
Network Science 10 (4): 361–380, 2022
doi:10.1017/nws.2022.32

R E S E A R CH A RT I C L E

Efficiently generating geometric inhomogeneous and
hyperbolic random graphs
Thomas Bläsius1, Tobias Friedrich2, Maximilian Katzmann2, Ulrich Meyer3, Manuel Penschuck3 and
Christopher Weyand1∗

1Karlsruhe Institute of Technology, Karlsruhe, Germany, 2Hasso Plattner Institute, Potsdam, Germany, and 3Goethe
University, Frankfurt, Germany
∗Corresponding author. Email: christopher.weyand@kit.edu

Action Editor: Ulrik Brandes

Abstract
Hyperbolic random graphs (HRGs) and geometric inhomogeneous random graphs (GIRGs) are two simi-
lar generative network models that were designed to resemble complex real-world networks. In particular,
they have a power-law degree distribution with controllable exponent β and high clustering that can be
controlled via the temperature T.
We present the first implementation of an efficient GIRG generator running in expected linear time.
Besides varying temperatures, it also supports underlying geometries of higher dimensions. It is capable of
generating graphs with tenmillion edges in under a second on commodity hardware. The algorithm can be
adapted to HRGs. Our resulting implementation is the fastest sequential HRG generator, despite the fact
that we support non-zero temperatures. Though non-zero temperatures are crucial for many applications,
most existing generators are restricted to T = 0. We also support parallelization, although this is not the
focus of this paper. Moreover, we note that our generators draw from the correct probability distribution,
that is, they involve no approximation.
Besides the generators themselves, we also provide an efficient algorithm to determine the non-trivial
dependency between the average degree of the resulting graph and the input parameters of the GIRG
model. This makes it possible to specify the desired expected average degree as input.
Moreover, we investigate the differences between HRGs and GIRGs, shedding new light on the nature of
the relation between the two models. Although HRGs represent, in a certain sense, a special case of the
GIRGmodel, we find that a straightforward inclusion does not hold in practice. However, the difference is
negligible for most use cases.

Keywords: hyperbolic random graphs; geometric inhomogeneous random graph

1. Introduction
Network models play an important role in different scientific fields (Chakrabarti & Faloutsos,
2006). From the perspective of network science, models can be used to explain observed behavior
in the real world. To mention one example, Watts and Strogatz (1998) observed that few random
long-range connections suffice to guarantee a small diameter. This explains why many real-world
networks exhibit the small-world property despite heavily favoring local over long-range connec-
tions. From the perspective of computer science, and specifically algorithmics, realistic random
networks can provide input instances for graph algorithms. This facilitates theoretical approaches
(e.g., average-case analysis), as well as extensive empirical evaluations by providing an abundance
of benchmark instances, solving the pervasive scarcity of real-world instances.

C© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32
https://orcid.org/0000-0003-0354-6650
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/nws.2022.32

362 T. Bläsius et al.

There are some crucial features that make a network model useful. The generated instances
have to resemble real-world networks. The model should be as simple and natural as possible
to facilitate theoretical analysis and to prevent untypical artifacts. And it should be possible to
efficiently draw networks from the model. This is particularly important for the empirical analysis
of model properties and for generating benchmark instances.

A model that has proven itself useful in recent years is the hyperbolic random graph (HRG)
model (Krioukov et al., 2010). HRGs are generated by drawing vertex positions uniformly at ran-
dom from a disk in the hyperbolic plane. Two vertices are joined by an edge if and only if their
distance lies below a certain threshold, see Section 2.2. HRGs resemble real-world networks with
respect to crucial properties. Most notable are the power-law degree distribution (Gugelmann et al.,
2012) (i.e., the number of vertices of degree k is roughly proportional to k−β with β ∈ (2, 3)),
the high clustering coefficient (Gugelmann et al., 2012) (i.e., two vertices are more likely to be
connected if they have a common neighbor), and the small diameter (Friedrich & Krohmer,
2018; Müller & Staps, 2017). Moreover, HRGs are accessible for theoretical analysis (see, e.g.,
Gugelmann et al., 2012; Friedrich & Krohmer, 2018; Müller & Staps, 2017; Bläsius et al., 2018a).
Finally, there is a multitude of efficient generators with different emphases (Aldecoa et al., 2015;
von Looz et al., 2015; von Looz & Meyerhenke, 2016; von Looz et al., 2016; Penschuck, 2017;
Funke et al., 2018, 2019), see Section 1.2 for a discussion.

Closely related to HRGs is the geometric inhomogeneous random graph (GIRG) model
(Bringmann et al., 2019). Here, every vertex has a position on the d-dimensional torus and a
weight following a power law. Two vertices are then connected if and only if their distance on the
torus is smaller than a threshold based on the product of their weights. When using positions on
the circle (d = 1), GIRGs approximate HRGs in the following sense: the processes of generating a
HRG and a GIRG can be coupled such that it suffices to decrease and increase the average degree
of the GIRG by only a constant factor to obtain a subgraph and a supergraph of the corresponding
HRG, respectively. Compared to HRGs, GIRGs are potentially easier to analyze, generalize nicely
to higher dimensions, and the weights allow to directly adjust the degree distribution.

Above, we described the idealized threshold variants of the models, where two vertices are
connected if and only if their distance is small enough. Arguably more realistic are the binomial
variants, which allow longer edges and shorter non-edges with a small probability. This is achieved
with an additional parameter T, called temperature. For T → 0, the binomial and threshold vari-
ants coincide. Many publications focus on the threshold case, as it is typically simpler. This is
particularly true for generation algorithms: in the threshold variants, one can ignore all vertex
pairs with sufficient distance, which can be done using geometric data structures. In the binomial
case, any pair of vertices could be adjacent, and the search space cannot be reduced as easily. For
practical purposes, however, a non-zero temperature is crucial as real-world networks are gener-
ally assumed to have positive temperature allowing so-called weak ties (Granovetter, 1973), that is,
edges between nodes that have no strong reason to be connected and where the endpoints do not
havemany common neighbors. Moreover, from an algorithmic perspective, the threshold variants
typically produce particularly well-behaved instances, while a higher temperature leads to more
difficult problem inputs. Thus, to obtain benchmark instances of varying difficulty, generators for
the binomial variants are key.

1.1 Contribution and outline
Based on the algorithm by Bringmann et al. (2019), we provide an efficient and flexible GIRG
generator. It includes the binomial case and allows higher dimensions. Its expected running time
is linear in the graph size. To the best of our knowledge, this is the first efficient generator for
the GIRG model. Moreover, we adapt the algorithm to the HRG model, including the binomial
variant. Compared to existingHRG generators (most of which only support the threshold variant),
our implementation is the fastest sequential HRG generator.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 363

A refactoring of the original GIRG algorithm (Bringmann et al., 2019) allows us to parallelize
our generators. They do not use multiple processors as effectively as the threshold-HRG generator
by Penschuck (2017), which was specifically tailored toward parallelism. However, in a setting
realistic for commodity hardware (8 cores, 16 threads), we still achieve comparable run times.

Our generators come as an open-source C++ library1 with documentation, command-line
interface, unit tests, and OpenMP (Board, 2018) parallelization using shared memory.

