simply assumed and used

to test other hypotheses. For example, with an ANOVA, one

might assumed that errors are independent, normally dis-

tributed, and have other properties that imply asymptotic

distributions of certain test statistics as the sample size ap-

proaches infinity. It is then hoped that the asymptotic tests

are “robust” with respect to possible violations of indepen-

dence assumptions or to small samples. The TE models can

be viewed as analogous to ANOVA: they are models that use

replications to estimate error in order to test other substantive

ideas such as whether or not two experimental conditions are
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equivalent. However, because these models are testable the-

ories of human error, we recommend that they be tested as

empirical descriptions even when used as a statistical device

for investigating another issue.

In standard statistical analysis, it is often hoped that statis-

tical assumptions concerning error do not distort or hide the

substantive, descriptive conclusions. But as Wilcox (2008)

and others have shown, error assumptions used in decision

making research can change not only statistical inferences

but also the descriptive, substantive conclusions about what

has been found in a study. For example, assuming that error

rates are equal (as in TE-1) would lead one to conclude that

Case C of Table 1 is evidence against EU, but if errors are

not equal (as in TE-2), EU might be acceptable. In order to

distinguish whether or not Case C in Table 1 conforms to EU

or rejects EU requires one to be able to be able to estimate

the error terms, which is estimated from replications using

the TE models.

Some stochastic models of choice assume an underlying

continuum, in which the probability of an error is inversely

related to distance on that continuum. Such models assume

or imply transitivity, and thus are inappropriate for testing

transitivity when it is treated as an empirical theory. In

contrast, TE models need not assume or imply transitivity,

so they provide a neutral framework for testing that property

as a special case (Birnbaum, et al., 2016). We think that

TE-4 provides the least “interference” of an error model for

testing substantive theories and yet still provides a method

that is capable of rejecting such theories when they fail.

In the application of TE models, the error model and the

substantive model are tested separately, in sequence: One

tests the TE model itself and estimate its parameters; the

substantive model can then be tested as a special case of

that model, which is adopted as the statistical framework. In

Table 3, we see that all of the TE models provide acceptable

fits to the data, but when we try to force their parameters

to satisfy the implications EU, their special case models did

not fit. The parameters of the TE model indicated that in the

case of the data reviewed here, the majority of participants

showed a particular pattern of violation of EU (Figure 4).

It is useful to contrast the features and approach used in

TEMAP2 with that of QTEST (Regenwetter, et al., 2014),

a program designed to analyze binary choice data. For the

Allais paradox, the QTEST approach takes as input only

two binary choice proportions and the sample sizes used

to calculate them. Based on the assumption of response

independence, QTEST attempts to test either mixture mod-

els or models in which error rates are assumed arbitrarily.

Because the input data are just two binary choice propor-

tions, it is not possible to reject EU except in extreme cases

or by assumption of low error rates. Even when rejection

is achieved in QTEST, it is not possible to disambiguate

the incidence of violation from that of error. Furthermore,

QTEST can reject EU in cases that a deeper analysis would

reveal are compatible with EU, because it does not allow

EU the flexibility of errors that differ for different choice

problems or for different true preference states. In contrast,

the TEMAP2 program takes as input the frequencies of the

16 response patterns; it facilitates tests of the TE model, of

response independence, tests of substantive theory (e.g., EU)

as a special case, and estimation of the distribution of true

preference patterns. When a model accurately describes the

16 response patterns, it also reproduces the binary choice

proportions.

The R program included as a supplement to this article

allows one test the error model and substantive special cases

for the situation of 2 Choice problems with 2 Replications.

The program can be applied for the case of iTET, where each

participant receives the choice problems and replications in

n sessions (trial blocks), or it can be applied in the case of

gTET, where n participants each serve in one session. An R

program for TE analysis of 3-Choice properties (useful for

analyzing properties such as transitivity (Birnbaum & Bahra,

2012b; Birnbaum & Diecidue, 2015), gain-loss separabiity

(Birnbaum & Bahra, 2007), and double cancellation, for ex-

amples, has already been published as an online supplement

to Birnbaum, et al. (2016). These open-source, R programs

help address the issues of small samples by means of Monte

Carlo simulations and bootstrapping of parameter estimation

within the models.
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Table A.1. Parameter estimates and index of fit of six models to the data of Table 2, as in Table 3, based on minimization of

the G index. As in Table 3, entries shown in parentheses are either fixed or constrained.

Sample 2 Estimated Parameters of True and Error Model Fit

Model pRR′ pRS′ pSR′ pSS′ e e′ f f ′ G df

EU-4 0.34 (0) (0) 0.66 0.19 0.50 0.50 0.04 48.14 10

TE-4 0.19 0.34 0.15 0.32 0.02 0.50 0.31 0.00 13.19 8

EU-2 0.09 (0) (0) 0.91 0.50 0.10 (0.50) (0.10) 62.89 12

TE-2 0.06 0.66 0.03 0.25 0.13 0.10 (0.13) (0.10) 13.21 10

EU-1 0.09 (0) (0) 0.91 0.40 (0.40) (0.40) (0.40) 163.40 13

TE-1 0.06 0.66 0.03 0.25 0.11 (0.11) (0.11) (0.11) 13.94 11

Appendix A

Table A.1 shows the best-fit parameters and index of fit for

the same six models in Table 3, when the G index of fit

was implemented in TEMAP2.R instead of the χ2 index.

Although the exact values differ slightly between Tables 3

and A.1, the parameter estimates are quite similar and the

main conclusions remain the same: the TE models are all

acceptable, the EU models can all be rejected, and the differ-

ence tests between each TE model and EU special case are

significant by the same standards. Although these methods

(χ2 and G) give similar results in many cases, including this

one, there may be cases where one or the other method might

be preferred (Berkson, 1956). With small samples, such as

one would anticipate in iTET, the G index is considered the

better choice.

Appendix B

An Excel workbook, TE_calcs_2_choices.xlsx, which fits

the TE models using Excel’s solver, is also included in the

JDM Website accompanying this paper. A “Read me” work-

sheet is included that explains how to use this workbook to

fit TE-4, TE-2, or TE-1, as well as the EU special cases.

The workbook also performs the standard Chi-Square test

of independence on the data. It does not implement all the

features of TEMAP2.R, such as Monte Carlo simulations

or bootstrapping. It can be convenient, however, when per-

forming “what if” exercises, such as constructing hypotheti-

cal examples or exploring effects of hypothetical changes in

values.
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