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Abstract

Let G be any compact group, connected or disconnected, with dual object G. We define a
family of local Sidon subsets of G in terms of allowable images of the representations. Using
this family we develop a straightforward criterion whereby the existence of infinite Sidon subsets
of G may be decided.
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1. Introduction

It is well known [10] that a compact group which admits infinitely many con-
tinuous irreducible representations of the same degree (that is, a non-tall com-
pact group) necessarily admits an infinite Sidon subset of its dual object. For
connected compact groups Cartwright and McMullen [2] obtained a structural
criterion for the existence of infinite Sidon sets. In the course of their exposi-
tion, they introduced a special Sidon set on a connected product group which,
after [6], they christened a Figa-Talamanca-Rider (FTR) set. By recasting the
membership criterion in terms of allowable images of representations we are able
to define a family of FTR sets for any compact group, connected or not, and
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12 David C. Wilson [2]

these are always at least local Sidon sets. Using these higher order FTR sets
we are able (see §9 below) to extend the analysis of Cartwright and McMullen
to yield a general criterion to determine whether or not an arbitrary compact
group admits an infinite Sidon set.

The jots and tittles omitted from this account may be found in full in [16].
I wish to express my particular gratitude to J. R. McMullen for encouragement
in pursuing this subject.

2. Notation and terminology

The dual object of a compact group G will be taken to be a maximal set of
pairwise inequivalent continuous unitary irreducible representations of G, and
will be denoted G. For a G G we denote by d(<r) its degree, and if a is an
irreducible component of the continuous unitary representation p of G we write
a < p and denote by m(a, p) the multiplicity of a in p. For P C G we denote by
Tp(G) the space of trigonometric polynomials / whose Fourier transforms / are
supported by P. The norm H-AĤ , = tr|^4| on the space of bounded operators on a
finite-dimensional hilbert space is described in [8, Appendix D]. A subset P C G
is said to be Sidon if it enjoys the remarkable property that every / G Tp(G)
has an absolutely convergent Fourier series; equivalently, P is Sidon if its Sidon
constant

K(P) = sup (ll/llx = £ d(<r)||/>)|k : / € TP(G), H/IU < 11

is finite. P C G is local Sidon if K,Q{P) = sup{/c(<r) = «({<*}): a G P} is finite. A
compact group G is defined to be tall if it admits only finitely many inequivalent
representations of each (finite) degree.

We denote by Mn(C) the space ofnxn complex matrices; by U(n) C Mn(C)
the group of unitary elements; by SU(n) C U(n) the subgroup of matrices of
determinant 1; by O(n) C U(n) the subgroup of real orthogonal matrices; by
SO(n) C O(n) the subgroup of matrices of determinant 1, and by Spin(n) its
simply-connected covering group; and by Sp(n) C U(n) the group of symplectic
matrices (n even). The circle group is denoted T.

If G is a compact group and H is a closed subgroup of G we write H < G;
if H is also normal we write H < G. If G < U(n) we denote by Nu(G) the
unitary normalizer of G. If G is a compact connected almost simple Lie group,
we will frequently identify a G G with its highest weight; the ordering of the
fundamental weights is that of [15]. The positive integers are denoted N.
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[3] Existence of infinite Sidon sets 13

3. FTR sets

In this and the succeeding section we define the Figa-Talamanca-Rider sets
associated with a compact group, and outline some of their salient properties.
These sets are the warp on which our existence criterion for Sidon sets is em-
broidered.

(3.1) DEFINITION. Let n e N, n > 2. For 2 < n < 5 put Sn = {SU(n)}, and
put S6 = {SC/(6),Sp(6)}. For n > 7, n odd, put Sn = {SU{n),SO(n)}. For
n > 8, n even, put Sn = {SU(n),Sp(n),SO{n)}. Let Mn = {N < U(n): N is
tall, and for some S € Sn, S < N}.

Let G be a compact group: the Figa- Talamanca-Rider set of G is

FTR(G) = {aeG: d{a) > 1, G/kera ^ N € Md{cr)}.

It is clear from the definition that FTR(G) is stable under the action of Aut(G)
onG.

It is not clear whether the trivial representation should also be included in
FTR(G). Some theorems (for example [2, 5.5]) seem to require 1 e FTR(G),
whereas others (for example, [17, 4.4]) suggest its exclusion. Since estimates for
the Sidon constant of FTR(G) are more conveniently expressed if 1 ^ FTR(G),
we shall opt for the exclusion of 1.

With a measure of tedium an explicit description of the Mn is possible:

Mn = {ZmnSU{n): m > 1}, 2 < n < 5,

= {Zm n5C/(n),Z2 mSp(n):m>l}, n = 6,

= {ZmnSU{n), ZmSO(n): m > 1}, n > 7,n odd,

= {ZmnSf/(n),Z2mSP(n),Z2m5O(n),Z2mO(n), W2m(n)SO(n): m > 1},

n > 8, n even,

where Zp = {e2jirt/p: 0 < j < p}, and writing Jn — diag(-l, 1, . . . , 1) e
O(n), Wp(n) = {(e^/"Jny: 0 < j < 2p} ~ Z2p.

(3.2) We now demonstrate that our FTR sets generalize those of Cartwright
and McMullen. Direct calculation using [15] yields

LEMMA l.