Besides the efficient generators, we have three secondary contributions. (1) We provide a com-
prehensible description of the sampling algorithm that should make it easy to understand how
the algorithm works, why it works, and how it can be implemented. Although the core idea of the
algorithm is not new (Bringmann et al., 2019), the previous description is somewhat technical. (2)
The expected average degree can be controlled via an input parameter. However, the dependence
of the average degree on the actual parameter is non-trivial. In fact, given the average degree,
there is no closed formula to determine the parameter. We provide a linear-time algorithm to
estimate it. (3) We investigate how GIRGs and HRGs actually relate to each other by measuring
howmuch the average degree of the GIRG has to be decreased and increased to obtain a subgraph
and supergraph of the HRG, respectively. We find that a GIRG with only slightly lower average
degree already yields a subgraph. In fact, our experiments indicate that the gap between average
degrees vanishes for growing n, that is, the GIRG subgraph is lacking only a sublinear fraction of
edges. On the other hand, one has to increase the average degree significantly to obtain a GIRG
supergraph.

In the following, we first discuss our main contribution in the context of existing HRG gen-
erators. In Section 2, we formally define the GIRG and HRG models. Afterwards we describe
the sampling algorithm in Section 3. In Section 4, we discuss implementation details, including
the parameter estimation for the average degree (Section 4.3) as well as multiple performance
improvements. Section 5 contains our experiments: we investigate the scaling behavior of our gen-
erator in Section 5.1, compare our HRG generator to existing ones in Section 5.2, and compare
GIRGs to HRGs in Section 5.3.

1.2 Comparison with existing generators
Concerning HRGs, most previous algorithms only support the threshold case, see Table 1.
A quadtree data structure was used to achieve the first subquadratic threshold generator
(QuadTree) (von Looz et al., 2015). It was later improved leading to the algorithm currently imple-
mented in NetworKit (NkGen) (von Looz et al., 2016). A later re-implementation by Penschuck
(2017) improves it by about a factor of 2 (NkOpt). However, the main contribution of Penschuck
(2017) was a new generator that features sublinear memory and near optimal parallelization
(HyperGen). Up to date, HyperGen was the fastest threshold-HRG generator on a single pro-
cessor. Our generator, HyperGIRGs, improves by a factor of 1.3–2 (depending on the parameters)
but scales worse for more processors. Finally, Funke et al. (2018) provide a generator designed for
a distributed setting (RHG) and later combine it with the streaming technique of HyperGen to
generate enormous instances (sRHG) (Funke et al., 2019).

The published generators for the binomial model are the trivial quadratic algorithm (Aldecoa
et al., 2015) and an O((n3/2 +m) log n) algorithm (von Looz & Meyerhenke, 2016) based on the
above-mentioned quadtree data structure (von Looz et al., 2015). The latter is part of NetworkKit;
we call it NkQuad. In his thesis, v. Looz adapted NkGen for the binomial model resulting in
the NkGenBin algorithm (Looz, 2019) Moreover, the code for a hyperbolic embedding algorithm
(Bläsius et al., 2018b) includes a HRG generator implemented by Bringmann based on the GIRG
algorithm (Bringmann et al., 2019); we call it Embedder in the following. Embedder has been
widely ignored as a high performance generator. This is because it was somewhat hidden, and
it is heavily outperformed by other threshold generators. Experiments show that our generator
HyperGIRGs is much faster than NkQuad, which is to be expected considering the asymptotic

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

364 T. Bläsius et al.

Table 1. Existing hyperbolic random graph generators. The columns show the names used through-
out the paper; the authors and reference (journal if available); whether the generator supports the
binomialmodel; and the asymptotic running time. The time bounds hold in theworst case (wc), with
high probability (whp), in expectation (exp), or empirically (emp)

Name Authors Binom. Running time

Pairwise Aldecoa et al. (2015) � �(n2) (wc)
.. .

QuadTree von Looz et al. (2015) O((n3/2 +m) log n) (wc)
.. .

NkQuad von Looz and Meyerhenke (2016) � O((n3/2 +m) log n) (wc)
.. .

NkGen, NkOpt von Looz et al. (2016) O(n log n+m) (emp)
.. .

Embedder Bläsius et al. (2018) � �(n+m) (exp)
.. .

HyperGen Penschuck (2017) O(n log log n+m) (whp)
.. .

RHG Funke et al. (2018) �(n+m) (exp)
.. .

sRHG Funke et al. (2019) �(n+m) (exp)
.. .

NkGenBin Looz (2019) � O(n log2 n+m) (exp)
.. .

HyperGIRGs (ours) Bläsius et al. (2019) � �(n+m) (exp)

running time. Moreover, on a single processor, we outperform Embedder by an order of mag-
nitude for T = 0 and by a factor of 4 for higher temperatures. As Embedder does not support
parallelization, this speedup increases for multiple processors. Finally, we are two to three times
faster than NkGenBin, which was shown to perform slightly better than Embedder for T > 0
(Looz, 2019).

We are not aware of a previous GIRG generator.

2. Models
2.1 Geometric inhomogeneous random graphs
GIRGs (Bringmann et al., 2019) combine elements from random geometric graphs (Gilbert, 1961)
and Chung-Lu graphs (Chung & Lu, 2002a, 2002b). Let V = {1, . . . , n} be a set of vertices with
positive weights w1, . . . ,wn following a power law with exponent β > 2. LetW be their sum. Let
Td be the d-dimensional torus for a fixed dimension d ≥ 1 represented by the d-dimensional
cube [0, 1]d where opposite boundaries are identified. For each vertex v ∈V , let xv ∈Td be a
point drawn uniformly and independently at random. For x, y ∈Td let ||x− y|| denote the L∞-
norm on the torus, that is, ||x− y|| =max1≤i≤d min{|xi − yi|, 1− |xi − yi|}. Two vertices u 	= v
are independently connected with probability puv. For a positive temperature 0< T < 1,

puv =min

{
1, c

(
wuwv/W

||xu − xv||d
)1/T

}
(1)

while for T = 0 a threshold variant of the model is obtained with

puv =
{
1 if ||xu − xv|| ≤ c(wuwv/W)1/d,
0 else.

The constant c> 0 controls the expected average degree. We note that the above formulation
slightly deviates from the original definition, see Section 2.3 for more details.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 365

2.2 Hyperbolic random graphs
HRGs (Krioukov et al., 2010) are generated by sampling random positions in the hyperbolic plane
and connecting vertices that are close. More formally, let V = {1, . . . , n} be a set of vertices. Let
α > 1/2 and C ∈R be two constants, where α controls the power-law degree distribution with
exponent β = 2α+1> 2, andC determines the average degree d̄. For each vertex v ∈V , we sample
a random point pv = (rv, θv) in the hyperbolic plane, using polar coordinates. Its angular coor-
dinate θv is chosen uniformly from [0, 2π) while its radius 0≤ rv < R with R= 2 log (n)+ C is
drawn according to the density function

f (r)= α sinh (αr)
cosh (αR)− 1

. (2)

In the threshold case of HRGs, two vertices u 	= v are connected if and only if their distance is
below R. The hyperbolic distance d(pu, pv) is defined as

cosh (d(pu, pv))= cosh (ru) cosh (rv)− sinh (ru) sinh (rv) cos (θu − θv), (3)

where the angle difference θu − θv is modulo π .
The binomial variant adds a temperature T ∈ [0, 1] to control the clustering, with lower tem-

peratures leading to higher clustering. Two nodes u, v ∈V are then connected with probability
pT(d(pu, pv)) where

pT(x)= 1
e(x−R)/(2T) + 1

. (4)

For T → 0, the two definitions (threshold and binomial) coincide.

2.3 Comparison of GIRGs and HRGs
Bringmann et al. (2019) show that the HRG model can be seen as a special case of the GIRG
model in the following sense. Let dHRG be the average degree of a HRG. Then there exist GIRGs
with average degree dGIRG and DGIRG with dGIRG ≤ dHRG ≤DGIRG such that they are sub- and
supergraphs of the HRG, respectively. Moreover, dGIRG and DGIRG differ only by a constant fac-
tor. Formally, this is achieved by using the big-O notation instead of a single constant c for the
connection probability. We call this the generic GIRG framework. It basically captures any specific
model whose connection probabilities differ from Equation (1) by only a constant factor. From a
theoretical point of view, this is useful as proving something for the generic GIRG framework also
proves it for any manifestation, including HRGs.

To see how HRGs fit into the generic GIRG framework, consider the following mapping
(Bringmann et al., 2019). Radii are mapped to weights wv = e(R−rv)/2, and angles are scaled to
fit on a 1-dimensional torus xv = θv/(2π). One can then see that the hyperbolic connection prob-
ability pT(d) under the provided mapping deviates from Equation (1) by only a constant. Thus, c
in Equation (1) can be chosen such that all GIRG probabilities are larger or smaller than the cor-
responding HRG probabilities, leading to the two average degrees dGIRG and DGIRG mentioned
above. Bringmann et al. (2019) note that the two constants, which they hide in the big-O notation,
do not have to match. They leave it open if they match, converge asymptotically, or how large the
interval between them is in practice. We investigate this empirically in Section 5.3.

3. Sampling algorithm
As mentioned in the introduction, the core of our sampling algorithm is based on the algorithm
by Bringmann et al. (2019). In the following, we first give a description of the core ideas and then
work out the details that lead to an efficient implementation.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

366 T. Bläsius et al.

(a) (b) (c)

Figure 1. (a, b) The grid used by weight bucket pairs with a connection probability threshold between 2−3 and 2−4 in two
dimensions. (a) Each pair of colored cells represent neighbors. Note that the ground space is a torus and a cell is also a
neighbor to itself. (b) The eight gray cells represent multiple distant cell pairs, which are replaced by one pair consisting of
the red outlined parent cell pair. (c) Linearization of the cells on level 1 (left) and 2 (right) for d= 2.

To explain the idea, we make two temporary assumptions and relax them in Sections 3.1 and
3.2, respectively. For now, assume that all weights are equal and consider only the threshold vari-
ant T = 0. The task is to find all vertex pairs that form an edge, that is, their distance is below the
threshold c(wuwv/W)1/d. Since all weights are equal, the threshold in this restricted scenario is
the same for all vertex pairs. One approach to quickly identify adjacent vertices is to partition the
ground space into a grid of cells. The size of the cells should be chosen, such that (1) the cells are as
small as possible and (2) the diameter of cells is larger than the threshold c(wuwv/W)1/d. The latter
implies that only vertices in neighboring cells can be connected, thus narrowing down the search
space. The former ensures that neighboring cells contain as few vertex pairs as possible reduc-
ing the number of comparisons. Figure 1a shows an example of such a grid for a 2-dimensional
ground space.

3.1 Inhomogeneous weights
Assume that we have vertices with two different weights w1,w2, rather than one. As before, the
cells should still be as small as possible while having a diameter larger than the connection thresh-
old. However, there are three different thresholds now, one for each combination of weights. To
resolve this, we can group the vertices by weight and use three differently sized grids to find the
edges between them.

As GIRGs require not only two but many weights, considering one grid for every weight pair is
infeasible. The solution is to discretize the weights by grouping ranges of weights intoweight buck-
ets. When searching for edges between vertices in two weight buckets, the pair of largest weights
in these buckets provides the threshold for the cell diameter. This choice of the cell diameter satis-
fies property (2). Property (1) is violated only slightly, if the weight range within the bucket is not
too large. Thus, each combination of two weight buckets uses a grid of cells, whose granularity is
based on the maximum weight in the respective buckets.

As a tradeoff, we choose
log2 n� many buckets which yields a sublinear number of grids.
Moreover, the largest and smallest weights in a bucket are at most a factor of two apart. Thus,
the diameter of a cell is too large by at most a factor of four.

With this approach, a single vertex has to appear in grids of different granularity. To do this in
an efficient manner, we recursively divide the space into ever smaller grid cells, leading to a hierar-
chical subdivision of the space. This hierarchy is naturally described by a tree. For a 2-dimensional
ground space, each node has four children, which is why we call it quadtree. Note that each level
of the quadtree represents a grid of different granularity. Moreover, the side length of a grid cell
on level � is 2−�. For a pair (i, j) of weight buckets, we then choose the level that fits best for the
corresponding weights, that is, the deepest level such that the diameter of each grid cell is above

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 367

the connection threshold for the largest weights in bucket i and j, respectively. We call this level
the comparison level, denoted by CL(i, j). It suffices to insert vertices of a bucket into the deepest
level among all its comparison levels. This level is called the insertion level and we denote it by
I(i). In Section 3.4, we discuss in detail how to efficiently access all vertices in a given grid cell
belonging to a given weight bucket.

3.2 Binomial variant of the model
For T > 0, neighboring cell pairs are still easy to handle: a constant fraction of vertex pairs will
have an edge and one can sample them by explicitly checking every pair. For distant cell pairs
and a fixed pair of weight buckets, the distance between the cells yields an upper bound on the
connection probability of included vertices, see Equation (1). The probability bound depends on
both, the weight buckets and the cell pair distance, using the maximum weight within the buckets
and the minimum distance between points in the cells. We note that the individual connection
probabilities are only a constant factor smaller than the upper bound.

Knowing this, we can use geometric jumps to skip most vertex pairs (Ahrens & Dieter, 1985).
The approach works as follows. Assume that we want to create an edge with probability p for each
vertex pair. For this process, we define the random variable X to be the number of vertex pairs we
see until we add the next edge. Then X follows a geometric distribution. Thus, instead of throwing
a coin for each vertex pair, we can do a single experiment that samples X from the geometric
distribution and then skip X vertex pairs ahead. Since not all vertex pairs reach the upper bound
p, we accept encountered pairs with probability puv/p to get correct results.

Although distant cell pairs are handled efficiently, their number is still quadratic, most of which
yield no edges. To circumvent this problem, the sampling algorithm, yet again, uses a quadtree.
In the quadratic set of cell pairs to compare for one weight bucket pair, non-neighboring cells are
grouped together along the quadtree hierarchy. They are replaced by their parents as shown in
Figure 1b until their parents become neighbors.

In conclusion, for each pair of weight buckets (i, j) the following two types of cell pairs have to
be processed: any two neighboring cell pairs on the comparison level CL(i, j) and any distant cell
pair with level larger or equal CL(i, j) that has neighboring parents. The resulting set of distant
and neighboring cell pairs for a fixed bucket pair partitionsTd ×Td.

3.3 Efficiently iterating over cell pairs
The previous description sketches the algorithm as originally published. Here, we propose a
refactoring that greatly simplifies the implementation and enables parallelization. We attribute
a significant amount of HyperGIRGs’ speedup over Embedder to this change.