FTR(Sf/(n)) = {A1,An_1}, n > 2,
FTR(Sp(n)) = {Ai}, n > 6, n even,

FTR(SO(n)) = {Ai}, n > 7,
FTR(Spin(n)) = {Aj}, n = 7, n > 9,
FTR(Spin(8)) = {A1,A3,A4}.
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Estimates for the local Sidon constants of the above sets are given in [2, 4.5.1,
4.5.2], as well as for the Sidon constant of all except FTR(Spin(8)); the estimate
K(FTR(Spin(8))) < 8 is obtained by a calculation modelled on [2, 4.5.2(b)].
Hence

LEMMA 2. Let F be one of the seta Hated in Lemma 1. Then K(F) < 8 and
4.

(3.3) LEMMA. Let Q = T x Yla€AGa where T is a connected compact
abelian group and each Ga ia a connected compact almoat aimple Lie group. De-
note byxa: $ - • Ga the canonical projection. Then FTR(£) = \JaeAl FTR(Ga)
o 7ra where A\ = {a € A: for aome S €E Sn, n > 2, Ga — S or the aimply-
connected covering group ofS}. Hence /co(FTR(£)) < 4 and K ( F T R ( £ ) ) < 32.

PROOF. Let a € FTR(£); then a has the form x x {<rQ)aeA for some x €
T, aa € Ga, with aa = 1 for all but finitely many a. Noting that a{Q) is
connected, we see from the definition (3.1) that cr(§) is almost simple. Were x
non-trivial, <?{Q) would be non-tall, so x = 1- If °a ^ 1 and vp / 1 for a / 13
then o~{Ga) and ^(G/3) are proper non-trivial connected normal subgroups of
o{G); hence a has the form (xaoira for some a € A. That in fact a E Ai follows
from the classification theorem for almost simple Lie groups, and it is clear that
aa € FTR(GQ). The estimates for K and K0 follow from [2, 2.2.1 and 5.2] with
(3.2.2).

This lemma shows that the FTR sets defined by Cartwright and McMullen
[2, 5.1], except for their inclusion of 1, agree with our definition when the factors
of the product are of types other than B-i and D4. Since the discrepant elements
have absolutely bounded degree (in fact degree < 8), all results of [2] remain
valid with our FTR set (U{1}) used in place of theirs.

(3 .4) PROPOSITION. Let G be a compact connected group. Then K(FTR(G))

< 32 and /co(FTR(G)) < 4.

PROOF. By the extended structure theorem [14, 6.5.6] there is a group $
having the form of (3.3) and an epimorphism TT : Q —* G. Clearly FTR(G) o TT C

), so the result follows by (3.3) and [2, 2.2.1].

(3.5) DEFINITION. Let G be a compact group, H < G and QC.H. Fore each
T 6 Q, choose PT C G so that for every a € PT, O\H is equivalent to the direct
sum of m(r,CT|#) copies of r. Then P = Uteo^V ' s called a pre-Hutchinson
lifting of Q; if in addition T?0(P) = sup{d(r)-2sup{d(<r)2: a € PT}: r e Q}
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is finite P is called a local Hutchinson lifting of Q, and if moreover r){P) =
sup{d(r)~2 Y^aePr d(?)2'- T G Q} is finite P is called a Hutchinson lifting of Q.
The base set Q is said to be canonical if PT ^ 0 for every r G Q.

(3.6) LEMMA [17, 3.3]. Lei G be a compact group, H <G and suppose
PCG is a pre-Hutchinson lifting ofQCH. Then K{P) < TJ(P)K{Q).

COROLLARY. KO(P) < VO{P)KO(Q).

(3.7) PROPOSITION. Let G be a compact group. Then K O ( F T R ( G ) ) < 4.

PROOF. We show that every element of FTR(G) is irreducible when restricted
to Ge (the connected component of the identity); this implies FTR(G) is a local
Hutchinson lifting of a subset of FTR(Ge) with r/0(FTR(G)) = 1 and the result
follows from (3.4) and (3.6).

Let a G FTR(G). Then a{Ge) = [<r(G)]e ^ S e Sd((T) (and d[a) > 2),
and since [15] S has no non-trivial representation of degree less than d(a), and
S ?£ {Id(o)}i<*\Gt is indeed irreducible.

(3.8) COROLLARY. Let G be a compact group and suppose Ge is open in
G. Then /c(FTR(G)) < 32|G/Ge|.

PROOF. Using Frobenius reciprocity we can show that in this case FTR(G)
is a Hutchinson lifting of a subset of FTR(Ge) (with ??(FTR(G)) < |G/Ge|).

(3.9) EXAMPLE. If G/Ge is infinite, FTR(G) need not be Sidon, for consider
H = I l n>i Z2 and G = SO(2k) x H (ifc > 4). Then FTR(G) = (A^ x H. It
can be shown (by a generalization of [2, 5.4.1]) that K ( F T R ( G ) ) > K(H), which
is infinite by [8, 37. 4].

4. Higher order FTR sets

(4.1) DEFINITION. Let k e N. Within the set {H < U{k): H is connected,
irreducible (that is, its centralizer is the scalars) and semisimple} choose a rep-
resentative from each conjugacy class and denote by Mk this collection of class
representatives. Let n S N, n > k, and put

•Vfc.r. = {N < U{kn): N is tall, for some S G Sn, H € Mk, S®H < N}.

Let G be a compact group. Then the FTR set of G of order k is

FTRfc(G) = {a G G: d(a) = nk, n> k, and G/ker a ~ N G Mk,n}.
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Since conjugate subgroups of U{k) have isomorphic nonnalizers, it is clear that
the definition of FTRjt(<?) is independent of the choice of Mk- (The following
example shows that isomorphism classes cannot be used in place of conjugacy
classes.) It follows, essentially from semisimplicity and the structure theorem
[14, 6.4.5], that Uk is finite. Also, the only connected semisimple subgroup of
f/(l) is {1}, so M1<n = Mn and FTR^G) = FTR(G).