Instead of first iterating over all bucket pairs and then over all corresponding cell pairs, we
reverse this order. This removes the need to repeatedly determine the cell pairs to process for a
given bucket pair. Instead it suffices to find the bucket pairs that process a given cell pair. This only
depends on the level of the two cells and their type (neighboring or distant). Inverting themapping
from bucket pairs to cell pairs in the previous section yields the following. A neighboring cell pair
on level � is processed for bucket pairs with a comparison level of exactly �. A distant cell pair
on level � (with neighboring parents) is processed for bucket pairs with a comparison level larger
than or equal to �. Thus, for each level of the quadtree we must enumerate all neighboring cell
pairs, as well as distant cell pairs with neighboring parents. Algorithm 1 recursively enumerates
exactly these cell pairs.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

368 T. Bläsius et al.

Algorithm 1: Sample GIRG by Recursive Iteration of Cell Pairs

3.4 Efficient access to vertices by bucket and cell
A crucial part of the algorithm is to quickly access the set of vertices restricted to a weight bucket i
and a cell A, which we denote by VA

i . To this end, we linearize the cells of each level as illustrated
in Figure 1c. This linearization is called Morton code (Morton, 1966) or z-order curve (Orenstein
& Merrett, 1984). It has the nice properties that (1) for each cell in level �, its descendants in level
�′ > � in the quadtree appear consecutively and (2) it is easy to convert between a cells position in
the linear order and its d-dimensional coordinates (see Section 4.2).

We sort the vertices of a fixed weight bucket i by the Morton code of their containing cell on
the insertion level I(i), using arbitrary tie-breaking for vertices in the same cell. This has the effect
that for any cell A with level(A)≤ I(i), the vertices of VA

i appear consecutive. Thus, to efficiently
enumerate them, it suffices to know for each cell A the index of the first vertex in VA

i . This can be
precomputed using prefix sums leading to the following lemma.

Lemma 1. After linear preprocessing, for all cells A and weight buckets i with level(A)≤ I(i), vertices
in the set VA

i can be enumerated inO(|VA
i |).

Proof. As mentioned above, we have to sort the vertices Vi of each weight bucket i according to
the index (Morton code) of the containing cell. Clearly, the d-dimensional coordinates of the cell
containing a given vertex are obtained in constant time by rounding. From this one can obtain
the index in constant time (also see Section 4.2). This can be done using, for example, bucket sort
with respect to this index to sort the vertices. In the following, we refer to this sorted array withVi.

Besides these sorted arrays Vi of vertices, one for each weight bucket i, we store for each cell
C at level I(i) the number of vertices preceding the vertices in cell C. Note that this is simply the
prefix sum of the number of vertices in all cells that come before cell C. Denote this prefix sum of
cell C with PC.

Now let i be a weight bucket and let A be a cell identifying the requested set of vertices VA
i

(with level(A)≤ I(i)). Let C1, . . . , Cj be the descendants of cell A at level I(i), appearing in this
order according to the Morton code. Recall that the vertices in C1, . . . , Cj appear consecutive in
the sorted array Vi. Thus, VA

i is given by the range [PC1 , . . . , PCj+1) in Vi.
In terms of running time, each weight bucket requiresO(|Vi| + 2d·I(i)) time for bucket sort and

O(2d·I(i)) time for the prefix sums, where 2d·I(i) is the number of cells in the insertion level I(i).
Over all weight buckets, the term |Vi| sums up to |V| and Bringmann et al. (2019) show that the
same holds for 2d·I(i).

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 369

3.5 Adapting the algorithm to HRGs
One possibility to generate HRGs with this algorithm would be to convert hyperbolic points to
GIRG coordinates according to Section 2.3 and use the algorithm as is. However, the generic
GIRG framework captures HRGs only up to constant factor deviations in connection probabili-
ties. In fact, we find that using only one scaling constant as in Equation (1) is insufficient to exactly
represent the corresponding HRG probabilities (see Section 5.3).

To generate exact HRGs, we adapt the algorithm to work with hyperbolic data in the first place,
as was done in Bläsius et al. (2018b). Concretely, we sample and store only hyperbolic coordinates
instead ofmapping them toGIRG data, use the hyperbolic distance function to determine distance
between vertices and cells, control the expected average degree with an estimate for the radius
R of the hyperbolic disc, use the exact hyperbolic connection probability pT , and trivially find
the comparison and insertion levels instead of using the closed form for canonical GIRGs. The
resulting implementation is called HyperGIRGs.

4. Implementation details
The description in the previous section is an idealized version of the algorithm. For an actual
implementation, there are some gaps to fill in. Omitting many minor tweaks, we want to mention
implementation details and optimizations that are crucial to achieve a good practical run time in
the following.

4.1 Avoiding double counting buckets, cells, and vertices
The algorithm as described in Section 3 iterates over pairs of buckets, cells, and vertices. All three
entities need to be handled correctly to avoid visiting vertex or cell pairs multiple times. Consider
the cell pairs (A, B) and (B,A) as well as two bucket pairs (i, j) and (j, i) that process them. When
the bucket pair (i, j) processes (A, B) it samples edges between VA

i and VB
j while the bucket pair

(j, i) processes (B,A) to sample edges betweenVB
j andVA

i . Meaning these edges are sampled twice,
once in each direction. Since we want undirected edges this introduces double counting. To solve
this, one can restrict the algorithm to cell pairs A≤ B (or to bucket pairs i≤ j). In any case, bucket
pairs (i, i) require special treatment for cell pairs of the form (A,A). Then, only edges between
vertices u< v should be checked, because this call samples edges within a set of vertices instead of
between two disjoined vertex sets. If self-loops are desired, the constraint can be relaxed to u≤ v.

4.2 Efficiently encoding and decoding Morton codes
Recall from Section 3.4 that we linearize the d-dimensional grid of cells using Morton code. As
vertex positions are given as d-dimensional coordinates, we have to convert the coordinates to
Morton codes (i.e., the index in the linearization) and vice versa. This is done by bitwise interleav-
ing of the coordinates. For example, the 2-dimensional Morton code of the four-bit coordinates
a= a3a2a1a0 and b= b3b2b1b0 is a3b3a2b2a1b1a0b0.

Implementation wise, the encoding approaches are as follows.

FOR, FOR OPT. Set each bit of the result with shifts and bitwise operations (FOR). Since
we know the level of a cell, we know the number of relevant bits in each coordinate.
Considering only relevant bits improves performance significantly (FOR OPT).
MASKS. For details on this method, we refer to the open-source library libmorton (Baert,
2018) and the authors related blog posts.2

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

370 T. Bläsius et al.

Figure 2. Performance of Morton code generation in dimensions 2–5 on an Intel processor. Input coordinates are limited to

32/d� bits each, because the result is saved as a 32 bit integer.

Figure 3. Performance of Morton code generation in dimensions 2–5 on an AMD processor. Input coordinates are limited to

32/d� bits each, because the result is saved as a 32 bit integer.

LUT. A lookup table computed at compile time3 can be used. The input is divided into
chunks; a precomputed result for each chunk is obtained and shifted into place.
BMI2. The Parallel Bits Deposit/Extract assembler instructions from Intels Bit
Manipulation Instruction Set 2 (Intel, 2019) provide a solution with one assembler instruc-
tion per input coordinate. BMI2 is available on Intel CPUs since 2013 and supported by
recent AMD CPUs (Zen).

All approaches except LUT support a complementary decoding operation. We measured the
approaches, excluding LUT, on an Intel i7-8550U processor (see Figure 2) and an AMD Ryzen7-
2700X (see Figure 3). On Intel, BMI2 is consistently the fastest and at least an order of magnitude
faster than FOR. Surprisingly, FOROPT is not monotone in the number of bits per coordinate for
dimensions below 5. Inspection of the generated assembly4 reveals that the compiler employed
SIMD instructions. On AMD, BMI2 is the slowest. Our GIRG generator uses BMI2 if enabled and
the loop with early termination (FOR OPT) otherwise.

4.3 Estimating the average degree parameter
Here, we describe how to estimate the parameter c in Equation (1) to achieve a given expected
average degree.5 This section covers the estimation for the binomial version of the model T > 0.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 371

The calculations for the threshold case T = 0 are analogous (and simpler). We estimate the con-
stant based on the actual weights, not on their probability distribution. This leads to lower variance
and allows user-defined weights.

We start with an arbitrary constant c, calculate the resulting expected average degreeE[d̄], and
adjust c accordingly, using a modified binary search. This is possible, as E[d̄] is monotone in c.
We derive an exact formula for E[d̄], depending on c and the weights. It cannot simply be solved
for c, which is why we use binary search instead of a closed expression.

For the binary search, we need to efficiently evaluate E[d̄] for different values of c. Let Xuv
be a random indicator variable for the existence of the edge uv with fixed weights but unknown
positions. The expected average degree can be expressed as

E[d̄]= 1
n

·E
⎡
⎣∑
u∈V

∑
v 	=u

Xuv

⎤
⎦= 1

n
∑
u∈V

∑
v 	=u

E[Xuv] (5)

with the expectation of a single edge being

E[Xuv]=E
[
min

{
1, c ·

(
wuwv/W

||xu − xv||d
)1/T

}]
=E

⎡
⎢⎣min

⎧⎪⎨
⎪⎩1,

⎛
⎝ c

T
d
(wuwv

W
) 1
d

||xu − xv||

⎞
⎠

d/T
⎫⎪⎬
⎪⎭
⎤
⎥⎦ .

This is potentially problematic, as the formula for E[d̄] sums over all vertex pairs. The issue pre-
venting us from simplifying this formula is theminimum in the connection probability.We split it
into short edges and long edges based on whether the minimum takes effect or not, that is, whether
the numerator of the connection probability, call it k= c

T
d
(wuwv

W
)1/d, is bigger than the distance

in the denominator. If ||xu − xv|| ≤ k, we have a short edge and the vertices are so close together
that they will definitely be connected. Else, we have a long edge with k< ||xu − xv||; thus, we can
drop the minimum. We get

E[Xuv]= Pr(||xu − xv|| ≤ k)+ Pr(k< ||xu − xv||) ·E
[
c ·
(

wuwv/W
||xu − xv||d

)1/T
| k< ||xu − xv||

]
.

For any constant t ≤ 0.5, Pr(||xu − xv|| ≤ t)= (2t)d, which is the fraction of the ground space
which is covered by a hypercube with radius t. The probability for a short edge becomes

Pr(||xu − xv|| ≤ k)=
{
(2k)d = 2dcT

(wuwv
W

)
if k≤ 0.5

1 else
(6)

For long edges, one must also distinguish between k> 0.5 and k≤ 0.5 because the distance on
a unit torus with the L∞-norm is at most 0.5. Thus for k> 0.5, the probability for a long edge
Pr(k< ||xu − xv||) becomes zero independent of the distance. For k≤ 0.5, we can simplify the
formula for long edges by integrating over all possible values of ||xu − xv||. The probability density
function of ||xu − xv|| between 0 and 0.5 is the derivative of (2x)d, namely d2dxd−1. Using this
we get

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

372 T. Bläsius et al.

Pr(k< ||xu − xv||) ·E
[
c ·
(

wuwv/W
||xu − xv||d

)1/T
| k< ||xu − xv||

]

= Pr(k< ||xu − xv||) ·
∫ 0.5
k c ·

(
wuwv/W

xd

)1/T · d2dxd−1 dx

Pr(k< ||xu − xv||)
= c

(wuwv
W

)1/T
d2d

∫ 0.5

k
xd−1−d/T dx

= c
(wuwv

W

)1/T
d2d

[
1

d(1− 1/T)
· xd−d/T

]0.5
k

= c
(wuwv

W

)1/T d2d

d(1− 1/T)

((
1
2

)d−d/T
− kd(1−1/T)

)

= c
(wuwv

W

)1/T 2d

1− 1/T

(
2d/T

2d
−
(
c
T
d
(wuwv

W

)1/d)d(1−1/T)
)

= c
(wuwv

W

)1/T 2d/T

1− 1/T
− c

(wuwv
W

)1/T 2d

1− 1/T
cT−1

(wuwv
W

)1−1/T

= c
(wuwv

W

)1/T 2d/T

1− 1/T
− cT

(wuwv
W

) 2d

1− 1/T
. (7)

We add the k≤ 0.5 cases of short and long edges [Equations (6) and (7)], that is

2dcT
(wuwv

W

)
+ c

(wuwv
W

)1/T 2d/T

1− 1/T
− cT

(wuwv
W

) 2d

1− 1/T

= 2dcT
(wuwv

W

) (
1+ 1

1/T − 1

)
− c

(wuwv
W

)1/T 2d/T

1/T − 1

= cT
2d

1− T

(wuwv
W

)
− c

2d/T

1/T − 1

(wuwv
W

)1/T
, (8)

to concisely express the expectation for Xuv as

E[Xuv]=
{
cT 2d

1−T
(wuwv

W
)− c 2d/T

1/T−1
(wuwv

W
)1/T if k≤ 0.5

1 if k> 0.5
(9)

Unfortunately, we still cannot simplify the expected average degree into a form that can be com-
puted in subquadratic time because of the case distinction in Equation (9). To circumvent this,
we compute E[d̄] for all vertex pairs as if k≤ 0.5 (call it Qover), then add an error term Qerror to
cancel out the pairs we treated wrongly, and add the correct value for those pairs. This results in
E[d̄]=Qover +Qerror.

Plugging the k≤ 0.5 case of Equation (9) into Equation (5) and pulling constants out of the
sum yield

Qover · n= cT
2d

1− T
∑
u∈V

∑
v 	=u

(wuwv
W

)
− c

2d/T

1/T − 1
∑
u∈V

∑
v 	=u

(wuwv
W

)1/T
(10)

There are still quadratic sums in Equation (10), but those can be simplified to∑
u∈V

∑
v 	=u

(wuwv
W

)
=
∑
u∈V

∑
v∈V

wuwv
W

−
∑
v∈V

w2
v

W
=W −

∑
v∈V

w2
v

W

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 373

and ∑
u∈V

∑
v 	=u

(wuwv
W

)1/T =
∑
u∈V

∑
v∈V

(wuwv
W

)1/T −
∑
v∈V

(
w2
v

W

)1/T

= 1
W1/T

(∑
u∈V

∑
v∈V

(wuwv)1/T −
∑
v∈V

w2/T
v

)

= 1
W1/T

⎛
⎝
(∑
v∈V

w1/T
v

)2

−
∑
v∈V

w2/T
v

⎞
⎠ .