(4.2) EXAMPLE. Let G = SO(8), H = Spin(5), K = SU{3) and S =
S0(8961). Let <TI denote the self-representation of G and oi € G the rep-
resentation having highest weight Ai -I- 2A3. Let T\ G H have highest weight
2/̂ 1 + M2> T2 € H have highest weight fa, 71 €E K have highest weight 6fi and
72 € K have highest weight 3fi . Denote by p the self-representation of S, and
put

Qj = {px a, x Tj x 7,-)(S xGxHxK) (j = 1,2);

then Qj < [/(80290560 = 8961 x 8 x 40 x 28 = 8961 x 224 x 4 x 10) is irreducible
and Q\ ^ Q2. However, Nu{Q\) has two connected components whereas Nu{Q2)
is connected.

(4.3) DEFINITION. We introduce a slight perversion of the Sidon constant
and list some of the properties which follow readily. For X < U(m) let

K(X) = m sup / {tr Ax)x~1dx : sup{|trAr|: x&X}< 1, A € Mm(C) \ .
JX 01 J

Suppose Y < X < U(m). Then
(i) 1 < K(X) < m2,
(ii) KiuXu-1) = K{X), U e U{m),
(iii) K(X) < K{Y), and
(iv) K(X®Ik) <IC2K(X).

Suppose Y < X < U{m) and Y is irreducible. Then
(V)K(X) = SUP{P|U1: sup{\tTAx\:xeX}<l, i eM m (C)} ,
(vi) K(TX) = K(X),

(vii) K(X) < K{Y).

Let G be a compact group and a e G. Then
(viii) K.{a[G)) = n(cr).

(4.4) LEMMA. Let G be a compact group. Then /co(FTRfc(G)) < 4Jfc2.

PROOF. For A; = 1 this is (3.7). Suppose k > 2 and a € FTRfc(G). Then
d{a) = nk, n> k, and there are S € Sn, H e tyt and 5<8>i? < N G Mk,n so that
o-(G) ~ TV. We have K(CT) = /c(er(G)), but example (4.2) shows that <J{G) and
TV need not be conjugate, so it is not immediate (it may not even be true) that
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[7] Existence of infinite Sidon sets 17

K(<J) = K{N). Instead, we have a{Ge) = [a{G)]e ~ Ne = S <g> H, and by (4.3)
K(<T) < K.(cr(Ge)). Direct calculation (using [15]) shows t h a t either (i) a(Ge) is
conjugate to 5 ® H' for some (not necessarily irreducible) homomorphic image
H' of H, or (ii) n = Jk + 1. If t he la t ter , /C(CT) < d{a) = k(k + 1) < 4fc2. If t he
former, /c(cr(Ge)) = K{S®H') < K.(S®Ik) < A;2/c(S) < 4Jfc2, using (4.3), the fact
tha t S <g> 7fc < S (8) H' and (3.2.2).

(4.5) EXAMPLE. Even for connected G, FTR f c (G) need not be Sidon. Con-
sider Gi = n n > i SU{2), G2 = n«>i SU{A) and G = d x G2. Then FTR3(G)
= FTR(Gi) x FTR(G2), which is not Sidon by [2, 5.4.2]. The Sidonicity of
FTRa(G) fails here precisely because G is not tall. For tall G, proceeding by
analogy with (3.3, 3.4) and using the above calculations (4.4) and the fact that
Sidonicity is preserved under finite unions, it is possible to prove the following

(4.6) PROPOSITION. Let G be a tall connected compact group, and let k 6
N. Then FTRfc(G) is Sidon.

(4.7) PROPOSITION. Let G be compact and tall, and suppose Ge is open in
G. Let ksN. Then FTRfc(G) is Sidon.

PROOF. Let a € FTRfc(G); a corollary of the calculations required for the
proof of (4.4) is that every irreducible component of O\GC lies in Um=i FTRm(Ge).
Since Ge is also tall, this union is Sidon by (4.6), and it follows, from (8.1) below,
that FTRfc(G) is Sidon.

(4.8) DEFINITION. Let G be a compact group and k € N. We identify a
useful subset of FTRfc(G): put

FTR'fc(G) = {o- G G: d(a) = nk, n > k and a{G) is unitarily

conjugate to some N € Mk,n}-

It is easily seen that FTR'fc(G) is unbounded (that is, the degrees of its elements
are unbounded) if and only if FTR* (G) is also unbounded, and direct compu-
tation shows that FTRi(G) = FTR(G). However, the following extension of
example (4.2) above shows that for k > 1, FTR'fc(G) can be a proper subset of
FTRfc(G).

(4.9) EXAMPLE. We retain the notation of (4.2) with the exceptions that
5 now denotes 50(17921) and rt € H has highest weight 3//i + \ii- Let N =
0(8), denote by wi the self-representation of JV and let w2 denote the induced
representation o$. Put

Nj = {p x UJ x Tj x ij)(S xN xHxK) 0 = 1,2);
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then Nj < f/(321144320 = 17921 x 8 x 80 x 28 = 17921 x 448 x 4 x 10) is
irreducible and Ni ~ N%. Now (N\)e — (px<j\ xT\ X7i ) (5xGx HxK) so Ni
is conjugate to an element of A/17920,17921- However, (A^e is reducible (since
W2|G is reducible), so N2 is conjugate to no element of .A/17920,17921 •

(4.10) We give now the distinguishing property of FTR4(G).

LEMMA. Let G be a compact group and k G N, and suppose Ge < K <
G. Then FTRfc(G) is a local Hutchinson lifting of a subset ofFTR'k(K), with
no(FTR'k(G)) = 1.

PROOF. Let a G FTRJt(G): then d(a) = nk, n> k, and a(G) is conjugate to
some N G Mk,n- Also, a(K) is conjugate to a closed subgroup N\ of AT containing
A^ (so N\ is also open and hence tall); since Ne is irreducible and N\ G Mk,n,
O~\K is irreducible and belongs to FTR'fc(/f).

5. Interlude—the case of a connected compact group

A restatement, in terms of higher order FTR sets, of the known existence
result [2, 6.4.2] for infinite Sidon sets on a connected compact group provides a
pattern for the general solution.

(5.1) PROPOSITION. Let G be a compact group. The following are equiva-
lent.

(i) G admits an infinite Sidon set,
(ii) G admits an infinite local Sidon set,
(iii) either G is not tall, or G is tall and FTRfc(G) is infinite for some k > 1.

PROOF. The equivalence of (i) and (ii) is contained in [2, 6.4.2]; that (iii)
implies (i) follows from [10, 2.5] and (4.6).

Suppose G is tall and admits an infinite Sidon set. From [14, 6.5.6] there is
an epimorphism TT : Q —* G where Q = FLeA ^a ls a Procmct of almost simple
simply-connected compact Lie groups. By [2, 6.4.2] ker?r is "almost trivial", that
is, A is infinite and there are B,T C A, B finite and F infinite, B n F = 0, and
there is r e §B (where QB = f laes Ga) such that for every (xa)aeA e ker ir
there is 6 6 C so that T((xa)aeB) = Oh(T) and pa{xa) = 0Id(Pa) f°

r all a € F,
where pa £ FTR(GQ) has highest weight Ai. Let k = d(r) and a e F. Then
T x pa x 1 is trivial on kerir and hence induces an irreducible representation
a G G; moreover a G FTRfc(G) provided d(pa) > k. Since Q is also tall there
are at most finitely many a G F for which d(pa) < k and it follows that the
cardinality of FTRfc(G) is at least that of F.
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[9] Existence of infinite Sidon sets 19

(5.2) REMARK. An alternat ive proof of the foregoing is possible by means of
a s t ructure theorem along the lines of [17, 4.4]; see [16, 4.9.2].

6. Projective representations

In the context of Hutchinson liftings and Clifford's Theorem, projective rep-
resentations arise naturally; we refer the reader to [1, 4, 13] for more detail. This
section is devoted to their relationship with Sidonicity.

(6.1) DEFINITION. Let G be a group; a projective representation of G is
a map -7 from G into the group of unitary operators on some Hilbert space
such that 7 preserves the identity and almost preserves multiplication insofar as
l{xy) = a(x,y)l(x)^i(y), where a: G x G —• T is the factor system of 7 (and
we call 7 an a-representation of G). Alternatively, 7 may be considered as a
homomorphism of G into a projective unitary group.

Irreducibility and unitary equivalence are defined by analogy with ordinary
representations, which are projective representations having a = 1. Direct sums,
inner and outer tensor products and complex conjugation are all defined in the
obvious way. The set of all factor systems for G forms an abelian group under
pointwise multiplication, and the subset of factor systems having the form

(*) ai{x,y)=p(xy)/p{x)p(y)

for some p: G —* T, constitutes a normal subgroup. The corresponding quotient
group is called the Schur multiplicator and can be identified with the second
cohomology group of cocycles of G. Multiplying a factor system by one of the
form (*) corresponds to multiplying a representation by arbitrary constants: if
7 is an a-representation of G then 7' defined by Y(i) = p(x)i(x) is an a'-
representation of G, where a'(x,y) = a(x,y)p(xy)/p(x)p(y).

(6.2) Some properties of projective representations. Let G be a compact group,
H < G, and suppose a e G is a pre-Hutchinson lifting of r E H, that is a\n
is equivalent to the direct sum of m = m(r,o-|#) copies of r. Then there is
an irreducible projective representation f of G, unique up to multiplication by
arbitrary constants, which agrees with r on H. Moreover, there is an irreducible
projective representation 7 of the quotient G/H so that (regarding 7 in the
obvious way as a representation of G) a is equivalent to f <g> 7; we have also
Tf(G) < U{d{r)) and T^G/H) < U{m).
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Somewhat remarkably, given that we have imposed no measurability criteria
on T or 7 (contrast [13]), is the following

LEMMA. With the foregoing notation, and using subscripts to denote coordi-
nate functions, we have

(i) f ® (f)~ and 7 ® 7 are continuous representations ofG,

(») / o ^ i W ^ t ' i ' W ) " ^ = d(T)~lsn>6]j' and /G7fc«(a:)(7fc'r(a;))~di =

The proof is achieved by observing that the integrands above are sums of
coordinate functions of a, and hence are continuous.

(6.3) DEFINITION. We introduce a "Sidon constant" for f and 7: define

K(T) = sup{p | | 0 1 : A E Md{T)(C),sup{\tT{Af(x))\: x G G} < 1}

and similarly for 7. It is easily seen that 1 < K(T) < K(T) < d(r), and it
follows from Lemma (6.2) that 1 < K(^) < m? and that K(T) = K(TT(G))

and /c(7) = K(T^(G/H)). By an argument similar to [2, 5.4.1] we obtain the
inequality K(<J) > /c(r)/c(7).