To obtain the error term Qerror, let ES be the set of vertex pairs (u, v) with 0.5< k. So Qerror sub-
tracts the k≤ 0.5 case and adds the k> 0.5 case given in Equation (9) for all vertex pairs in ES,
thus

Qerror · n= |ES| −
∑

(u,v)∈ES

(
cT

2d

1− T

(wuwv
W

)
− c

2d/T

1/T − 1

(wuwv
W

)1/T)
. (11)

Now we are ready to find the constant c for a desired average degree using binary search over the
monotone function f (c)=E[d̄]=Qover +Qerror. The function f is given by Equation (10) (using
simplified sums) and adding the error Qerror from Equation (11) for vertex pairs with k> 0.5.

f (c)= cT · 2d

n(1− T)

(
W −

∑
v∈V

w2
v

W

)

− c · 2d/T

n(1/T − 1)
· 1
W1/T

⎛
⎝
(∑
v∈V

w1/T
v

)2

−
∑
v∈V

w2/T
v

⎞
⎠

− 1
n

∑
(u,v)∈ES

(
cT

2d

1− T

(wuwv
W

)
− c

2d/T

1/T − 1

(wuwv
W

)1/T − 1

)

The binary search would now take O(n) time to compute the sums that are independent of c and
O(1+ |ES|) per evaluation of f (c). This assumes that ES can be found efficiently, which may add
additionally overhead to the precomputation, for example, by sorting. In the following, we further
reduce the time to evaluate f (c) from O(|ES|) to O(|S|) with S being the set of vertices with at least
one occurrence in ES.

For a vertex v ∈V , let ES(v)= {u ∈V | uv ∈ ES} be the set of partners in ES. We rewrite the sum
in the Qerror part of f (c) as follows:

∑
(u,v)∈ES

(
cT

2d

1− T

(wuwv
W

)
− c

2d/T

1/T − 1

(wuwv
W

)1/T − 1

)

=
∑
v∈S

∑
u∈ES(v)

(
cT

2d

1− T

(wuwv
W

)
− c

2d/T

1/T − 1

(wuwv
W

)1/T − 1

)

=
∑
v∈S

⎛
⎝cT

2d

1− T

(wv
W

) ∑
u∈ES(v)

(wu)− c
2d/T

1/T − 1

(wv
W

)1/T ∑
u∈ES(v)

(w1/T
u)−

∑
u∈ES(v)

1

⎞
⎠

We reduce the running time by exploiting that for any two vertices u, v ∈ S, wu ≤wv implies
ES(u)⊆ ES(v). Thus, if we iterate the vertices in S by increasing weight, we can reuse the compu-
tations for the last vertex by maintaining ES(v) and the associated sums incrementally. Therefore,

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

374 T. Bläsius et al.

(a) Sketch of the distance filter optimization to avoid
computationally expensive mathematical operations,
providing a speedup of 2.

(b) Visited cell pairs up to level 3. The arrows rep-
resent the 8 neighboring cell pairs in level 2 and 12
distant cell pairs in level 3.

Figure 4. Distance filter (left) and tasks for parallelization in the 1-dimensional case (right).

we partially sort the weights for all vertices in S. Since the upper and lower bounds for the binary
search are found with an exponential search, the size of S might grow until the upper bound is
found. We lazily extend a sorted prefix of the weight array while raising the upper bound. We
assume S to be very small compared to n and thus consider this overhead dominated by the other
precomputations.

4.4 Avoiding expensive mathematical operations for HRGs
HRGs introduce many computationally expensive mathematical operations like the hyperbolic
cosine. We significantly improve the performance of the generator by avoiding or reusing the
results of those operations.

For the threshold model, an edge exists if the distance d is smaller than R. Considering how
the hyperbolic distance is defined (Section 2.2), reformulating it to cosh (d)< cosh (R) avoids the
expensive arccosh, while cosh (R) remains constant during execution and can thus be precom-
puted. Similar to recent threshold-HRG generators, we compute intermediate values per vertex
such that cosh (d) can be computed using only multiplication and addition (Funke et al., 2019;
Penschuck, 2017).

For the binomial model, evaluating the connection probability pT(d) from the optimized
cosh (d) is a performance bottleneck and made up half of the total run time. Evaluating pT(d)
includes an expensive exponential function and cannot avoid the arccosh like in the threshold
model. We use a technique that we call a distance filter to reduce the frequency of the operation
resulting in a speedup of approximately factor two.

To explain how the distance filter works (also see Figure 4a), consider the straightforward
way to sample an edge. That is, one samples a uniform random value u ∈ [0, 1] and creates the
edge if and only if u< pT(d). Since pT is monotonically decreasing, an alternative check would be
p−1
T (u)> d. The distance filter improves this by precomputing the inverse p−1

T (u) for equidistant
values in [0, 1]. This let us, for small ranges in [0, 1], quickly access the corresponding range of dis-
tances. Then, the process of sampling an edge becomes the following. We first sample u ∈ [0, 1],
which falls in a range between two precomputed values, which in turn yields a range of distances.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 375

If the actual distance lies below that range, there has to be an edge and if it lies above, there is no
edge. Only if it lies in the range, we actually have to compute the probability pT(d) and do the
check the straightforward way. Since u is uniformly distributed, the probability to hit the interval
where pT(d) has to be evaluated is 1/k, where k is the number of precomputed entries. Our gen-
erator uses k= 100 which is large enough to amortize the few times we have to compute pT(d)
but still small enough to avoid cache misses. Additionally, we avoid the arccosh by directly storing
cosh [p−1

T (x)] in the filter.

4.5 Parallelization
This section describes how the sampling algorithm can be parallelized. The presented approach
applies to the GIRG and HRG implementations. The algorithm has five steps: generate weights,
generate positions, estimate the average degree constant, precompute the geometric data struc-
ture, and sample edges. The first two are trivial to parallelize. For estimating the constants, we
parallelize the dominant computations with linear running time.

For the preprocessing, we have to do three subtasks: compute for each vertex its containing cells
on its insertion level, sort the vertices according to their Morton code index, and compute the pre-
fix sum for all cells. We parallelize all three tasks and optimize them by handling all weight buckets
together, sorting by weight bucket first and Morton code second. This is done by encoding this
criterion into integers that are sorted with parallel radix sort. Then, the vertices of a weight bucket
form a contiguous subsequence in the sorted array. Moreover, they are sorted by cell, allowing
parallel computation of the prefix sums for all cells in the insertion level of the weight bucket.

To sample the edges, we make use of the fact that we iterate over cell pairs in a recursive man-
ner. This can be parallelized by cutting the recursion tree at a certain level and distributing the
loose ends among multiple processors. This works well, as the recursion tree is symmetric, lead-
ing to multiple tasks of similar load. As the number of run time intensive tasks is a power of 2, it
works particularly well if the number of processors is also a power of 2 and experiments suggest a
near optimal scaling in this case.