7. The key estimates

In this section we derive new inequalities and extend known inequalities for
Sidon constants which will be essential to later arguments.

(7.1) LEMMA. Let G be a compact group and suppose a € G is a pre-
Hutchinson lifting of some T € Ge. Then we have logm < 9216*c(<r)6 writing m
for m(T,a\Gt).

PROOF. Construct f ® 7 equivalent to a as in (6.2); then ^(7) = m and
^(7) < K{O). NOW F = 7 (8) 7 is a continuous representation of G/Ge, and
5 = (G/Ge)/ker T is a finite group since G/Ge is profinite; moreover, since 7 is
scalar on kerF, 7 defines a projective representation V of §, and T^(G/Ge) =
T~f(Q). By [4, 53.7] there are a finite group Q* and an (ordinary) representation
7" e (£*)~such that Ti'(g*) is conjugate to T1{Q)\ thus K{I) = n{i').

We now apply [12, Theorem] to {7"}, keeping in mind [8, 37.25(a)], to obtain
logd(7") < 144S 2 (2K(7" ) ) 2 ; closer investigation of the proofs of [12, Lemma 4,
Theorem] shows that B < (2K(T"))2 obtains, whence the result.

(7.2) LEMMA. Let G be a compact simply-connected almost simple Lie group
and a € (G)~ a # 1. Put G = <T(G) and N = NV{G), and denote by u the
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[11] Existence of infinite Sidon sets 21

self-representation of N. Then \ogd(a) < 384K(W)4 logk, where k is a constant
which depends only on the rank ofG.

PROOF. Let / = trw e TU(N); then [8, 27.19] \\f\\% = 1. Noting that
\N/Ne\ is at most the cardinality of the group of diagram automorphisms of G,
we see from [15] that \N/Ne\ < 6, whence [5, 5.3(ii)] | | / | | 4 > A fd | tr a(x) |4 dx >
glogd(a)/logfc [3, Corollary 1], where k is the maximum of the degrees of the
fundamental representations of G. (Cecchini's estimate is far from optimal—see
for example [5, 3.8]—but suffices for our purposes.) From [8, 37.10] we have
242!(21/4/c(w))4||/||4 > H/llt and the result follows.

(7.3) LEMMA (after [2, 4.1 ff]). Retaining the notation of the previous
lemma, suppose G < H < N; denote by ip the self-representation of H. Then
r1/3 < 480n/c(t/>) unless a € FTR(G), where r is the rank of G and n = \H/G\.

PROOF. Fix a maximal torus T of G, and for each p G (G)^choose an
orthononnal basis for the representation space of p so that the matrix of p{x)
is diagonal for each x G T. We know that p corresponds uniquely to an irre-
ducible representation <j>p of the Lie algebra g of G, and moreover the characters
Pjj(x), x G T (1 < j < d{p)) correspond to the weights of <j>p. Reordering the
basis if necessary we may suppose pu corresponds to the highest weight of <j>p.

Denote by r the rank of G and for 1 < j < r put Vj(x) = (pj)n(x), x G G,
where the highest weight of <t>Pj is the fundamental weight Xj. Then for each
p G (G)~if the highest weight of <j>p is Xp = /iAxH MrAr, Giulini and Travaglini
[7] have proved that pn = vllvl2 • • • vlr holds on G. Consequently, if sp (s G N)
denotes the representation of G such that <t>sp has highest weight sXp, we have
(sp)n = (Pii)8-

Let r denote the self-representation of G; note that a, r and ip have a common
representation space, and that TO a = a. Denote by il>jk,Tjk the relevant coordi-
nate functions relative to the basis for a chosen as above. Define / G T$ (H) by
f(x) = V'ufa); then the orthogonality relations yield H/H2, = d ( ^ ) " 1 = d(o)~l.
Now for s G N (see [5, 5.3(ii)]),

WfWlt >IJG \rn(y)\2a dy=^Jd l(«r)u(*)|9 dz = \ d(sa)~\

whence [8, 37.10] d ( sa ) - 1 < n22 s(2K(^))2 ss s | | / | | l s . Since n > n1^3 and since
[2, 4.2] d(so~) < sM d(a), where M is the number of positive roots not orthogonal
to the highest weight of <j>a, we have

K ( ^ ) > — ( d ^ ) 1 ^ - ! ^ / S I / 2 + M / 2 S )
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Let 1/2 > e > 0 be given. Then as in [2, 4.2] we have

/c(V>) > ^ ( d
4n

If the highest weight of 4>a is not listed in [2, 4.4], d(a) > r 3 / 8 and M < 2r2 so
with e = 1/30 we obtain /c(V>) > r1/3/480n. If the highest weight of </>a is listed
in [2, 4.4] but a £ FTR(G), then d{a) > r 2 /2 and M < 4r, so with £ = 1/18 we
obtain /c(V>) > r1/3/288n.

(7 .4) LEMMA. We retain the notation of Lemma (7.2). Then there is an
absolute constant C (C = 768 x 9603 x log 2 will do) so that log(/c(<r)) < CK(OJ)7.

PROOF, (i) Suppose G is of type Ai,Br,Cr,E7,E8,F4 or G2. Then G
admits only trivial diagram automorphisms [15], so N — Ne = TG and thus
K{O) = K(UJ).

(ii) Suppose G is of type D4 or E6. Then (7.2) log(/c(<r)) < 384/c(w)4logA;
where [15] k = 28 for G of type D4 and A; = 2925 for G of type £6-

(iii) Suppose G is of type Ar (r > 1) or Dr (r > 4). If N is connected, then
as in (i), K(O) = K(U>). If TV is disconnected but a € FTR(G) we have K{O) < 4
(3.4). Otherwise, since the group of diagram automorphisms of G is Z2 [15], it
follows that \N/Ne\ — 2, and because Ne = TG we can find J € N \ Ne so that
J2 G G. Put H = GUJG so that G < # < N, N = TH and / f /G ~ Z2. Denote
by ip the self-representation of H; clearly K(W) = /c(^»). Now from (7.2) we have
log(/c(<r)) < 384K(CJ)4 log A; where [15] k = (r+x) (writing q for [(r +1)/2]) for Ar

and fc = (r^2) for Z)r. We estimate k by 2r and 22 r respectively, and from (7.3)
obtain r 1 / 3 < 960K(W), whence the lemma.

(7.5) LEMMA (see [2, 5.4.2]). Let G < U{mn) be a compact Lie group,
and suppose that with respect to the tensor product basis {fi <8> r / i , . . . , £1 ® »yn,
£2 ® f?i, • • •, £m ® '/n} 0/ C m n corresponding to the orthonormal bases { & , . . . ,
£m} ond {f^i,... ,r)n} of Cm and C n respectively, G is contained in the (set
theoretic) product of S with U(m) ® U(n) where each s € 5 satisfies (s(£i ®
?7j), ^1 <8>»7i) = i^ii^ij. Denote by w the self-representation of G, and suppose
further that u £ G . Then K(UJ) > mm(m,n)1/2.

PROOF. It is clear from the symmetry of the hypotheses that we may suppose
m <n without loss of generality. Let A = (o^j) e U(m) and define B € Mmn(C)
by B(£i ® m) = Suhj E r= i YT=i akitk ® Vi- Then for each s G S, Bs = B,
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and if x G U(m) and y £ U(n) we have

m m
\tr B(x®y)\ =

< 1
since A, x and y are all unitary.

Consider / e TW(G) defined by f(x)
| | / | | l= tr |B|=m1/3 .

= trBx; then ||/||oo < 1 so K(W) >

8. The finite index case

Before presenting the general existence theorem for Sidon sets we deal with
the intermediate case where the connected component of the group is open. A
lifting theorem (8.1) relevant to this case is already well established; we therefore
investigate the behaviour of Sidonicity under restriction to connected subgroups.

(8.1) PROPOSITION (essentially [9, 5.16]). LetG be a compact group, H <G
and suppose H is open in G. Let Q C H and put P = {a GG : a <TG for some
T € Q}. Then P is Sidon if and only if Q is Sidon.

(8.2) PROPOSITION. Let G be a compact group and P C.G. Suppose that P
is local Sidon and a pre-Hutchinson lifting ofQCH, where H <G is connected
and Q is the canonical base set. Then Q is local Sidon.

PROOF. Let T e Q ; since Q is canonical there is a e P so that (T\H is
equivalent to pr for some p € N, and since K(T) = 1 whenever d(r) = 1, we may
suppose d(r) > 2. Using the construction (6.2) we obtain a projective extension
f of r and a projective representation 7 of the quotient G/H such that a is
equivalent to f ® 7 and Tf(G) < NU{T{H)); moreover (6.3) /c(er) > *c(f).

The structure theorem [14, 6.5.6] guarantees the existence of a family {Ha)a€A
of compact simply-connected almost simple Lie groups, a connected compact
abelian group T and an epimorphism TT: M — T x Yla€A Ha —> H; then TO it 6 U
so r o 7T is equivalent to x x (^a)a€A where x € T and ra G Ha is non-trivial
for at most finitely many a. Let a\,...,ak be the indices for which ra ^ 1,
write Tj for rQ> and put Hj = Tj(Haj); notice that k > 1 since d(r) > 2. It is
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straightforward (albeit tedious) to show that there are Uj G Uj = U(d(Tj)) and a
group S < U(d(r)) consisting of permutations such that Nu(r(H)) is conjugate
to M = S(g>*=1 UjNu^Hj^J1 (the elements of S are of the kind which map
x ® y to y <g> x under conjugation). Now if w denotes the self-representation of
the group M, we must have K(T) > K(UJ) (6.3, 4.3(vii)).

Let m and n be complementary subproducts of I"Iv=i ^( r i) ; *n e elements
of 5 are such that hypotheses of (7.5) are satisfied, and we deduce K(OJ) >
min(m, n)1/ /2 , whence, since d(ry) > 2, we have K(U>) > 2'fc/2' and thus k <
1 + 41og2«:((7). Moreover, if dfa) > K(O~)2 for more than one index j , (7.5)
forces a contradiction. We therefore distinguish two cases:

(i) Suppose d(Tj) < K(O)2 for all j . Then K(T) < d(r) < K(O)2+*XO**
 K("\

(ii) Suppose d(tj) > K,(a)2 for some (unique) j . Without loss of generality we
may suppose j = 1. Then 5 has the special form / <g» 5 ' , and it follows from [2,
5.4.1] that K(U) > K(W') where UJ' is the self-representation of Nu1 (Hi). Applying
(7.4) we see that log/c(ri) < CK(UJ')7 < CK(UJ)7 for some absolute constant C,
and from [2, 5.4.3] that K{T) < jc(n) I l J=a d ( T i ) a ^ exp(C/c(tr)7)/c((T)161o^«(<');
since P is local Sidon it now follows that KQ(Q) < oo.