In detail, we parallelize the edge sampling as follows. Each thread has a local random generator.
We use static scheduling to produce deterministic results even for the binomial model. However,
the ordering of edges in the edge list varies, because each thread locally buffers generated edges
before writing them while locking a mutex. We distinguish two stages of execution. The first stage
is to “saw off” the recursion tree at a certain level and collect the omitted recursive calls as tasks
to execute in stage two. A task is represented by a cell pair from which to pick up the execution
later. One thread collects the tasks by traversing the recursion tree without sampling any edges
(omitting lines 1–6 in Algorithm 1). Meanwhile, the other threads process the pairs that the main
thread passed through, that is, the work in the top of the recursion tree before the saw-off point.
When all tasks are collected stage two begins. In stage two, the threads pick up the “loose ends” of
the cut recursion tree. There are three different types of tasks with varying load. For 1-dimensional
geometry, level � > 2, and assuming a number of threads that is constant in n, the types of tasks are
the following. There are 2� heavy tasks given by a neighboring cell pair of the form (A,A). Their
number of recursive calls grows exponentially with each subsequent level implying a load ofO(n).
There are 2� light tasks given by a neighboring cell pair of the form (A,A+ 1). They produce four
recursive calls per subsequent level implying a load ofO(log n). Finally, there are 3 · 2�−1 constant
tasks given by a distant cell pair. They invoke no recursive calls at all. The number of distant cell
pairs in a level is explained by Figure 4b. For each cell B in level � − 1 with children A and A+ 1,
the distant cell pairs in level � are (A,A+ 2), (A,A+ 3), (A+ 1,A+ 3).

Since heavy tasks dominate the run time during stage two, we distribute heavy tasks evenly
among all threads. This is why the approach scales best when the number of threads is a power
of two. The level where we saw off the recursion tree is a tuning parameter of the generator. We

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

376 T. Bläsius et al.

Figure 5. Sequential run time for the steps of the GIRG sampling algorithm averaged over 10 iterations. Each plot varies
a different model parameter deviating from a base configuration d= 1, n= 215, T = 0, β = 2.5, and d̄= 10. The base
configuration is indicated by a dashed vertical line.

choose it, such that there are two heavy tasks per thread to reduce load imbalance if one thread
stalls. To apply the same scheduling approach to higher dimensions it suffices to know that the
load of tasks remains similar and the number of heavy tasks is 2�d.

5. Experimental evaluation
We perform three types of experiments. In Section 5.1, we investigate the scaling behavior of our
GIRG generator, broken down into the different tasks performed by the algorithm. In Section 5.2,
we compare our HRG generator with existing generators. In Section 5.3, we experimentally
investigate the difference between HRGs and their GIRG counterpart. Whenever a data point
represents the mean over multiple iterations, our plots include error bars that indicate the stan-
dard deviation. Besides the implementation itself, all benchmarks and analysis scripts are also
accessible in our source repository.

5.1 Scaling of the GIRG generator
We investigate the scaling of the generator, broken down into five steps. (1) (Weights) Generate
power-law weights. (2) (Positions) Generate points on Td. (3) (Binary) Estimate the constant
controlling the average degree. (4) (Pre) Preprocess the geometric data structure (Section 3.4).
(5) (Edges) Sample edges between all vertex pairs as described in Algorithm 1.

Figure 5 shows the sequential run time over the number of nodes n (top left), number of edges
m (top right), temperature T (bottom right), and dimension d (bottom right). The performance
is measured in nanoseconds per edge. Each data point represents the mean over 10 iterations.
To make the measurements independent of the graph representation, we do not save the edges
into RAM but accumulate a checksum instead. Note that the top right plot increases the average
degree, resulting in a decreased time per edge.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 377

The empirical run times match the theoretical bounds: it is linear in n and m, grows exponen-
tially in the dimension d, and is unaffected by the temperature T. The overall time is dominated
by the edge sampling. Generating the weights includes expensive exponential functions, making it
the slowest step after edge sampling. Generating the positions is significantly faster even for higher
dimensions. For the parameter estimation using binary search, one can see that the run time never
exceeds the time to generate the weights. For non-zero temperature T, the performance of the
binary search is similar to the generation of the weights, as it also requires exponential functions.
The lower run times per edge for the increasing number of edges (top right) show that the run
time is dominated by the number of nodes n. Only for very high average degrees, the cost per edge
outgrows the cost per vertex.

5.2 HRG run time comparison
We evaluate the run time performance of HyperGIRGs compared to the generators in Table 1,
excluding the generators with high asymptotic run time as well as RHG and sRHG, which are
designed for distributed machines. Executed on a single compute node, the performance of the
faster sRHG is comparable to HyperGen (Funke et al., 2019). To avoid systematic biases between
different graph representations, the implementations are modified6 not to store the resulting
graph. Instead, only the number of edges produced is counted and we ensure that the computation
of incident nodes is not optimized away by the compiler.

We used different machines for our sequential and parallel experiments. The former are done
on an Intel Xeon Skylake CPGold 6144 with 192GB RAM and the latter on an Intel Xeon E5-2630
v3 with 8 cores (16 threads) and 64GB RAM.

For threshold graphs, our generator HyperGIRGs is consistently faster than the competitors,
independent of the parameter choices, see Figure 6a and 6b. Only for unrealistic average degrees
(1 K), HyperGen slightly outperforms HyperGIRGs.

For higher temperatures, we compare our algorithm with the three other non-quadratic gener-
ators NkQuad (included in NetworKit), NkGenBin, and Embedder, see Figure 6c. One can clearly
see the worse asymptotic running time of NkQuad. HyperGIRGs is consistently four times faster
than Embedder and 2–3 times faster than NkGenBin for graphs that are not too small. We note
that Embedder uses a different estimation for R, which leads to an insignificant left shift of the
corresponding curve.

Figure 6d showsmeasurements for parallel experiments using 16 threads. The parameters coin-
cide with Figure 6b. Embedder does not support parallelization and is outperformed evenmore by
the other generators. For sufficiently large graphs, the fastest generator in this multi-core setting
is HyperGen, which is specifically tailored toward parallel execution. Nonetheless, HyperGIRGs
shows comparable performance and overtakes the other two generators NkGen and NkOpt. We
note that even on parallel machines, the sequential performance is of high importance: one often
needs a large collection of graphs rather than a single huge instance. In this case, it is more efficient
to run multiple instances of a sequential generator in parallel.

5.3 Difference between HRGs and GIRGs
Recall from Section 2.3 that a HRG with average degree dHRG has a corresponding GIRG sub- and
supergraphs with average degrees dGIRG and DGIRG, respectively.

We experimentally determine, for given HRGs, the values for dGIRG by decreasing the average
degree of the corresponding GIRGs until it is a subgraph of the HRG. Analogously, we deter-
mine the value for DGIRG. We focus on the threshold variant of the models, as this makes the
coupling between HRGs and GIRGs much simpler (the graph is uniquely determined by the coor-
dinates). Figure 7a shows dGIRG and DGIRG, compared to dHRG for growing n. One can see that
dGIRG andDGIRG are actually quite far apart. They in particular do not converge to the same value

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

378 T. Bläsius et al.

(a) (b)

(c) (d)

Figure 6. Comparison of HRG generators averaged over five iterations. (a, b) Threshold variant for different average degrees
d̄ and power-law exponents β. (c) Binomial variant with temperature T = 0.5. (d) The same configuration as (b) but utilizing
multiple cores.

(a) (b)

Figure 7. Relation between the HRG and the GIRG model. (a) The values for dHRG, dGIRG, DGIRG averaged over 50 itera-
tions. (b) The number of missing (HRG \ GIRG) and additional (GIRG \HRG) edges depending on the expected degree of the
corresponding GIRG. It can be interpreted as a cross-section of one iteration in (a).

for growing n. However, at least dGIRG seems to approach dHRG. This indicates that every HRG
corresponds to a GIRG subgraph that is missing only a sublinear fraction of edges. On the other
hand, the average degree of the GIRG has to be increased by a lot to actually contain all edges also
contained in the HRG.