(8.3) LEMMA. Let G be a compact group and H < G be open. Let P C G,
and suppose that for each a € P there is some ra G H so that the induced
representation r® is equivalent to a. Choose one such ra for each a G P and put
Q = {ra:ae P}; then K(Q) < K(P) and KO(Q) < KO(P).

PROOF. Let n = [G : H] and choose a left transversal {xi = e , . . . , x n } to H
in G. For each a G P fix an orthonormal basis for the representation space of a
so that the coordinate functions of a are

ra)kl(x~xxxj) if X~1XXJ G H,

I otherwise,

where 1 < i,j < n, 1 < k,l < d = d(ra). The result follows routinely by asso-
ciating to any / = X)o.€p tr(j4ffrCT) G TQ(H) the function g = Z)ff€p tr(SCT<r) G
TP(G) where {Ba)ra = (J4(T)rs, 1 < r,s < d{ro), and (Bo)Ta = 0 otherwise.

REMARK. Since by Frobenius reciprocity there are at most n possible TO for
each a, it follows that Q' = {r G H: TG is equivalent to a for some a G P} is
a finite union of Sidon (respectively local Sidon) sets if P is Sidon (respectively
local Sidon), and hence is Sidon (respectively local Sidon).

(8 .4) PROPOSITION. Let G be a compact group and suppose thatGe is open.
Let P C G be local Sidon and put Q = {r G Ge: r < a\ce for some a G P}.
Then Q is local Sidon.
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PROOF. Let a € P : Clifford's Theorem guarantees an open subgroup Sa <G

and pa € Sa so tha t a is equivalent to p% and PO\GC = naTa, for some na € N

and TO € Q. Since Ge is open there are only finitely many open subgroups

of G, say Si,...,Sk. For 1 < j < k let Pj = {a € P: Sa = S,} and put
Rj = {pff: a 6 P , } . Then P is the disjoint union of the P, and from (8.3) it
follows that KO(RJ) < KQ(P). NOW RJ is pre-Hutchinson relative to Ge- write
Qj for its canonical base set. Choose a transversal {arj = e , . . . , x3

m.} to S3: in G;

then from Clifford's Theorem we see that Q — \J*=1 U*L'i Q>* (where r x denotes
the irreducible representation given by y »-> r(a;j/a;~1)). By (8.2) each Qj is local
Sidon, and since Ko(Qy) = «o(Qi) it follows that Q is local Sidon.

(8.5) THEOREM. Let G be a compact group and suppose that Ge is open.
Then the following are equivalent

(i) G admits an infinite Sidon set,
(ii) G admits an infinite local Sidon set,
(iii) Ge admits an infinite Sidon set,
(iv) Ge admits an infinite local Sidon set.

PROOF. That (i) implies (ii) is trivial. That (ii) implies (iv) follows from (8.4)
together with Frobenius reciprocity. That (iii) and (iv) are equivalent is due to
[2, 6.2.1]. That (iii) implies (i) follows from (8.1) and Frobenius reciprocity.

COROLLARY. Let G be a compact group, Ge < H < G, and suppose Ge is
open. Then the following are equivalent:

(i) G admits an infinite Sidon set,
(ii) G admits an infinite local Sidon set,
(iii) H admits an infinite Sidon set,
(iv) H admits an infinite local Sidon set.

9. The general case

Before weaving our general existence theorem for Sidon sets from the foregoing
strands, we require one further technical lemma.

(9.1) LEMMA. Let G be a connected compact group and suppose P C G
is infinite and local Sidon. Then P contains an infinite Sidon subset, which
furthermore can be chosen to be unbounded whenever P is also unbounded.

PROOF, (i) Suppose P contains an infinite bounded subset. Then [10, 2.4] P
contains an infinite Sidon subset.
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(ii) Suppose every bounded subset of P is finite. Let w: Q = Tx YiaeA ^<* ~~*
G be the epimorphism and product group guaranteed by [14, 6.5.6]; then POTT C
Q is local Sidon, with every bounded subset finite. From [2, 5.5] we see that
P o 7T C Qx x Q2, where Qi is bounded and Q2 = FTR(G2) U {1}, G2 being
a subproduct of Q. The projection Qs of P o it on G2 must be unbounded, as
must Q2. For each a e Qz choose ra € Qi so that ra x a € P o 7r and put
Q — {ra x a: a 6 Q3}. Since <2i is bounded, Q is a Hutchinson lifting of Q3 and
hence (3.3, 3.6) is Sidon; moreover, Q = Px o n for some unbounded Pi C P ,
and Pi is Sidon [2, 2.2.1].

(iii) If P is unbounded, create an unbounded subset P ' of P by choosing one
element of P for every degree which occurs. Now apply (ii) to P ' to obtain an
unbounded Sidon subset of P .

(9.2) In view of [10] our interest centres mainly on tall groups.

PROPOSITION. Let G be a tall compact group. Then for G to admit an
infinite Sidon set it is sufficient that there are an open subgroup H < G and
keN such that FTRk(H) is infinite.

PROOF. Fix a (left) transversal {xi = e,...,xn} to H in G and let K =
n"=i X~1HXJ; then K < G, \G/K\ < n! and Ke = He = Ge [8, 7.8]. Now H is
tall so (4.8) FTR'fc(.ff) is unbounded and (4.10) YTR'k{K) is also unbounded. Put
F = {a\Gt: a € F T R ^ / f ) } ; by (4.10) F is an unbounded subet of FTR'fc(Ge) C
FTRfc(Ge). It follows from (4.6, 9.1) that F contains an unbounded Sidon subset
F'. For each r € F' choose crT € FTR'k(K) so that O-T\GC is equivalent to r; then
P = {aT: T G F'} C K is a Hutchinson lifting of F' (with T)(P) = 1) and is
therefore Sidon (3.6) and infinite. The proposition now follows by applying (8.1)
and Frobenius reciprocity to the open normal subgroup K of G.

(9.3) PROPOSITION. Let G be a tall compact group and suppose that G
admits an infinite local Sidon set. Then Ge admits an unbounded local Sidon
set and there are k € N and an open subgroup H < G so that FTRk{H) is
unbounded.

PROOF. Suppose P C G is infinite, hence unbounded, and local Sidon. Let
a G P : Clifford's Theorem guarantees an open subgroup Sa < G, pa € S,
Ta e Ge and ma e N so that a is equivalent to p2 and PO\GC = "Vr,,. Now [12,
Lemma 4] ensures that sup{[G : Sa\: a € P} is finite, and a straightforward ex-
tension of [11, 2.1(ii)] shows that G contains only finitely many closed subgroups
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of any given finite index. Hence there are an infinite subset Pi Q P and an open

subgroup S < G so tha t Sa = S for all a £ P\. Pu t R - {p,,: a G P i } C S; R

is local Sidon by (8.3), unbounded by Frobenius reciprocity, and pre-Hutchinson

relative to Ge. P u t Q = {ra: a G P i } , so R is a pre-Hutchinson lifting of Q; for

r £ Q let Rr = {p £ R: T < p\Ge}, so that R = \JT€Q /^ .
Now for each p £ Rj we have p|ce equivalent to the direct sum of mp copies

of T for some mp £ N, and since Se = Ge it follows from (7.1) that logmp <
9216/co(fl)

6. Therefore R is local Hutchinson, Q is unbounded, and by (8.2) Q
is local Sidon. Since Ge is connected it follows from (9.1) that Q contains an
unbounded Sidon subset Q\ having at most one element of each degree. Consider
T £ Q: there is p G Rj and since p\Gc is equivalent to a direct sum of copies
of r, the centre of r(Ge) contains at most as many elements as the centre of
p{S); since S is tall it follows [10, 3.2] that p(S), and hence r(Ge), is semisimple.
Considerations akin to those required for [17, 4.4] show [16, 3.4.7] that there are
a bounded set B C Ge and q £ N so that Q i C S u (JJLi FTRfc(Ge). It follows
that there is k £ N so that Qi nFTRfc(Ge), and hence FTRfc(Ge), is unbounded;
without loss of generality we may suppose Q\ C FTRfc(Ge).

For each r € Q\ choose pT 6 R and put R\ = {pT: r € Qi}; then i?i is a
Hutchinson lifting of Qi, and for each p G Ri we have P\GC equivalent to the
direct sum of mp copies of rp for some mp € N and TP £ Q%. By (6.2) we may
find a projective extension fp of TP to S and a projective representation ^p of S
so that p is equivalent to fp®^p, and Tp = 7p<8>7p is a continuous representation
of S with d(Tp) < rf(Ri). Since S is tall there are only finitely many possible
Tp (up to equivalence), hence there is an infinite subset R2 C R1 so that Tp is
equivalent to T for all p e R2. Put H = kerT; then H < S whence H <G.
By construction Ge is contained in the kernel of ^p for each p, so F is really a
representation of S/Ge; it follows that S/H ~ T(S/Ge) is finite since S/Ge is
profinite. Therefore i / is open in G.

Let p € i?2 and x £ H. Then for some u G U(d(p)) we have

where /?p: i f —> T , since 7P must be scalar on H = ker(7p <8>7p). It follows

that p|/f is equivalent to mp copies of rpp, where ipp{x) — 0p(x)fp(x). It is easily

seen tha t rpp defines a representation of H which is continuous because p is;

morover IPP\GC = TP SO tpp is irreducible, and xj)Pl equivalent to ipP2 implies rPl

equivalent to rP2, which (by choice of i?i) in tu rn implies pi equivalent to pi-

Thus V — {ipp: p £ R2} C H is a Hutchinson lifting, with r)(V) = 1, of an

unbounded subset of Qi.

Finally, let Vt = {tp £ V: d(ip) > k(k + 1)}; V\ is unbounded. Consider

il> £ Vi : i>\Ge = T G FTRf c(Ge) . Since r ( G e ) is irreducible and d{r) > k(k + 1)

it follows from the proof of (4.4) t ha t in fact r G FTR'f c(Ge); because ij){H) is
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tall and r(Ge) < i>{H) we deduce that V € FTR'k(H) and the proposition is

complete.

REMARK. A careful tracing of the constituent constructions in the above

argument yields the additional fact that for G a tall compact group, every infinite

local Sidon set in G contains an infinite Sidon subset.

(9.4) Combining (9.2, 9.3) and [10, 2.4] we achieve our general criterion for

the existence of an infinite Sidon set in the dual object of a compact group.

THEOREM. Let G be a compact group. The following are equivalent

(i) G admits an infinite Sidon set,

(ii) G admits an infinite local Sidon set,

(iii) either G is not tall, or G is tall and there are i t € N and an open subgroup

H <G such that FTRk{H) is infinite.
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