Figure 7b gives a more detailed view for a single HRG. Depending on the average degree of the
GIRG, it shows how many edges the GIRG lacks and how many edges the GIRG has in addition

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.32

Network Science 379

to the HRG. For degree 100, the GIRG contains about 38K additional and lacks about 42K edges.
These are rather small numbers compared to the 5 million edges of the graphs.

6. Conclusion
We provide the first efficient implementation of a geometric inhomogeneous graph generator and
a special case adaption for HRGs that constitutes the fastest sequential HRG generator to date. Our
code is publicly available. We describe the sampling algorithms along with crucial implementa-
tion details such as optimizations, parallelization strategies, and the non-trivial estimation of input
parameters to control the average degree of the resulting graphs. Moreover, we relate the GIRG
and HRG model and find that, although a straightforward inclusion does not hold, they are suffi-
ciently similar in practice. For example, a HRG with about 5 million edges and its corresponding
GIRG equivalent have 99.24% of their edges in common.

Competing interests. None.

Notes
1 https://github.com/chistopher/girgs
2 https://www.forceflow.be
3 https://github.com/kevinhartman/morton-nd
4 g++8 -std=c++14 -O3 -march=skylake
5 Actually, we implement GIRGs without explicitly modeling the parameter c because scaling all weights by cT emulates the
same behaviour.
6 The modifications are publicly available and referenced in our GitHub repository.

References
Ahrens, J. H., &Dieter, U. (1985). Sequential random sampling.ACMTransactions onMathematical Software, 11(2), 157–169.
Aldecoa, R., Orsini, C., & Krioukov, D. (2015). Hyperbolic graph generator.Computer Physics Communications, 196, 492–496.
Baert, J. (2018). Libmorton: C++ Morton encoding/decoding library. Retrieved from https://github.com/

Forceflow/libmorton.
Bläsius, T., Friedrich, T., Katzmann, M., Meyer, U., Penschuck, M., & Weyand, C. (2019). Efficiently generating geometric

inhomogeneous and hyperbolic random graphs. In European Symposium on Algorithms (ESA) (Vol. 144, pp. 21:1–21:14).
Bläsius, T., Freiberger, C., Friedrich, T., Katzmann, M., Montenegro-Retana, F., & Thieffry, M. (2018a). Efficient shortest

paths in scale-free networks with underlying hyperbolic geometry. In International Colloquium on Automata, Languages,
and Programming (ICALP) (Vol. 107, pp. 20:1–20:14).

Bläsius, T., Friedrich, T., Krohmer, A., & Laue, S. (2018b). Efficient embedding of scale-free graphs in the hyperbolic plane.
IEEE/ACM Transactions on Networking, 26(2), 920–933.

Bringmann, K., Keusch, R., & Lengler, J. (2019). Geometric inhomogeneous random graphs. Theoretical Computer Science,
760, 35–54.

Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM Computing Surveys, 38(1), 2.
Chung, F., & Lu, L. (2002a). The average distances in random graphs with given expected degrees. Proceedings of the National

Academy of Sciences, 99(25), 15879–15882.
Chung, F., & Lu, L. (2002b). Connected components in random graphs with given expected degree sequences. Annals of

Combinatorics, 6(2), 125–145.
Friedrich, T., & Krohmer, A. (2018). On the diameter of hyperbolic random graphs. SIAM Journal on Discrete Mathematics,

32(2), 1314–1334.
Funke, D., Lamm, S., Meyer, U., Penschuck, M., Sanders, P., Schulz, C., . . .von Looz, M. (2019). Communication-free

massively distributed graph generation. Journal of Parallel and Distributed Computing, 131, 200–217.
Funke, D., Lamm, S., Sanders, P., Schulz, C., Strash, D., & von Looz, M. (2018). Communication-free massively distributed

graph generation. In IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 336–347).
Gilbert, E. N. (1961). Random plane networks. Journal of the Society for Industrial and Applied Mathematics, 9(4), 533–543.
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://github.com/chistopher/girgs
https://www.forceflow.be
https://github.com/kevinhartman/morton-nd
https://github.com/Forceflow/libmorton
https://github.com/Forceflow/libmorton
https://doi.org/10.1017/nws.2022.32

380 T. Bläsius et al.

Gugelmann, L., Panagiotou, K., & Peter, U. (2012). Random hyperbolic graphs: Degree sequence and clustering. In
International Colloquium on Automata, Languages, and Programming (ICALP) (pp. 573–585).

Intel (2019). Intel 64 and IA-32 architectures developer’s manual. Washington, DC: Intel Corporation.
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., & Boguñá, M. (2010). Hyperbolic geometry of complex networks.

Physical Review E, 82(3), 036106.
Looz, M. V. (2019). High-performance graph algorithms. PhD thesis, Karlsruhe Institute of Technology (KIT).
Müller, T., & Staps, M. (2017). The diameter of KPKVB random graphs. CoRR, abs/1707.09555.
Morton, G. M. (1966). A computer oriented geodetic data base and a new technique in file sequencing. Technical report,

International Business Machines Company, New York.
OpenMP Architecture Review Board. (2018). OpenMP application program interface version 5.0. Retrieved from

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.
Orenstein, J. A., & Merrett, T. H. (1984). A class of data structures for associative searching. In ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems (PODS) (pp. 181–190).
Penschuck, M. (2017). Generating practical random hyperbolic graphs in near-linear time and with sub-linear memory. In

International Symposium on Experimental Algorithms (SEA) (Vol. 75, pp. 26:1–26:21).
von Looz, M., &Meyerhenke, H. (2016). Querying probabilistic neighborhoods in spatial data sets efficiently. In International

Workshop on Combinatorial Algorithms (IWOCA) (pp. 449–460).
von Looz, M., Meyerhenke, H., & Prutkin, R. (2015). Generating random hyperbolic graphs in subquadratic time. In

International Symposium on Algorithms and Computation (ISAAC) (pp. 467–478).
von Looz, M., Özdayi, M. S., Laue, S., & Meyerhenke, H. (2016). Generating massive complex networks with hyperbolic

geometry faster in practice. In IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1–6).
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.

Cite this article: Bläsius T., Friedrich T., Katzmann M., Meyer U., Penschuck M. and Weyand C. (2022).
Efficiently generating geometric inhomogeneous and hyperbolic random graphs. Network Science. 10, 361–380.
https://doi.org/10.1017/nws.2022.32

https://doi.org/10.1017/nws.2022.32 Published online by Cambridge University Press

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1017/nws.2022.32
https://doi.org/10.1017/nws.2022.32

	
	Introduction
	Contribution and outline
	Comparison with existing generators
	Models
	Geometric inhomogeneous random graphs
	Hyperbolic random graphs
	Comparison of GIRGs and HRGs
	Sampling algorithm
	Inhomogeneous weights
	Binomial variant of the model
	Efficiently iterating over cell pairs
	Efficient access to vertices by bucket and cell
	Adapting the algorithm to HRGs
	Implementation details
	Avoiding double counting buckets, cells, and vertices
	Efficiently encoding and decoding Morton codes
	Estimating the average degree parameter
	Avoiding expensive mathematical operations for HRGs
	Parallelization
	Experimental evaluation
	Scaling of the GIRG generator
	HRG run time comparison
	Difference between HRGs and GIRGs
	Conclusion

